Ike Dike Concept for Reducing Hurricane Storm Surge in the Houston-Galveston Region

Total Page:16

File Type:pdf, Size:1020Kb

Ike Dike Concept for Reducing Hurricane Storm Surge in the Houston-Galveston Region Interim Report Interim Interim Report - Ike Dike Concept for Reducing Hurricane Storm Surge in the Houston-Galveston Region Bruce A. Ebersole, Thomas C. Massey, Jeffrey A. Melby, Sep 2015 Norberto C. Nadal-Caraballo, Donald L. Hendon, Thomas W. Richardson, Robert W. Whalin Jackson State University Jackson State University 1 Contents 1 Overview ............................................................................................................................................................ 3 2 Storm Surge Model Validation for Hurricane Ike ................................................................................................ 6 Introduction ........................................................................................................................................ 6 Computed Maximum Water Surface Elevations for Hurricane Ike ......................................................... 8 Comparison with High Water Marks .................................................................................................... 9 High Water Marks from Gage Measurements of Water Surface Elevation ............................................... 10 Visually Estimated High Water Marks .................................................................................................... 14 3 Texas Coast Historic Hurricanes ...................................................................................................................... 19 Intensity of Historic Hurricanes .......................................................................................................... 19 The September 1900 Galveston Hurricane ........................................................................................ 20 Hurricane Carla ................................................................................................................................ 26 4 The “Bracketing” Set of Hypothetical Synthetic Storms ................................................................................... 31 5 Hurricane Surge Generation on the Open Coast – Causative Factors ............................................................ 36 What Causes a Storm Surge? ........................................................................................................... 36 Wind ..................................................................................................................................................... 36 Atmospheric Pressure ........................................................................................................................... 37 Waves .................................................................................................................................................. 37 Storm Surge along the Texas Coast .................................................................................................. 39 Surge Forerunner .................................................................................................................................. 39 Surge Generation by the Core Winds ..................................................................................................... 49 6 Hurricane Surge Generation within Galveston Bay – Causative Factors ......................................................... 53 Introduction ...................................................................................................................................... 53 Existing Conditions ........................................................................................................................... 54 Surge Generation in Galveston Bay - With the Ike-Dike Concept........................................................ 63 7 Influence of Storm Track on Surge Development ............................................................................................ 73 Introduction ...................................................................................................................................... 73 Forerunner Surge Development as a Function of Storm Track ........................................................... 74 Development of Surge within the Bays Due to Forerunner Propagation and Winds ............................. 86 Galveston Bay Storm Surge Response to the Hurricane’s Core Winds ............................................ 100 8 Reduction in Flooding Achieved with the Ike Dike......................................................................................... 117 Introduction ................................................................................................................................... 117 The Long Dike or Levee Effect ....................................................................................................... 118 Hurricanes of Varying Intensity - The Direct-Hit Set ......................................................................... 119 Major Hurricanes Approaching from the South ................................................................................ 128 Major Hurricanes Approaching from the South-Southeast ............................................................... 137 Major Hurricanes Approaching from the Southeast ......................................................................... 148 Jackson State University 2 9 Placing Hurricane-Induced Water Levels in a Probabilistic Context .............................................................. 155 Introduction ................................................................................................................................... 155 Approach for Statistical Analysis of Water Surface Elevation ........................................................... 156 Joint Probability Analysis .....................................................................................................................157 Joint Probability Method ......................................................................................................................157 Joint Probability Method with Optimal Sampling ...................................................................................160 JPM-OS-BQ Implementation for the Present Study ..............................................................................161 Probability Distributions of Tropical Storm Parameters .........................................................................170 Estimation of Errors and Other Secondary Terms .................................................................................171 Summary of Differences in JPM-OS Studies for the Houston-Galveston Region ....................................175 Existing Condition Water Surface Elevation Statistics ...................................................................... 