Effects of Metal Toxicity on the Early Life Stages of The

Total Page:16

File Type:pdf, Size:1020Kb

Effects of Metal Toxicity on the Early Life Stages of The EFFECTS OF METAL TOXICITY ON THE EARLY LIFE STAGES OF THE SEA URCHIN EVECHINUS CHLOROTICUS By Agnes Mireille Rouchon A thesis submitted to the Victoria University of Wellington in fulfilment of the requirements for the degree of Doctor of Philosophy in Marine Biology 2015 To my Dad, for countless hours spent looking at snails, snakes, and other critters; this is how it all began… À mon Papa, pour toutes ces heures passées à observer escargots, serpents et autres bestioles; c’est comme ça que tout a commencé… i ii ABSTRACT Metals are a common source of pollution in coastal waters, and have long been recognised as a major concern for many marine species, especially their early life stages. Although effects have been examined using standard toxicity assays, the impact of metals in more complex and realistic exposure regimes is still poorly known, in particular with regards to latent effects across multiple life stages and the interaction of multiple stressors. In this thesis, the effects of metals were investigated for multiple life stages of the endemic New Zealand sea urchin Evechinus chloroticus. Standard short-term bioassays were performed on the early life stage of E. chloroticus and also the endemic abalone Haliotis iris, for comparison. These assays evaluated the toxicity of three major pollutants (copper, lead and zinc) alone and in combination, on these species. Embryos of both species were highly vulnerable to copper (EC50s: 5.4 and 3.4 µg/L respectively for E. chloroticus and H. iris) and zinc (27.7 and 13.1 µg/L) but relatively tolerant to lead (52.2 and 775 µg/L), and there was no evidence of synergistic effects of metal mixtures. The latent effects of copper across two life stages in E. chloroticus, larval and juvenile, were investigated with laboratory experiments using realistic scenarios of low copper concentration, short pulses of exposure and examining exposure through dietary intake as well as waterborne exposure. Strong latent and carry-over effects were observed even at low concentration and short exposure time. For example, individuals exposed as larvae to 10.4 µg/L Cu for two days developed normally during the larval stage but had strongly impaired subsequent growth, with average body size decreasing by 24% in the 25 d following settlement. Moreover, juveniles previously exposed to copper as larvae were less resistant to a subsequent exposure, with up to four times higher mortality. Latent effects were especially important when copper was present in the diet rather than dissolved in water. For example, E. chloroticus larvae exposed to 2.3 µg/L Cu in water and fed with an algal diet cultured in the same concentration had a settlement success three times lower than those exposed only to waterborne copper. Furthermore, a short pulse exposure (4 days) to copper in the algal diet was generally more toxic than chronic exposure, showing that iii a short-lived bloom of contaminated phytoplankton may have a more severe impact on zooplankton than chronic pollution. Because metal discharge in coastal water is generally associated with freshwater (e.g. storm water or river plumes), the toxicity of copper was evaluated in both normal and low salinity seawater. Low salinity (24 ppt) increased copper toxicity in E. chloroticus larvae under chronic exposure to high levels (15 µg/L; 43% and 80% lower survival and normal development rate, respectively) but not under a single pulse exposure (4 days) to low concentration (5 µg/L). This highlights the importance of using realistic exposure in laboratory assays. Finally, the effect of copper on adult E. chloroticus and in particular on their fertilisation success was evaluated. Strong sublethal effects were observed after exposure to 50 µg/L Cu for two weeks including spawning impairment (especially in females) and elevated copper burden in gonads (25-times higher than control animals). However, the fertilisation success of successfully spawning males was not affected. The prevalence of local metal contamination was also measured at the mouth of local river plumes and in E. chloroticus gonads at sites expected to vary in likely exposure to pollution. Copper levels exceeding water quality criteria were found in two instances in coastal agricultural runoff (Makara stream). Other metals were within water quality cirteria in all samplings. Adult E. chloroticus had an elevated copper burden in gonads in an urban site compared to a control site (0.77 µg/g vs. 0.27 µg/g). In total, this research demonstrates the need for considering toxic effects across multiple life stages and using realistic exposure regimes (e.g. timing, concentration, multiple stressors) to better understand the likely impact of metal pollution on