Super-Resolution Microscopy at a Glance
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Two-Photon Excitation Fluorescence Microscopy
P1: FhN/ftt P2: FhN July 10, 2000 11:18 Annual Reviews AR106-15 Annu. Rev. Biomed. Eng. 2000. 02:399–429 Copyright c 2000 by Annual Reviews. All rights reserved TWO-PHOTON EXCITATION FLUORESCENCE MICROSCOPY PeterT.C.So1,ChenY.Dong1, Barry R. Masters2, and Keith M. Berland3 1Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; e-mail: [email protected] 2Department of Ophthalmology, University of Bern, Bern, Switzerland 3Department of Physics, Emory University, Atlanta, Georgia 30322 Key Words multiphoton, fluorescence spectroscopy, single molecule, functional imaging, tissue imaging ■ Abstract Two-photon fluorescence microscopy is one of the most important re- cent inventions in biological imaging. This technology enables noninvasive study of biological specimens in three dimensions with submicrometer resolution. Two-photon excitation of fluorophores results from the simultaneous absorption of two photons. This excitation process has a number of unique advantages, such as reduced specimen photodamage and enhanced penetration depth. It also produces higher-contrast im- ages and is a novel method to trigger localized photochemical reactions. Two-photon microscopy continues to find an increasing number of applications in biology and medicine. CONTENTS INTRODUCTION ................................................ 400 HISTORICAL REVIEW OF TWO-PHOTON MICROSCOPY TECHNOLOGY ...401 BASIC PRINCIPLES OF TWO-PHOTON MICROSCOPY ..................402 Physical Basis for Two-Photon Excitation ............................ -
STED Fluorescence Microscopy: a Method of Resolution Enhancement Submitted by David Biss and Jason Neiser
STED Fluorescence Microscopy: A method of resolution enhancement Submitted by David Biss and Jason Neiser Introduction relaxed vibrational level of the ground electronic state. The microscope excitation light generates If geometrical aberrations are minimized in an a transition in the fluorophore from level L0 to optical system, the smallest spot size attainable is L1, a high vibrational level of the first excited the diffraction limited spot size. Confocal state. From here, the molecule undergoes a fast microscopy was the first method to extend vibrational decay from L1 to L2, and eventually resolution beyond the Abbe resolution limit and fluoresces to L3 by spontaneous emission. it added axial resolution to the system. This form of microscopy images a portion of the sample being investigated onto a confocal pinhole at the detection plane of the system. Since the invention of confocal microscopy other methods have been devised to reach beyond the standard diffraction limit. Some of these methods are 4π microscopy, two photon microscopy, near-field microscopy, and more recently, STimulated Emission Depletion (STED) fluorescence microscopy. [1, 2, 3] STED fluorescence microscopy takes standard fluorescence microscopy and introduces a technique to reduce the emitted spot size. STED microscopy uses stimulated emission to deplete fluorophores before they fluoresce. If this depletion occurs at the edges of the excited sample area the spot size (and volume) of the fluorescence can be reduced beyond the Fig. 1 Energy level diagram of a dye molecule. A short diffraction limit. wavelength pulse excites the molecule and it may be relaxed by either fluorescing or by stimulated emission via the STED Theory pulse. -
Confocal Microscopy
Confocal microscopy Chapter in Handbook of Comprehensive Biophysics ( in press 2011) Elsevier Brad Amos MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH UK e-mail [email protected] Gail McConnell University of Strathclyde , Centre for Biophotonics 161 Cathedral Street , Glasgow G4 0RE UK [email protected] Tony Wilson Dept. of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK. eMail: [email protected] 1 Introduction A confocal microscope is one in which the illumination is confined to a small volume in the specimen, the detection is confined to the same volume and the image is built up by scanning this volume over the specimen, either by moving the beam of light over the specimen or by displacing the