176 Probabilistic Context for Hurricane Ike’s Maximum Water Surface Elevations .................................. 184 The Proxy Storm Concept .............................................................................................................. 185 Identification and Selection of Proxy Storms ................................................................................... 187 10-yr Proxy Storm ...............................................................................................................................190 100-yr Proxy Storm .............................................................................................................................192 500-yr Proxy Storm .............................................................................................................................194 Proxy Storm Simulations With and Without an Extended Ike Dike ................................................... 196 Effect of the Extended Ike Dike for the 100-yr Proxy Storm ...................................................................197 Effect of the Extended Ike Dike for the 500-yr Proxy Storm ...................................................................199 10 Influence of Sea Level Rise on Storm Surge ................................................................................................ 202 Introduction ................................................................................................................................... 202 11 Summary of Key Findings to Date ................................................................................................................ 204 Generation of the Open Coast Storm Surge ................................................................................... 204 Surge Generation within Galveston Bay ......................................................................................... 204 Influence of Storm Track on Surge Development ............................................................................ 205 Dependence of Peak Surge on Hurricane Intensity ......................................................................... 207 Dependence of Peak Surge on Storm Track ................................................................................... 207 Putting Storm Surge in the Context of Probability............................................................................ 208 Surge Reduction Achieved with the Ike Dike Concept ..................................................................... 210 Results from Original Bracketing Set of Storms and Initial Modeling Approach ......................................210 Results from 100-yr and 500-yr Proxy Storms and Revised Modeling Approach ....................................211
Recommended publications
  • 40 Years of Covering South Belt
    4040 yearsyears ofof coveringcovering SSouthouth BBeltelt Voice of Community-Minded People since 1976 Thursday, September 8, 2016 Email: [email protected] www.southbeltleader.com Vol. 41, No. 32 Easthaven Church turns 75 Easthaven Baptist Church, 13100 Beamer Road, will celebrate its 75th anniversary on Chamber to hold second homeless meeting Sunday, Sept. 18, from 3 to 5 p.m. The South Belt-Ellington Chamber of Com- sistant to the mayor’s homeless initiatives under Eichenbaum has also been directed by Turner The number of homeless individuals in the Kirkmont meets Sept. 14 merce, located at 10500 Scarsdale Blvd., will Mayor Annise Parker. Prior to that, Eichenbaum to address the city’s Kush epidemic. A synthetic South Belt and Clear Lake communities has sig- The Kirkmont Association Section 1 will host a follow-up meeting to discuss the commu- served as a public affairs offi cer in the city’s drug with effects similar to marijuana, Kush re- nifi cantly increased in recent weeks, prompting meet Wednesday, Sept. 14, at 10102 Black- nity’s growing homeless problem on Tuesday, Housing and Community Development Depart- portedly goes hand in hand with the city’s tran- an unprecedented number of complaints to the hawk, at 7:30 p.m. Meetings are the second Sept. 27, beginning at 8:30 a.m. ment. sient population, offi cials said. Leader and local law enforcement agencies. Wednesday of the month. The next meetings The guest speaker at the event will be Marc Turner has tasked Eichenbaum with leading Eichenbaum’s efforts will be supported by the While the overall number of homeless in will take place Oct.
    [Show full text]
  • Texas Hurricane History
    Texas Hurricane History David Roth National Weather Service Camp Springs, MD Table of Contents Preface 3 Climatology of Texas Tropical Cyclones 4 List of Texas Hurricanes 8 Tropical Cyclone Records in Texas 11 Hurricanes of the Sixteenth and Seventeenth Centuries 12 Hurricanes of the Eighteenth and Early Nineteenth Centuries 13 Hurricanes of the Late Nineteenth Century 16 The First Indianola Hurricane - 1875 21 Last Indianola Hurricane (1886)- The Storm That Doomed Texas’ Major Port 24 The Great Galveston Hurricane (1900) 29 Hurricanes of the Early Twentieth Century 31 Corpus Christi’s Devastating Hurricane (1919) 38 San Antonio’s Great Flood – 1921 39 Hurricanes of the Late Twentieth Century 48 Hurricanes of the Early Twenty-First Century 68 Acknowledgments 74 Bibliography 75 Preface Every year, about one hundred tropical disturbances roam the open Atlantic Ocean, Caribbean Sea, and Gulf of Mexico. About fifteen of these become tropical depressions, areas of low pressure with closed wind patterns. Of the fifteen, ten become tropical storms, and six become hurricanes. Every five years, one of the hurricanes will become reach category five status, normally in the western Atlantic or western Caribbean. About every fifty years, one of these extremely intense hurricanes will strike the United States, with disastrous consequences. Texas has seen its share of hurricane activity over the many years it has been inhabited. Nearly five hundred years ago, unlucky Spanish explorers learned firsthand what storms along the coast of the Lone Star State were capable of. Despite these setbacks, Spaniards set down roots across Mexico and Texas and started colonies. Galleons filled with gold and other treasures sank to the bottom of the Gulf, off such locations as Padre and Galveston Islands.