marine populations. It also provides the first measure of metal toxicity on early life stages of an endemic species of cultural and commercial importance in New Zealand. iv ACKNOWLEDGEMENTS First and foremost, my deepest gratitude to Nicolas Gilbert for being my anchor in the sometimes stormy sea of graduate research, for his amazing problem-solving skills that truly contributed to the quality of this thesis, and, of course, for IT support. I am very grateful to my supervisor Nicole Phillips, for providing great feedback, encouragements when I needed them, and for being always supportive (even when life got in the way). Thanks to my secondary supervisor Simon Davy for advice and comments. Many thanks to Sonja Miller for invaluable help in getting me started and advice and encouragements along the way. Special thanks to Fernanda Piraud, Ursula Rojas Nazar and Alix LaFerriere for friendship and much needed support while writing and facing the challenges of combining motherhood and PhD study. Thanks to Camille Poutrin, Katie Clemens and Jenifer Howe for great help in the lab when it was most needed. Thanks to John van der Sman for help in building experimental apparatus. Thanks to my many helpers in the field: Paul Mensink, Jenny Oliver, Shane Geange, Cesar Cardenas Alacorn, Abi Powell, Sonja Miller, John van der Sman, Daniel McNaughtan, Simona Boschetti, Ursula Rojas Nazar, Christian Carrizo, Mauricio Cifuentes, Peter Edward; and in the lab: Fernanda Piraud, Richard Crerar, Steven Walton, Charlotte Dohrn, Laura, Nicolas Gilbert and Jean-Paul Rouchon. v Thanks to Sonja Miller, Peter Edward and Taputu Raea for their help in keeping my broodstock well fed and happy. Many thanks to all the VUCELers who made this journey so much fun. Thanks for all the stimulating conversations, friendships and morning teas! I would like to acknowledge the Victoria Doctoral Scholarship, Victoria PhD Submission Scholarship and the Greater Wellington Regional Council for funding. I am grateful to Graeme Moss and NIWA’s Mahanga Bay Lab for generous use of their facilities and paua broodstock. Thanks to Sharon van Soest from Environmental Laboratories Services in Petone for training on spectrometry techniques. Many thanks to Gordon Heeley and Victoria University School of Chemical and Physical Sciences for letting me use their brand new GFAA. And a huge thank you to my family in Reunion Island, France and Quebec for their love and support. Special thanks to my parents and parents-in-law for their help with babysitting, to my Mum for always been here to listen to my endless talks about my critters (“they are so cuuute!”), experiments, or other science-related subjects over the years, and, finally, to my beloved daughter who made the journey both so much more challenging and so much more worthwhile. vi CONTENTS Abstract ............................................................................................................................ iii Acknowledgements .......................................................................................................... v Contents .......................................................................................................................... vii List of Tables ................................................................................................................. xiii List of Figures ............................................................................................................... xvii List of Abbreviations and Acronyms ............................................................................. xxi CHAPTER 1 General Introduction .............................................................................. 1 1.1 Coastal benthic organisms ...................................................................................... 1 1.2 Prevalence of metal pollution worldwide ............................................................... 2 1.3 Mechanisms of toxicity ........................................................................................... 4 1.3.1 Bioavailability ................................................................................................. 4 1.3.2 Copper ............................................................................................................. 4 1.3.3 Zinc .................................................................................................................. 5 1.3.4 Lead ................................................................................................................. 5 1.4 Impacts of metal pollution on marine species ........................................................ 5 1.5 How to evaluate the impact of these stressors? ...................................................... 7 1.5.1 Interaction between stressors .........................................................................