specimen relative to a stationary beam. The chief advantage of this type of microscope is that it gives a greatly enhanced discrimination of depth relative to conventional microscopes. Commercial systems appeared in the 1980s and, despite their high cost, the world market for them is probably between 500 and 1000 instruments per annum, mainly because of their use in biomedical research in conjunction with fluorescent labelling methods. There are many books and review articles on this subject ( e.g. Pawley ( 2006) , Matsumoto( 2002), Wilson (1990) ). The purpose of this chapter is to provide an introduction to optical and engineering aspects that may be o f interest to biomedical users of confocal microscopy. Flying-spot Microscopes A confocal microscope is a special type of ‘flying spot’ microscope. Flying spot systems were developed in the 1950s by combining conventional microscopes with electronics from TV and military equipment. -
Imaging with Second-Harmonic Generation Nanoparticles
1 Imaging with Second-Harmonic Generation Nanoparticles Thesis by Chia-Lung Hsieh In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy California Institute of Technology Pasadena, California 2011 (Defended March 16, 2011) ii © 2011 Chia-Lung Hsieh All Rights Reserved iii Publications contained within this thesis: 1. C. L. Hsieh, R. Grange, Y. Pu, and D. Psaltis, "Three-dimensional harmonic holographic microcopy using nanoparticles as probes for cell imaging," Opt. Express 17, 2880–2891 (2009). 2. C. L. Hsieh, R. Grange, Y. Pu, and D. Psaltis, "Bioconjugation of barium titanate nanocrystals with immunoglobulin G antibody for second harmonic radiation imaging probes," Biomaterials 31, 2272–2277 (2010). 3. C. L. Hsieh, Y. Pu, R. Grange, and D. Psaltis, "Second harmonic generation from nanocrystals under linearly and circularly polarized excitations," Opt. Express 18, 11917–11932 (2010). 4. C. L. Hsieh, Y. Pu, R. Grange, and D. Psaltis, "Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media," Opt. Express 18, 12283–12290 (2010). 5. C. L. Hsieh, Y. Pu, R. Grange, G. Laporte, and D. Psaltis, "Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle," Opt. Express 18, 20723–20731 (2010). iv Acknowledgements During my five-year Ph.D. studies, I have thought a lot about science and life, but I have never thought of the moment of writing the acknowledgements of my thesis. At this moment, after finishing writing six chapters of my thesis, I realize the acknowledgment is probably one of the most difficult parts for me to complete. -
Super-Resolution Imaging by Dielectric Superlenses: Tio2 Metamaterial Superlens Versus Batio3 Superlens
hv photonics Article Super-Resolution Imaging by Dielectric Superlenses: TiO2 Metamaterial Superlens versus BaTiO3 Superlens Rakesh Dhama, Bing Yan, Cristiano Palego and Zengbo Wang * School of Computer Science and Electronic Engineering, Bangor University, Bangor LL57 1UT, UK; [email protected] (R.D.); [email protected] (B.Y.); [email protected] (C.P.) * Correspondence: [email protected] Abstract: All-dielectric superlens made from micro and nano particles has emerged as a simple yet effective solution to label-free, super-resolution imaging. High-index BaTiO3 Glass (BTG) mi- crospheres are among the most widely used dielectric superlenses today but could potentially be replaced by a new class of TiO2 metamaterial (meta-TiO2) superlens made of TiO2 nanoparticles. In this work, we designed and fabricated TiO2 metamaterial superlens in full-sphere shape for the first time, which resembles BTG microsphere in terms of the physical shape, size, and effective refractive index. Super-resolution imaging performances were compared using the same sample, lighting, and imaging settings. The results show that TiO2 meta-superlens performs consistently better over BTG superlens in terms of imaging contrast, clarity, field of view, and resolution, which was further supported by theoretical simulation. This opens new possibilities in developing more powerful, robust, and reliable super-resolution lens and imaging systems. Keywords: super-resolution imaging; dielectric superlens; label-free imaging; titanium dioxide Citation: Dhama, R.; Yan, B.; Palego, 1. Introduction C.; Wang, Z. Super-Resolution The optical microscope is the most common imaging tool known for its simple de- Imaging by Dielectric Superlenses: sign, low cost, and great flexibility. -
