Problem Set 2
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
2D and 3D Transformations, Homogeneous Coordinates Lecture 03
2D and 3D Transformations, Homogeneous Coordinates Lecture 03 Patrick Karlsson [email protected] Centre for Image Analysis Uppsala University Computer Graphics November 6 2006 Patrick Karlsson (Uppsala University) Transformations and Homogeneous Coords. Computer Graphics 1 / 23 Reading Instructions Chapters 4.1–4.9. Edward Angel. “Interactive Computer Graphics: A Top-down Approach with OpenGL”, Fourth Edition, Addison-Wesley, 2004. Patrick Karlsson (Uppsala University) Transformations and Homogeneous Coords. Computer Graphics 2 / 23 Todays lecture ... in the pipeline Patrick Karlsson (Uppsala University) Transformations and Homogeneous Coords. Computer Graphics 3 / 23 Scalars, points, and vectors Scalars α, β Real (or complex) numbers. Points P, Q Locations in space (but no size or shape). Vectors u, v Directions in space (magnitude but no position). Patrick Karlsson (Uppsala University) Transformations and Homogeneous Coords. Computer Graphics 4 / 23 Mathematical spaces Scalar field A set of scalars obeying certain properties. New scalars can be formed through addition and multiplication. (Linear) Vector space Made up of scalars and vectors. New vectors can be created through scalar-vector multiplication, and vector-vector addition. Affine space An extended vector space that include points. This gives us additional operators, such as vector-point addition, and point-point subtraction. Patrick Karlsson (Uppsala University) Transformations and Homogeneous Coords. Computer Graphics 5 / 23 Data types Polygon based objects Objects are described using polygons. A polygon is defined by its vertices (i.e., points). Transformations manipulate the vertices, thus manipulates the objects. Some examples in 2D Scalar α 1 float. Point P(x, y) 2 floats. Vector v(x, y) 2 floats. Matrix M 4 floats. -
Efficient Learning of Simplices
Efficient Learning of Simplices Joseph Anderson Navin Goyal Computer Science and Engineering Microsoft Research India Ohio State University [email protected] [email protected] Luis Rademacher Computer Science and Engineering Ohio State University [email protected] Abstract We show an efficient algorithm for the following problem: Given uniformly random points from an arbitrary n-dimensional simplex, estimate the simplex. The size of the sample and the number of arithmetic operations of our algorithm are polynomial in n. This answers a question of Frieze, Jerrum and Kannan [FJK96]. Our result can also be interpreted as efficiently learning the intersection of n + 1 half-spaces in Rn in the model where the intersection is bounded and we are given polynomially many uniform samples from it. Our proof uses the local search technique from Independent Component Analysis (ICA), also used by [FJK96]. Unlike these previous algorithms, which were based on analyzing the fourth moment, ours is based on the third moment. We also show a direct connection between the problem of learning a simplex and ICA: a simple randomized reduction to ICA from the problem of learning a simplex. The connection is based on a known representation of the uniform measure on a sim- plex. Similar representations lead to a reduction from the problem of learning an affine arXiv:1211.2227v3 [cs.LG] 6 Jun 2013 transformation of an n-dimensional ℓp ball to ICA. 1 Introduction We are given uniformly random samples from an unknown convex body in Rn, how many samples are needed to approximately reconstruct the body? It seems intuitively clear, at least for n = 2, 3, that if we are given sufficiently many such samples then we can reconstruct (or learn) the body with very little error. -
2-D Drawing Geometry Homogeneous Coordinates
2-D Drawing Geometry Homogeneous Coordinates The rotation of a point, straight line or an entire image on the screen, about a point other than origin, is achieved by first moving the image until the point of rotation occupies the origin, then performing rotation, then finally moving the image to its original position. The moving of an image from one place to another in a straight line is called a translation. A translation may be done by adding or subtracting to each point, the amount, by which picture is required to be shifted. Translation of point by the change of coordinate cannot be combined with other transformation by using simple matrix application. Such a combination is essential if we wish to rotate an image about a point other than origin by translation, rotation again translation. To combine these three transformations into a single transformation, homogeneous coordinates are used. In homogeneous coordinate system, two-dimensional coordinate positions (x, y) are represented by triple- coordinates. Homogeneous coordinates are generally used in design and construction applications. Here we perform translations, rotations, scaling to fit the picture into proper position 2D Transformation in Computer Graphics- In Computer graphics, Transformation is a process of modifying and re- positioning the existing graphics. • 2D Transformations take place in a two dimensional plane. • Transformations are helpful in changing the position, size, orientation, shape etc of the object. Transformation Techniques- In computer graphics, various transformation techniques are- 1. Translation 2. Rotation 3. Scaling 4. Reflection 2D Translation in Computer Graphics- In Computer graphics, 2D Translation is a process of moving an object from one position to another in a two dimensional plane. -