Recommended publications
  • Diets and Coexistence of the Sea Urchins Lytechinus Variegatus and Arbacia Punctulata (Echinodermata) Along the Central Florida Gulf Coast
    MARINE ECOLOGY PROGRESS SERIES Vol. 295: 171–182, 2005 Published June 23 Mar Ecol Prog Ser Diets and coexistence of the sea urchins Lytechinus variegatus and Arbacia punctulata (Echinodermata) along the central Florida gulf coast Janessa Cobb, John M. Lawrence* Department of Biology, University of South Florida, Tampa, Florida 33620, USA ABSTRACT: The basis for coexistence of similar species is fundamental in community ecology. One mechanism for coexistence is differentiation of diets. Lytechinus variegatus and Arbacia punctulata coexist in different microhabitats along the Florida gulf coast. Their great difference in morphology might affect their choice of microhabitats and diet. We analyzed diets of both species at 1 offshore and 1 nearshore site where both occurred in relatively equal numbers, an offshore site dominated by A. punctulata and an offshore site dominated by L. variegatus. Gut contents were analyzed to deter- mine the diet. A. punctulata prim. consumed sessile invertebrates except on dates when algal avail- ability was higher than normal. L. variegatus primarily consumed macroflora except on dates when macroflora was extremely limited. Electivity indices revealed no strong preferences for particular species of algae, although L. variegatus consumed many drift species. A. punctulata and L. variega- tus both fed in a random manner, although they avoided particular species of algae known to contain high concentrations of secondary metabolites. The diet of A. punctulata was correlated with algae only over rubble outcroppings at the offshore site with the highest biomass. Diets of offshore popula- tions were more similar to each other, regardless of the presence of conspecifics, than to those of populations at Caspersen Beach (nearshore site).
    [Show full text]
  • Society of Japan
    Sessile Organisms 21 (1): 1-6 (2004) The Sessile Organisms Society of Japan Combination of macroalgae-conditioned water and periphytic diatom Navicula ramosissima as an inducer of larval metamorphosis in the sea urchins Anthocidaris crassispina and Pseudocentrotus depressus Jing-Yu Li1)*, Siti Akmar Khadijah Ab Rahimi1), Cyril Glenn Satuito 1)and Hitoshi Kitamura2)* 1) Graduate School of Science and Technology, Nagasaki University, 1-14 Bunkyo, Nagasaki 852-8521, Japan 2) Faculty of Fisheries, Nagasaki University, 1-14 Bunkyo, Nagasaki 852-8521, Japan *correspondingauthor (JYL) e-mail:[email protected] (Received June 10, 2003; Accepted August 7, 2003) Abstract The induction of larval metamorphosis in the sea urchins Anthocidaris crassispina and Pseudocentrotus depressus was investigated in the laboratory, using waters conditioned by 15 different macroalgae com- bined with the periphytic diatom Navicula ramosissima. Larvae of P. depressus did not metamorphose, but larvae of A. crassispina showed a high incidence of metamorphosis, especially in waters conditioned by coralline red algae or brown algae. High inductive activity for larval metamorphosis was detected in Corallina pilulifera-conditioned water during a 2.5-year investigation, but the activity was relatively low in February or March and in September, the off growth seasons of the alga. By contrast, Ulva pertusa-con- ditioned water did not show metamorphosis-inducing activity except in spring or early summer. These re- sults indicate that during their growth phase, red and brown
    [Show full text]
  • Bacillus Crassostreae Sp. Nov., Isolated from an Oyster (Crassostrea Hongkongensis)
    International Journal of Systematic and Evolutionary Microbiology (2015), 65, 1561–1566 DOI 10.1099/ijs.0.000139 Bacillus crassostreae sp. nov., isolated from an oyster (Crassostrea hongkongensis) Jin-Hua Chen,1,2 Xiang-Rong Tian,2 Ying Ruan,1 Ling-Ling Yang,3 Ze-Qiang He,2 Shu-Kun Tang,3 Wen-Jun Li,3 Huazhong Shi4 and Yi-Guang Chen2 Correspondence 1Pre-National Laboratory for Crop Germplasm Innovation and Resource Utilization, Yi-Guang Chen Hunan Agricultural University, 410128 Changsha, PR China [email protected] 2College of Biology and Environmental Sciences, Jishou University, 416000 Jishou, PR China 3The Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan Institute of Microbiology, Yunnan University, 650091 Kunming, PR China 4Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA A novel Gram-stain-positive, motile, catalase- and oxidase-positive, endospore-forming, facultatively anaerobic rod, designated strain JSM 100118T, was isolated from an oyster (Crassostrea hongkongensis) collected from the tidal flat of Naozhou Island in the South China Sea. Strain JSM 100118T was able to grow with 0–13 % (w/v) NaCl (optimum 2–5 %), at pH 5.5–10.0 (optimum pH 7.5) and at 5–50 6C (optimum 30–35 6C). The cell-wall peptidoglycan contained meso-diaminopimelic acid as the diagnostic diamino acid. The predominant respiratory quinone was menaquinone-7 and the major cellular fatty acids were anteiso-C15 : 0, iso-C15 : 0,C16 : 0 and C16 : 1v11c. The polar lipids consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, an unknown glycolipid and an unknown phospholipid. The genomic DNA G+C content was 35.9 mol%.