Super-Resolution STED Microscopy and Its Application in Neuroscience
Super-resolution STED microscopy and its application in neuroscience Katrin Willig 18th German-American Frontiers of Engineering Symposium Hamburg 20-23 March 2019 Nanoscale Microscopy and Molecular Physiology of the Brain MPI of Cluster of Excellence 171, Experimental DFG Research Center 103 Medicine 1 Resolution in far-field light microscopy diffraction limit: minimum resolvable distance l l a dmin d 2 nsina numerical aperture (NA) n: refractive index structure image “similar objects closer than about half the wavelength should not be distinguishable in a light microscope” Ernst Abbe 1873 2 Standard (confocal) vs. Superresolution (STED) 3 Confocal (fluorescence) microscopy x 200 nm Abbe‘s equation y λ d 2n sin a Excitation d Fluorescence Detection Dichroic Scanning Mirror 1 Device S1 Excitation Fluorescence S0 4 STED (STimulated Emission Depletion) microscopy x 200 nm Phase Plate y 0 2p STED Excitation d Fluorescence Detection Dichroic Dichroic Scanning Mirror 1 Mirror 2 Device Nobel Prize in Chemistry 2014 to Betzig, Hell & Moerner S1 "for the development of super-resolved fluorescence microscopy." . Excitation Stimul Emission STED beam: keeps molecules non-fluorescent Fluorescence S0 5 Diffraction limited resolution PSF 1 220 nm 0 -200 0 200 1.0 0.5 y 500 nm x Fluorescence 0.0 min max 0.0 0.5 1.0 1.5 I [GW/cm²] STED 6 Subdiffraction resolution Depletion distribution 1 132 nm 0 -200 0 200 1.0 0.5 y 500 nm Fluorescence x 0.0 min max 0.0 0.5 1.0 1.5 I [GW/cm²] STED 7 Subdiffraction resolution Depletion distribution 1 84 nm 0 -200 0 -
Super-Resolution STED Microscopy and Its Application in Neuroscience
Super-resolution STED microscopy and its application in neuroscience Katrin Willig Fluorescence microscopy is a widely used technique, especially in biology. It combines staining specificity with relatively simple imaging capabilities. Especially if applied in the far-field it is almost non-invasive and therefore ideal to study protein assemblies or dynamics in living cells, tissues or animals. Until recently it was widely accepted that far-field optical microscopes cannot visualize details closer than about half the wavelength of light. Therefore, electron microscopy is needed to reveal structural details at exceptionally high resolution, down to the molecular level. EM, though, lacks the ability to image dynamic changes of the same morphological structures; temporal information is only gathered via comparative studies prepared at different time-points. However, to understand how and why the sub-structure of cells changes, and what functional consequence this change induces, we need to visualize cells or even whole, intact living organism over extended periods of time, i.e. in longitudinal studies. However, given the poor optical resolution small sub- cellular structures have still not been accurately assessed by standard light microscopy techniques available due to the diffraction limited resolution of far-field light microscopy being ~200-300 nm. With the 2014 Nobel Prize in Chemistry ‘for the development of superresolved fluorescence microscopy’ for Betzig, Hell and Moerner, a novel family of light microscopy techniques became widely recognized, which surpass the limited resolution of light microscopy: The general terms ‘superresolution’ microscopy or ‘nanoscopy’ encompass several techniques, which can be divided in coordinate-targeted approaches (e.g. stimulated emission depletion microscopy (STED), reversible saturable optical fluorescent transition microscopy (RESOLFT)), and coordinate-stochastic approaches (e.g. -
Correlating STED and Synchrotron XRF Nano-Imaging Unveils