    [Show full text]
  • Texas Rookery Islands Project
    5 Chapter 5: Texas Rookery Islands Project 5.1 Restoration and Protection of Texas Rookery Islands: Project Description ................................... 1 5.1.1 Project Summary................................................................................................................. 1 5.1.2 Background and Project Description .................................................................................. 3 5.1.3 Evaluation Criteria ............................................................................................................ 13 5.1.4 Performance Criteria and Monitoring .............................................................................. 14 5.1.5 Offsets ............................................................................................................................... 14 5.1.6 Estimated Cost .................................................................................................................. 15 5.2 Texas Rookery Islands Project: Environmental Assessment ......................................................... 16 5.2.1 Introduction and Background, Purpose and Need ........................................................... 16 5.2.2 Scope of the Environmental Assessment ......................................................................... 17 5.2.3 Project Alternatives .......................................................................................................... 18 5.2.4 Galveston Bay Rookery Islands ........................................................................................
    [Show full text]
  • Improving Water Quality in Dickinson Bayou One TMDL for Dissolved Oxygen
    Texas Commission on Environmental Quality Total Maximum Daily Load Program Improving Water Quality in Dickinson Bayou One TMDL for Dissolved Oxygen Water Quality in Dickinson Bayou Impaired Segment Stream Segment The state of Texas requires that water quality in Project Watershed Houston Seabrook Dickinson Bayou Tidal (Segment 1103) be suitable for Galveston swimming, wading, fishing, and a healthy aquatic HARRIS Bay ecosystem. However, water quality testing found that Webster Kemah dissolved oxygen levels in the water are occasionally low. Oxygen, which dissolves in water, is essential for the survival of aquatic life. While the amount of Friendswood Dickinson dissolved oxygen in water fluctuates naturally, various League City human activities can cause unusually or chronically low 1104 1103 dissolved oxygen levels which may harm fish and other Dickinson Bayou aquatic organisms. Alvin Texas City Santa Fe GALVESTON In response to these conditions, a total maximum daily La Marque load (TMDL) project has been initiated to evaluate the effects of low dissolved oxygen on aquatic life and to BRAZORIA determine the actions necessary to maintain water Hitchcock quality in the tidal portion of Dickinson Bayou. The goal of a TMDL is to determine the amount (or load) of a 012345 pollutant that a body of water can receive and still Miles K support its designated uses. This allowable load is then allocated among all the potential sources of pollution traffic. Rice fields in the upper watershed receive within the watershed. Measures to reduce pollutant irrigation water via canals from beyond the watershed. loads are then developed as necessary. The irrigation water returns to Dickinson Bayou in the form of irrigation return flows.
    [Show full text]
  • Wasn't That a Mighty Day Galveston Hurricane Song Prompt Folk Song
    Wasn’t That a Mighty Day Galveston Hurricane Song Prompt Folk song lyrics are often flawed with respect to facts. This results from generations passing along verses which, though fraught with emotion, are sometimes lacking facts. Also, needing rhyming words may inject error into historical accuracy. The purpose of this prompt is to assess the accuracy of the lyrics of a popular song about the 1900 Galveston hurricane, Wasn’t That a Mighty Day? There are at least six errors/exaggerations among the verses listed below. After reading the account below, write a one page double-spaced essay describing your findings. I remember one September, When storm winds swept the town; The high tide from the ocean, Lord, Put water all around. Chorus: Wasn't that a mighty day, A mighty day A mighty day, Great God, that morning When the storm winds swept the town! There was a sea-wall there in Galveston To keep the waters down, But the high tide from the ocean, Lord, Put water in the town. The trumpets warned the people, 'You'd better leave this place!' But they never meant to leave their homes Till death was in their face. The trains they all were loaded With people leaving town; The tracks gave way to the ocean, Lord, And the trains they went on down. Great Galveston Storm Article Paraphrased from Wikipedia Information At the end of the 19th century, the city of Galveston, Texas was a booming city with a population of approximately 38,000 residents. Its position on the natural harbor of Galveston Bay along the Gulf of Mexico made it the center of trade and the biggest city in the state of Texas.