    [Show full text]
  • (Echinoidea, Echinidae) (Belgium) by Joris Geys
    Meded. Werkgr. Tert. Kwart. Geol. 26(1) 3-10 1 fig., 1 tab., 1 pi. Leiden, maart 1989 On the presence of Gracilechinus (Echinoidea, Echinidae) in the Late Miocene of the Antwerp area (Belgium) by Joris Geys University of Antwerp (RUCA), Antwerp, Belgium and Robert Marquet Antwerp, Belgium. Geys, J., & R. Marquet. On the presence of Gracilechinus (Echinoidea, in the of — Echinidae) Late Miocene the Antwerp area (Belgium). Meded. Werkgr. Tert. Kwart. Geol., 26(1): 00-00, 1 fig., 1 tab., 1 pi. Leiden, March 1989. Some well-preserved specimens of the regular echinoid Gracilechinus gracilis nysti (Cotteau, 1880) were collected in a temporary outcrop at Borgerhout-Antwerp, in sandstones reworked from the Deurne Sands (Late Miocene). The systematic status of this subspecies is discussed. The present state of knowledge of the Echinidae from the Neogene of the North Sea Basin is reviewed. Prof. Dr J. Geys, Dept. of Geology, University of Antwerp (RUCA), Groenenborgerlaan 171, B-2020 Antwerp, Belgium. Dr R. Marquet, Constitutiestraat 50, B-2008 Antwerp, Belgium, Contents — 3 Introduction, p. 4 Systematic palaeontology, p. 6 Discussion, p. Echinidae in the Neogene of the North Sea Basin—some considerations on 8 systematics, p. 10. References, p. INTRODUCTION extensive excavations the of E17-E18 indicated E3 Because of along western verge motorway (also as ‘Kleine and Ring’) at Borgerhout-Antwerp (Belgium), a remarkable outcrop of Neogene Quaternary beds accessible from The was March to November 1987. outcrop was situated between this motorway and the and extended from the the both ‘Singel’-road, ‘Stenenbrug’ to ‘Zurenborgbrug’, on sides 4 of the exit.
    [Show full text]
  • Evolutionary Background Entities at the Cellular and Subcellular Levels in Bodies of Invertebrate Animals
    The Journal of Theoretical Fimpology Volume 2, Issue 4: e-20081017-2-4-14 December 28, 2014 www.fimpology.com Evolutionary Background Entities at the Cellular and Subcellular Levels in Bodies of Invertebrate Animals Shu-dong Yin Cory H. E. R. & C. Inc. Burnaby, British Columbia, Canada Email: [email protected] ________________________________________________________________________ Abstract The novel recognition that individual bodies of normal animals are actually inhabited by subcellular viral entities and membrane-enclosed microentities, prokaryotic bacterial and archaeal cells and unicellular eukaryotes such as fungi and protists has been supported by increasing evidences since the emergence of culture-independent approaches. However, how to understand the relationship between animal hosts including human beings and those non-host microentities or microorganisms is challenging our traditional understanding of pathogenic relationship in human medicine and veterinary medicine. In recent novel evolution theories, the relationship between animals and their environments has been deciphered to be the interaction between animals and their environmental evolutionary entities at the same and/or different evolutionary levels;[1-3] and evolutionary entities of the lower evolutionary levels are hypothesized to be the evolutionary background entities of entities at the higher evolutionary levels.[1,2] Therefore, to understand the normal existence of microentities or microorganisms in multicellular animal bodies is becoming the first priority for elucidating the ecological and evolutiological relationships between microorganisms and nonhuman macroorganisms. The evolutionary background entities at the cellular and subcellular levels in bodies of nonhuman vertebrate animals have been summarized recently.[4] In this paper, the author tries to briefly review the evolutionary background entities (EBE) at the cellular and subcellular levels for several selected invertebrate animal species.