TOOLS AND RESOURCES Correlating STED and synchrotron XRF nano-imaging unveils cosegregation of metals and cytoskeleton proteins in dendrites Florelle Domart1,2,3, Peter Cloetens4, Ste´ phane Roudeau1,2, Asuncion Carmona1,2, Emeline Verdier3, Daniel Choquet3,5†, Richard Ortega1,2†* 1Chemical Imaging and Speciation, CENBG, Univ. Bordeaux, Gradignan, France; 2CNRS, IN2P3, CENBG, UMR 5797, Gradignan, France; 3Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France; 4ESRF, the European Synchrotron, Grenoble, France; 5Univ. Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS, Bordeaux, France Abstract Zinc and copper are involved in neuronal differentiation and synaptic plasticity but the molecular mechanisms behind these processes are still elusive due in part to the difficulty of imaging trace metals together with proteins at the synaptic level. We correlate stimulated- emission-depletion microscopy of proteins and synchrotron X-ray fluorescence imaging of trace metals, both performed with 40 nm spatial resolution, on primary rat hippocampal neurons. We reveal the co-localization at the nanoscale of zinc and tubulin in dendrites with a molecular ratio of about one zinc atom per tubulin-ab dimer. We observe the co-segregation of copper and F-actin within the nano-architecture of dendritic protrusions. In addition, zinc chelation causes a decrease in the expression of cytoskeleton proteins in dendrites and spines. Overall, these results indicate *For correspondence: new functions for zinc and copper in the modulation of the cytoskeleton morphology in dendrites, a [email protected] mechanism associated to neuronal plasticity and memory formation. †These authors contributed equally to this work Competing interests: The Introduction authors declare that no The neurobiology of copper and zinc is a matter of intense investigation since they have been competing interests exist. -
Super-Resolution Deep Imaging with Hollow Bessel Beam STED Microscopy
Laser & Photonics Review DOI: 10.1002/lpor.201500151 Super-resolution deep imaging with hollow Bessel beam STED microscopy Wentao Yu1, Ziheng Ji1, Dashan Dong1, Xusan Yang2, Yunfeng Xiao1, 3, Qihuang Gong1, 3, Peng Xi2*, and Kebin Shi1, 3* 1State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China 2Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China 3Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China *E-mail: [email protected] [email protected] The achievable resolution in STED systems explicitly relies Abstract—Stimulated emission depletion (STED) microscopy on the fluorophore depletion efficiency, i.e. the efficient use of has become a powerful imaging and localized excitation method photons delivered by the designated depletion beam. As a result, breaking the diffraction barrier for improved lateral spatial it is challenging to maintain consistent resolution as the foci resolution in cellular imaging, lithography, etc. Due to specimen- moves from the surface to deep inside of the specimens due to induced aberrations and scattering distortion, it is a great challenge for STED to maintain consistent lateral resolution the spherical aberration, scattering distortion and loss.[12, 15, deeply inside the specimens. Here we report on a deep imaging 20] Experimental and theoretical efforts have been reported to STED microscopy by using Gaussian -
Development of Optical Hyperlens for Imaging Below the Diffraction Limit
Development of optical hyperlens for imaging below the diffraction limit Hyesog Lee, Zhaowei Liu, Yi Xiong, Cheng Sun and Xiang Zhang* 5130 Etcheverry Hall, NSF Nanoscale Science and Engineering Center (NSEC), University of California, Berkeley, CA 94720 *Corresponding author: [email protected] http://xlab.me.berkeley.edu Abstract: We report here the design, fabrication and characterization of optical hyperlens that can image sub-diffraction-limited objects in the far field. The hyperlens is based on an artificial anisotropic metamaterial with carefully designed hyperbolic dispersion. We successfully designed and fabricated such a metamaterial hyperlens composed of curved silver/alumina multilayers. Experimental results demonstrate far-field imaging with resolution down to 125nm at 365nm working wavelength which is below the diffraction limit. ©2007 Optical Society of America OCIS codes: (110 0180) Microscopy; (220.4241) Optical design and fabrication: Nanostructure fabrication References and links 1. E. Abbe, Arch. Mikroskop. Anat. 9, 413 (1873) 2. E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner and R. L. Kostelak, “Breaking the diffraction barrier – optical microscopy on a nanometric scale,” Science 251, 1468-1470 (1991) 3. S. W. Hell, “Toward Fluorescence nanoscopy,” Nat. Biotechnol. 21, 1347-1355 (2003) 4. M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution,” P. Natl. Acad. Sci. 102, 13081-13086 (2005) 5. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966-3969 (2000) 6. N. Fang, H. Lee, C. Sun and X. Zhang, “Sub-Diffraction-Limited Optical Imaging with a Silver Superlens” Science 308, 534-537 (2005) 7. -