Projective Geometry Lecture Notes
Projective Geometry Lecture Notes Thomas Baird March 26, 2014 Contents 1 Introduction 2 2 Vector Spaces and Projective Spaces 4 2.1 Vector spaces and their duals . 4 2.1.1 Fields . 4 2.1.2 Vector spaces and subspaces . 5 2.1.3 Matrices . 7 2.1.4 Dual vector spaces . 7 2.2 Projective spaces and homogeneous coordinates . 8 2.2.1 Visualizing projective space . 8 2.2.2 Homogeneous coordinates . 13 2.3 Linear subspaces . 13 2.3.1 Two points determine a line . 14 2.3.2 Two planar lines intersect at a point . 14 2.4 Projective transformations and the Erlangen Program . 15 2.4.1 Erlangen Program . 16 2.4.2 Projective versus linear . 17 2.4.3 Examples of projective transformations . 18 2.4.4 Direct sums . 19 2.4.5 General position . 20 2.4.6 The Cross-Ratio . 22 2.5 Classical Theorems . 23 2.5.1 Desargues' Theorem . 23 2.5.2 Pappus' Theorem . 24 2.6 Duality . 26 3 Quadrics and Conics 28 3.1 Affine algebraic sets . 28 3.2 Projective algebraic sets . 30 3.3 Bilinear and quadratic forms . 31 3.3.1 Quadratic forms . 33 3.3.2 Change of basis . 33 1 3.3.3 Digression on the Hessian . 36 3.4 Quadrics and conics . 37 3.5 Parametrization of the conic . 40 3.5.1 Rational parametrization of the circle . 42 3.6 Polars . 44 3.7 Linear subspaces of quadrics and ruled surfaces . 46 3.8 Pencils of quadrics and degeneration . 47 4 Exterior Algebras 52 4.1 Multilinear algebra . -
Paraperspective ≡ Affine
International Journal of Computer Vision, 19(2): 169–180, 1996. Paraperspective ´ Affine Ronen Basri Dept. of Applied Math The Weizmann Institute of Science Rehovot 76100, Israel [email protected] Abstract It is shown that the set of all paraperspective images with arbitrary reference point and the set of all affine images of a 3-D object are identical. Consequently, all uncali- brated paraperspective images of an object can be constructed from a 3-D model of the object by applying an affine transformation to the model, and every affine image of the object represents some uncalibrated paraperspective image of the object. It follows that the paraperspective images of an object can be expressed as linear combinations of any two non-degenerate images of the object. When the image position of the reference point is given the parameters of the affine transformation (and, likewise, the coefficients of the linear combinations) satisfy two quadratic constraints. Conversely, when the values of parameters are given the image position of the reference point is determined by solving a bi-quadratic equation. Key words: affine transformations, calibration, linear combinations, paraperspective projec- tion, 3-D object recognition. 1 Introduction It is shown below that given an object O ½ R3, the set of all images of O obtained by applying a rigid transformation followed by a paraperspective projection with arbitrary reference point and the set of all images of O obtained by applying a 3-D affine transformation followed by an orthographic projection are identical. Consequently, all paraperspective images of an object can be constructed from a 3-D model of the object by applying an affine transformation to the model, and every affine image of the object represents some paraperspective image of the object. -
Chapter 12 the Cross Ratio
Chapter 12 The cross ratio Math 4520, Fall 2017 We have studied the collineations of a projective plane, the automorphisms of the underlying field, the linear functions of Affine geometry, etc. We have been led to these ideas by various problems at hand, but let us step back and take a look at one important point of view of the big picture. 12.1 Klein's Erlanger program In 1872, Felix Klein, one of the leading mathematicians and geometers of his day, in the city of Erlanger, took the following point of view as to what the role of geometry was in mathematics. This is from his \Recent trends in geometric research." Let there be given a manifold and in it a group of transforma- tions; it is our task to investigate those properties of a figure belonging to the manifold that are not changed by the transfor- mation of the group. So our purpose is clear. Choose the group of transformations that you are interested in, and then hunt for the \invariants" that are relevant. This search for invariants has proved very fruitful and useful since the time of Klein for many areas of mathematics, not just classical geometry. In some case the invariants have turned out to be simple polynomials or rational functions, such as the case with the cross ratio. In other cases the invariants were groups themselves, such as homology groups in the case of algebraic topology. 12.2 The projective line In Chapter 11 we saw that the collineations of a projective plane come in two \species," projectivities and field automorphisms. -