    [Show full text]
  • Practical Euthanasia Method for Common Sea Stars (Asterias Rubens) That Allows for High-Quality RNA Sampling
    animals Article Practical Euthanasia Method for Common Sea Stars (Asterias rubens) That Allows for High-Quality RNA Sampling Sarah J. Wahltinez 1 , Kevin J. Kroll 2, Elizabeth A. Nunamaker 3 , Nancy D. Denslow 2,4 and Nicole I. Stacy 1,* 1 Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA; swahltinez@ufl.edu 2 Department of Physiological Sciences, Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA; krollk@ufl.edu (K.J.K.); ndenslow@ufl.edu (N.D.D.) 3 Animal Care Services, University of Florida, Gainesville, FL 32611, USA; nunamaker@ufl.edu 4 Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA * Correspondence: stacyn@ufl.edu Simple Summary: Sea stars are iconic marine invertebrates and are important for maintaining the biodiversity in their ecosystems. As humans, we interact with sea stars when they are used as research animals or displayed at public or private aquaria. Molecular research requires fresh tissues that have thus far been considered to be of the best quality if collected without euthanasia. This is the first paper describing a method to euthanize sea stars that still allows for sampling of high-quality tissue that can be used for advanced research. Since it can be difficult to tell if an invertebrate has died, it is important to use a two-step method where the first step makes it non-responsive and Citation: Wahltinez, S.J.; Kroll, K.J.; the next step ensures it has died.
    [Show full text]
  • Marlin Marine Information Network Information on the Species and Habitats Around the Coasts and Sea of the British Isles
    MarLIN Marine Information Network Information on the species and habitats around the coasts and sea of the British Isles Edible sea urchin (Echinus esculentus) MarLIN – Marine Life Information Network Biology and Sensitivity Key Information Review Dr Harvey Tyler-Walters 2008-04-29 A report from: The Marine Life Information Network, Marine Biological Association of the United Kingdom. Please note. This MarESA report is a dated version of the online review. Please refer to the website for the most up-to-date version [https://www.marlin.ac.uk/species/detail/1311]. All terms and the MarESA methodology are outlined on the website (https://www.marlin.ac.uk) This review can be cited as: Tyler-Walters, H., 2008. Echinus esculentus Edible sea urchin. In Tyler-Walters H. and Hiscock K. (eds) Marine Life Information Network: Biology and Sensitivity Key Information Reviews, [on-line]. Plymouth: Marine Biological Association of the United Kingdom. DOI https://dx.doi.org/10.17031/marlinsp.1311.1 The information (TEXT ONLY) provided by the Marine Life Information Network (MarLIN) is licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales License. Note that images and other media featured on this page are each governed by their own terms and conditions and they may or may not be available for reuse. Permissions beyond the scope of this license are available here. Based on a work at www.marlin.ac.uk (page left blank) Date: 2008-04-29 Edible sea urchin (Echinus esculentus) - Marine Life Information Network See online review for distribution map Echinus esculentus and hermit crabs on grazed rock.