STED Nanoscopy of Actin Dynamics in Synapses Deep Inside Living Brain Slices
Biophysical Journal Volume 101 September 2011 1277–1284 1277 STED Nanoscopy of Actin Dynamics in Synapses Deep Inside Living Brain Slices Nicolai T. Urban,† Katrin I. Willig,† Stefan W. Hell,†* and U. Valentin Na¨gerl‡§* †Max Planck Institute for Biophysical Chemistry, Go¨ttingen, Germany; ‡Interdisciplinary Institute for Neuroscience, Universite´ de Bordeaux, Bordeaux, France; and §Interdisciplinary Institute for Neuroscience, Centre National de la Recherche Scientifique (CNRS), UMR 5297, Bordeaux, France ABSTRACT It is difficult to investigate the mechanisms that mediate long-term changes in synapse function because synapses are small and deeply embedded inside brain tissue. Although recent fluorescence nanoscopy techniques afford improved resolution, they have so far been restricted to dissociated cells or tissue surfaces. However, to study synapses under realistic conditions, one must image several cell layers deep inside more-intact, three-dimensional preparations that exhibit strong light scattering, such as brain slices or brains in vivo. Using aberration-reducing optics, we demonstrate that it is possible to achieve stimulated emission depletion superresolution imaging deep inside scattering biological tissue. To illustrate the power of this novel (to our knowledge) approach, we resolved distinct distributions of actin inside dendrites and spines with a resolution of 60–80 nm in living organotypic brain slices at depths up to 120 mm. In addition, time-lapse stimulated emission depletion imaging revealed changes in actin-based structures inside spines and spine necks, and showed that these dynamics can be modulated by neuronal activity. Our approach greatly facilitates investigations of actin dynamics at the nanoscale within func- tionally intact brain tissue. INTRODUCTION Understanding the structural and molecular mechanisms resolution usually deteriorates quickly with imaging depth that mediate synaptic plasticity is one of the central chal- because of scattering, absorption, and aberrations induced lenges for neurobiological research. -
Development of the Optical Microscope
White Paper Development of the Optical Microscope By Peter Banks Ph.D., Scientific Director, Applications Dept., BioTek Instruments, Inc. Products: Cytation 5 Cell Imaging Multi-Mode Reader An Optical Microscope commonly found in schools and universities all over the world. Table of Contents Ptolemy and Light Refraction --------------------------------------------------------------------------------------------- 2 Islamic Polymaths and Optics -------------------------------------------------------------------------------------------- 2 The First Microscope ------------------------------------------------------------------------------------------------------- 2 Hook and Micrographia --------------------------------------------------------------------------------------------------- 2 Van Leeuwenhoek and Animalcules ------------------------------------------------------------------------------------ 5 Abbe Limit -------------------------------------------------------------------------------------------------------------------- 6 Zernicke and Phase Contrast --------------------------------------------------------------------------------------------- 7 Fluorescence Microscopy ------------------------------------------------------------------------------------------------- 7 Confocal Microscopy ------------------------------------------------------------------------------------------------------- 8 BioTek Instruments, Inc. Digital Microscopy ----------------------------------------------------------------------------------------------------------