    [Show full text]
  • Storm Surge and the Future of the Houston Ship
    Storm Surge and the Future of the Houston Ship Channel By Jim Blackburn, SSPEED Center, Rice University Excerpted from work-in-progress with Amy Jaffe, Council on Foreign Relations The Houston Ship Channel and Galveston Bay are home to eight major refineries and over 200 chemical plants producing a variety of plastics and other synthetic products. This industrial infrastructure provides about 12% of U.S. refining capacity, produces about 27% of the nation’s jet fuel and an even larger percentage of military-grade jet fuel, about 13% of the nation’s gasoline, and about 25% of the U.S. production of ethylene/propylene. This is a key region for U.S. national security as well as for the Texas and Houston-area economies. Unfortunately, this petrochemical complex is at significant risk of long- term catastrophic failure due to the potential impact of hurricane storm surge. Over the last 100 years, severe hurricanes with substantial surge have missed the Houston region. Galveston was destroyed by a major hurricane in 1900, about the time that oil and gas was discovered on the Texas coast. The major development of the Houston Ship Channel industrial complex lagged behind that oil discovery in Spindletop by at least two decades and experienced major growth and expansion before and after World War II. To date, the largest surge recorded up the Houston Ship Channel was from Hurricane Ike in 2008 and Hurricane Carla in 1961, and neither of those storms generated more than about thirteen to fourteen feet of surge up the channel, a level that can generally be accommodated by these industries.
    [Show full text]
  • Bastrop County Since 1890 OBITUARIES 13951395 US-290US 290 Page 2 Elgin, TX 78621 NIE Sponsored Special (512) 281-2210 Content on Page 12
    ELGIN COURIER Serving Bastrop County since 1890 OBITUARIES 13951395 US-290US 290 Page 2 Elgin, TX 78621 NIE sponsored special (512) 281-2210 content on page 12 www.rushchevrolet.com ThankTh a veteranve or School to provide free lunches for all students a militarym personpe every daday for his or By Julianne Hodges Elementary School and Last Monday, the Elgin lunches at 40 cents each balance will remain in the herhe service [email protected] various locations through- ISD school board held a and 676 students who pay general fund. to America! out the community. In special meeting, during full price for lunch: $2.50 “We would like to be All Elgin ISD students April, the school district which they discussed a at the elementary schools, able to fund our student SEPT. 2, 2020 will have access to both instead offered breakfast budget amendment that $2.75 at the middle school lunches for this school free breakfast and lunch and lunch for the entire would fund free lunches and $3 at the high school. year particularly,” Elgin VOL. 130, NO. 36 for the upcoming school week each Monday at the for each student, not just The school district’s ISD Superintendent Jodi year, whether they are three elementary schools. those who qualify. general fund will cover Duron said. “Under the 12 pages • 1 section learning on-campus or re- This continued throughout Assuming every student the cost of the meals, and current circumstances, motely. the summer. On August takes advantage of the funds will be transferred we certainly want to give $1 • elgincourier.com When the schools first 24, meals were again of- free lunches provided, the monthly into the child nu- families some relief if we shut down, Elgin ISD fered daily; at first, regular cost would be $350,000 trition fund based on the can.