    [Show full text]
  • Multiple Factors Explain the Covering Behaviour in the Green Sea Urchin, Strongylocentrotus Droebachiensis
    ARTICLE IN PRESS ANIMAL BEHAVIOUR, 2007, --, --e-- doi:10.1016/j.anbehav.2006.11.008 Multiple factors explain the covering behaviour in the green sea urchin, Strongylocentrotus droebachiensis CLE´ MENT P. DUMONT*†,DAVIDDROLET*, ISABELLE DESCHEˆ NES* &JOHNH.HIMMELMAN* *De´partement de Biologie, Que´bec-Oce´an, Universite´ Laval yCEAZA, Departamento de Biologia Marina, Universidad Catolica del Norte (Received 26 March 2006; initial acceptance 29 August 2006; final acceptance 13 November 2006; published online ---; MS. number: A10403) Although numerous species of sea urchins often cover themselves with small rocks, shells and algal fragments, the function of this covering behaviour is poorly understood. Diving observations showed that the degree to which the sea urchin Strongylocentrotus droebachiensis covers itself in the field decreases with size. We performed laboratory experiments to examine how the sea urchin’s covering behaviour is affected by the presence of predators, sea urchin size, wave surge, contact with moving algae blades and sunlight. The presence of two common sea urchin predators did not influence the degree to which sea ur- chins covered themselves. Covering responses of sea urchins that were exposed to a strong wave surge and sweeping algal blades were significantly greater than those of individuals that were maintained under still water conditions. The degree to which sea urchins covered themselves in the laboratory also tended to decrease with increasing size. Juveniles showed stronger covering responses than adults, possibly because they are more vulnerable to dislodgement and predation. We found that UV light stimulated a covering response, whereas UV-filtered sunlight and darkness did not, although the response to UV light was much weaker than that to waves and algal movement.
    [Show full text]
  • The Status of Mariculture in Northern China
    271 The status of mariculture in northern China Chang Yaqing1 and Chen Jiaxin2 1Dalian Fisheries University Dalian, Liaoning, People’s Republic of China E-mail: [email protected] 2Yellow Sea Fisheries Research Institute Chinese Academy of Fisheries Sciences Qingdao, Shandong, People’s Republic of China Chang, Y. and Chen, J. 2008. The status of mariculture in northern China. In A. Lovatelli, M.J. Phillips, J.R. Arthur and K. Yamamoto (eds). FAO/NACA Regional Workshop on the Future of Mariculture: a Regional Approach for Responsible Development in the Asia- Pacific Region. Guangzhou, China, 7–11 March 2006. FAO Fisheries Proceedings. No. 11. Rome, FAO. 2008. pp. 271–284. INTRODUCTION The People’s Republic of China has a long history of mariculture production. The mariculture industry in China has achieved breakthroughs in the hatchery, nursery and culture techniques of shrimp, molluscs and fish of high commercial value since the 1950s. The first major development was seaweed culture during the 1950s, made possible by breakthroughs in breeding technology. By the end of the 1970s, annual seaweed production had reached 250 000 tonnes in dry weight (approximately 1.5 million tonnes of fresh seaweed). Shrimp culture developed during the 1980s because of advances in hatchery technology and economic reform policies. Annual shrimp production reached 210 000 tonnes in 1992. Disease outbreaks since 1993, however, have reduced shrimp production by about two-thirds. Mariculture production increased steadily between 1954 and 1985, but has been growing exponentially since 1986, mostly driven by mollusc culture. Mollusc culture in China began to expand beyond the four traditional species (oyster, cockle, razor clam and ruditapes clam) in the 1970s.
    [Show full text]
  • Density, Growth and Reproduction of the Sea Urchin Anthocidaris Crassispina (A
    Blackwell Science, LtdOxford, UK FISFisheries Science0919-92682004 Blackwell Science Asia Pty Ltd 702April 2004 796 Sea urchin density, growth and reproduction K Yatsuya and H Nakahara 10.1046/j.1444-2906.2003.00796.x Original Article233240BEES SGML FISHERIES SCIENCE 2004; 70: 233–240 Density, growth and reproduction of the sea urchin Anthocidaris crassispina (A. Agassiz) in two different adjacent habitats, the Sargassum area and Corallina area Kousuke YATSUYAa* AND Hiroyuki NAKAHARA Graduate School of Global Environmental Studies, Kyoto University, Kyoto, Kyoto 606-8501, Japan ABSTRACT: The sea urchin Anthocidaris crassispina (A. Agassiz) is a dominant herbivore on rocky shores in the warm temperate region of Japan. To clarify the relationship between macroalgal community and A. crassispina on rocky shores, A. crassispina collected in the Sargassum area and neighboring Corallina area were compared with respect to their density, growth and reproduction. Density of A. crassispina was higher in the Corallina area than in the Sargassum area. A. crassispina in the Sargassum area reached a larger size and had higher gonad indices than those in the Corallina area throughout the year. The annual reproductive cycles were almost the same in the two different habitats. These results indicate that Sargassum spp. support better growth and reproduction of A. crassispina. KEY WORDS: Anthocidaris crassispina, articulated coralline turf, Corallina, density, growth, reproduction, Sargassum, Sargassum forest. INTRODUCTION Reproduction of the sea urchin has been well studied throughout the world because of the Much attention has been given to the interactions commercial value of the gonad.10,11 Anthocidaris between sea urchin and seaweed. The impor- crassispina is an edible sea urchin and has com- tance of sea urchins in structuring macroalgal mercial value.12 The annual reproductive cycle of communities is well known.1–3 Macroalgal com- A.