Homogeneous Representations of Points, Lines and Planes
Chapter 5 Homogeneous Representations of Points, Lines and Planes 5.1 Homogeneous Vectors and Matrices ................................. 195 5.2 Homogeneous Representations of Points and Lines in 2D ............... 205 n 5.3 Homogeneous Representations in IP ................................ 209 5.4 Homogeneous Representations of 3D Lines ........................... 216 5.5 On Plücker Coordinates for Points, Lines and Planes .................. 221 5.6 The Principle of Duality ........................................... 229 5.7 Conics and Quadrics .............................................. 236 5.8 Normalizations of Homogeneous Vectors ............................. 241 5.9 Canonical Elements of Coordinate Systems ........................... 242 5.10 Exercises ........................................................ 245 This chapter motivates and introduces homogeneous coordinates for representing geo- metric entities. Their name is derived from the homogeneity of the equations they induce. Homogeneous coordinates represent geometric elements in a projective space, as inhomoge- neous coordinates represent geometric entities in Euclidean space. Throughout this book, we will use Cartesian coordinates: inhomogeneous in Euclidean spaces and homogeneous in projective spaces. A short course in the plane demonstrates the usefulness of homogeneous coordinates for constructions, transformations, estimation, and variance propagation. A characteristic feature of projective geometry is the symmetry of relationships between points and lines, called -
Lecture 16: Planar Homographies Robert Collins CSE486, Penn State Motivation: Points on Planar Surface
Robert Collins CSE486, Penn State Lecture 16: Planar Homographies Robert Collins CSE486, Penn State Motivation: Points on Planar Surface y x Robert Collins CSE486, Penn State Review : Forward Projection World Camera Film Pixel Coords Coords Coords Coords U X x u M M V ext Y proj y Maff v W Z U X Mint u V Y v W Z U M u V m11 m12 m13 m14 v W m21 m22 m23 m24 m31 m31 m33 m34 Robert Collins CSE486, PennWorld State to Camera Transformation PC PW W Y X U R Z C V Rotate to Translate by - C align axes (align origins) PC = R ( PW - C ) = R PW + T Robert Collins CSE486, Penn State Perspective Matrix Equation X (Camera Coordinates) x = f Z Y X y = f x' f 0 0 0 Z Y y' = 0 f 0 0 Z z' 0 0 1 0 1 p = M int ⋅ PC Robert Collins CSE486, Penn State Film to Pixel Coords 2D affine transformation from film coords (x,y) to pixel coordinates (u,v): X u’ a11 a12xa'13 f 0 0 0 Y v’ a21 a22 ya'23 = 0 f 0 0 w’ Z 0 0z1' 0 0 1 0 1 Maff Mproj u = Mint PC = Maff Mproj PC Robert Collins CSE486, Penn StateProjection of Points on Planar Surface Perspective projection y Film coordinates x Point on plane Rotation + Translation Robert Collins CSE486, Penn State Projection of Planar Points Robert Collins CSE486, Penn StateProjection of Planar Points (cont) Homography H (planar projective transformation) Robert Collins CSE486, Penn StateProjection of Planar Points (cont) Homography H (planar projective transformation) Punchline: For planar surfaces, 3D to 2D perspective projection reduces to a 2D to 2D transformation. -
2 Lie Groups
2 Lie Groups Contents 2.1 Algebraic Properties 25 2.2 Topological Properties 27 2.3 Unification of Algebra and Topology 29 2.4 Unexpected Simplification 31 2.5 Conclusion 31 2.6 Problems 32 Lie groups are beautiful, important, and useful because they have one foot in each of the two great divisions of mathematics — algebra and geometry. Their algebraic properties derive from the group axioms. Their geometric properties derive from the identification of group operations with points in a topological space. The rigidity of their structure comes from the continuity requirements of the group composition and inversion maps. In this chapter we present the axioms that define a Lie group. 2.1 Algebraic Properties The algebraic properties of a Lie group originate in the axioms for a group. Definition: A set gi,gj,gk,... (called group elements or group oper- ations) together with a combinatorial operation (called group multi- ◦ plication) form a group G if the following axioms are satisfied: (i) Closure: If g G, g G, then g g G. i ∈ j ∈ i ◦ j ∈ (ii) Associativity: g G, g G, g G, then i ∈ j ∈ k ∈ (g g ) g = g (g g ) i ◦ j ◦ k i ◦ j ◦ k 25 26 Lie Groups (iii) Identity: There is an operator e (the identity operation) with the property that for every group operation g G i ∈ g e = g = e g i ◦ i ◦ i −1 (iv) Inverse: Every group operation gi has an inverse (called gi ) with the property g g−1 = e = g−1 g i ◦ i i ◦ i Example: We consider the set of real 2 2 matrices SL(2; R): × α β A = det(A)= αδ βγ = +1 (2.1) γ δ − where α,β,γ,δ are real numbers. -