    [Show full text]
  • Ambiguous Role of Phlorotannins As Chemical Defenses in the Brown Alga Fucus Vesiculosus
    MARINE ECOLOGY PROGRESS SERIES Vol. 277: 79–93, 2004 Published August 16 Mar Ecol Prog Ser Ambiguous role of phlorotannins as chemical defenses in the brown alga Fucus vesiculosus Julia Kubanek1, 2,*, Sarah E. Lester3, William Fenical4, Mark E. Hay1 1School of Biology, and 2School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0230, USA 3Department of Ecology, Evolution and Marine Biology, University of California at Santa Barbara, Santa Barbara, California 93106, USA 4Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California 92093-0204, USA ABSTRACT: Brown seaweeds (Fucales) produce phlorotannins that are often considered chemical defenses against herbivores. The many correlative and fewer direct tests conducted have shown effects of phlorotannins on herbivore feeding behavior to be variable. In an attempt to clarify the roles of phlorotannins versus other metabolites in defending brown algae, we conducted bioassay-guided fractionation of herbivore-deterrent extracts from the commonly studied brown alga Fucus vesiculo- sus. Feeding by the amphipods Ampithoe valida and A. longimana and the sea urchin Arbacia punc- tulata was suppressed by crude and water-soluble extracts of F. vesiculosus, but this deterrence was lost following storage or fractionation of the active, water-soluble extract. Phlorotannins in these extracts did not decompose in parallel with the loss of feeding deterrence. F. vesiculosus phloro- tannins were fed to herbivores at 3 to 12× the isolated yield (or 4.2 to 16.8% of plant dry mass). No herbivore was deterred from feeding by concentrations of 3 or 6×, but A.
    [Show full text]
  • The Phylogenetic Position and Taxonomic Status of Sterechinus Bernasconiae Larrain, 1975 (Echinodermata, Echinoidea), an Enigmatic Chilean Sea Urchin
    The phylogenetic position and taxonomic status of Sterechinus bernasconiae Larrain, 1975 (Echinodermata, Echinoidea), an enigmatic Chilean sea urchin 1 2,3 1 4 1 5 3 Thomas Saucède , Angie Díaz , Benjamin Pierrat , Javier Sellanes , Bruno David , Jean-Pierre Féral , Elie Poulin Abstract Sterechinus is a very common echinoid genus subclade and a subclade composed of other Sterechinus in benthic communities of the Southern Ocean. It is widely species. The three nominal species Sterechinus antarcticus, distributed across the Antarctic and South Atlantic Oceans Sterechinus diadema, and Sterechinus agassizi cluster to- and has been the most frequently collected and intensively gether and cannot be distinguished. The species Ster- studied Antarctic echinoid. Despite the abundant literature echinus dentifer is weakly differentiated from these three devoted to Sterechinus, few studies have questioned the nominal species. The elucidation of phylogenetic rela- systematics of the genus. Sterechinus bernasconiae is the tionships between G. multidentatus and species of Ster- only species of Sterechinus reported from the Pacific echinus also allows for clarification of respective Ocean and is only known from the few specimens of the biogeographic distributions and emphasizes the putative original material. Based on new material collected during role played by biotic exclusion in the spatial distribution of the oceanographic cruise INSPIRE on board the R/V species. Melville, the taxonomy and phylogenetic position of the species are revised. Molecular and
    [Show full text]