Euclidean Versus Projective Geometry
Projective Geometry Projective Geometry Euclidean versus Projective Geometry n Euclidean geometry describes shapes “as they are” – Properties of objects that are unchanged by rigid motions » Lengths » Angles » Parallelism n Projective geometry describes objects “as they appear” – Lengths, angles, parallelism become “distorted” when we look at objects – Mathematical model for how images of the 3D world are formed. Projective Geometry Overview n Tools of algebraic geometry n Informal description of projective geometry in a plane n Descriptions of lines and points n Points at infinity and line at infinity n Projective transformations, projectivity matrix n Example of application n Special projectivities: affine transforms, similarities, Euclidean transforms n Cross-ratio invariance for points, lines, planes Projective Geometry Tools of Algebraic Geometry 1 n Plane passing through origin and perpendicular to vector n = (a,b,c) is locus of points x = ( x 1 , x 2 , x 3 ) such that n · x = 0 => a x1 + b x2 + c x3 = 0 n Plane through origin is completely defined by (a,b,c) x3 x = (x1, x2 , x3 ) x2 O x1 n = (a,b,c) Projective Geometry Tools of Algebraic Geometry 2 n A vector parallel to intersection of 2 planes ( a , b , c ) and (a',b',c') is obtained by cross-product (a'',b'',c'') = (a,b,c)´(a',b',c') (a'',b'',c'') O (a,b,c) (a',b',c') Projective Geometry Tools of Algebraic Geometry 3 n Plane passing through two points x and x’ is defined by (a,b,c) = x´ x' x = (x1, x2 , x3 ) x'= (x1 ', x2 ', x3 ') O (a,b,c) Projective Geometry Projective Geometry -
1 Homogeneous Coordinates and Vanishing Points
CSE 152: Solutions to Assignment 1 Spring 2006 1 Homogeneous Coordinates and Vanishing Points In class, we discussed the concept of homogeneous coordinates. In this example, we will confine ourselves to the real 2D plane. A point (x, y)> on the real 2D plane can be represented in homo- geneous coordinates by a 3-vector (wx, wy, w)>, where w 6= 0 is any real number. All values of w 6= 0 represent the same 2D point. Dividing out the third coordinate of a homogeneous point x y > (x, y, z) converts it back to its 2D equivalent: , . z z Consider a line in the 2D plane, whose equation is given by ax + by + c = 0. This can equiv- alently be written as l>x = 0, where l = (a, b, c)> and x = (x, y, 1)>. Noticing that x is a ho- mogeneous representation of (x, y)>, we define l as a homogeneous representation of the line ax + by + c = 0. Note that the line (ka)x + (kb)y + (kc) = 0 for k 6= 0 is the same as the line ax + by + c = 0, so the homogeneous representation of the line ax + by + c = 0 can be equivalently given by (a, b, c)> or (ka, kb, kc)> for any k 6= 0. All points (x, y) that lie on the line ax + by + c = 0 satisfy the equation l>x = 0, thus, we can say that a condition for a homogeneous point x to lie on the homogeneous line l is that their dot product is zero, that is, l>x = 0. -
Affine Transformations and Rotations
CMSC 425 Dave Mount & Roger Eastman CMSC 425: Lecture 6 Affine Transformations and Rotations Affine Transformations: So far we have been stepping through the basic elements of geometric programming. We have discussed points, vectors, and their operations, and coordinate frames and how to change the representation of points and vectors from one frame to another. Our next topic involves how to map points from one place to another. Suppose you want to draw an animation of a spinning ball. How would you define the function that maps each point on the ball to its position rotated through some given angle? We will consider a limited, but interesting class of transformations, called affine transfor- mations. These include (among others) the following transformations of space: translations, rotations, uniform and nonuniform scalings (stretching the axes by some constant scale fac- tor), reflections (flipping objects about a line) and shearings (which deform squares into parallelograms). They are illustrated in Fig. 1. rotation translation uniform nonuniform reflection shearing scaling scaling Fig. 1: Examples of affine transformations. These transformations all have a number of things in common. For example, they all map lines to lines. Note that some (translation, rotation, reflection) preserve the lengths of line segments and the angles between segments. These are called rigid transformations. Others (like uniform scaling) preserve angles but not lengths. Still others (like nonuniform scaling and shearing) do not preserve angles or lengths. Formal Definition: Formally, an affine transformation is a mapping from one affine space to another (which may be, and in fact usually is, the same space) that preserves affine combi- nations.