    [Show full text]
  • Hurricane Guide
    HOUSTON/GALVESTON HURRICANE GUIDE CAUTION HURRICANE SEASON > TROPICAL STORM BILL 2015 ©2016 CenterPoint Energy 161174 55417_txt_opt_205.06.2016 08:00 AMM Introduction Index of Pages Hurricanes and tropical storms have brought damaging winds, About the Hurricane devastating storm surge, flooding rains and tornadoes to Southeast Page 3 Texas over the years. The 1900 Galveston Hurricane remains the Storm Surge deadliest natural disaster on record for the United States with an Page 4 - 5 estimated 8000 deaths. In 2008 Hurricane Ike brought a deadly storm Zip Zone Evacuation surge to coastal areas and damaging winds that led to extended Pages6-7 power loss to an estimated 3 million customers in southeast Texas. A Winds, Flooding, and powerful hurricane will certainly return but it is impossible to predict Tornadoes Pages8-9 when that will occur. The best practice is to prepare for a hurricane landfall ahead of each hurricane season every year. Preparing Your Home, Business and Boat Pages10-11 This guide is designed to help you prepare for the hurricane season. For Those Who Need There are checklists on what to do before, during and after the storm. Assistance Each hurricane hazard will be described. Maps showing evacuation Page 12 zones and routes are shown. A hurricane tracking chart is included in Preparing Pets and Livestock the middle of the booklet along with the names that will be used for Page 13 upcoming storms. There are useful phone numbers for contacting the Insurance Tips local emergency manager for your area and web links for finding Page 14 weather and emergency information.
    [Show full text]
  • Stormwater Management Program 2013-2018 Appendix A
    Appendix A 2012 Texas Integrated Report - Texas 303(d) List (Category 5) 2012 Texas Integrated Report - Texas 303(d) List (Category 5) As required under Sections 303(d) and 304(a) of the federal Clean Water Act, this list identifies the water bodies in or bordering Texas for which effluent limitations are not stringent enough to implement water quality standards, and for which the associated pollutants are suitable for measurement by maximum daily load. In addition, the TCEQ also develops a schedule identifying Total Maximum Daily Loads (TMDLs) that will be initiated in the next two years for priority impaired waters. Issuance of permits to discharge into 303(d)-listed water bodies is described in the TCEQ regulatory guidance document Procedures to Implement the Texas Surface Water Quality Standards (January 2003, RG-194). Impairments are limited to the geographic area described by the Assessment Unit and identified with a six or seven-digit AU_ID. A TMDL for each impaired parameter will be developed to allocate pollutant loads from contributing sources that affect the parameter of concern in each Assessment Unit. The TMDL will be identified and counted using a six or seven-digit AU_ID. Water Quality permits that are issued before a TMDL is approved will not increase pollutant loading that would contribute to the impairment identified for the Assessment Unit. Explanation of Column Headings SegID and Name: The unique identifier (SegID), segment name, and location of the water body. The SegID may be one of two types of numbers. The first type is a classified segment number (4 digits, e.g., 0218), as defined in Appendix A of the Texas Surface Water Quality Standards (TSWQS).
    [Show full text]
  • Advancing the Ike Dike
    Applying Best Practices To Galveston Bay November 2012 COLOFON Applying Best Practices From The Delta Works And New Orleans To Galveston Bay Author: Kasper Stoeten, Master Student Hydraulic Engineering, Delft University of Technology [email protected] Release date: November 2012 Released for Public Review Cover photo: McKay, P. (2008, December) A beach house on the Bolivar Peninsula near Galveston, Texas, destroyed during Ike. Acknowledgement: The author would like to express sincere gratitude to Professor W. Merrell, George P. Mitchell '40 chair in marine sciences, at Texas A&M Galveston. His encouragement, guidance and support were invaluable in my work. The Author also wishes to acknowledge the support of the Netherlands Business Support Office (NBSO) and in particular the support of Mr. Brikkenaar-van- Dijk. Significant recognition and thanks are extended to IV-Infra USA. Their kind support proved invaluable during this internship. Disclaimer: This report is the result of an internship at the Dutch Ministry of Foreign Affairs and Texas A&M University. It has not been fully corrected by TU Delft or Texas A&M staff, and should be considered as product made in the framework of education. The barrier system presented in this report, also known as “Ike Dike” represents a preliminary concept for a coastal spine along the Galveston Coast. It is one of many possible solutions. Page | ii November 2012 Applying Best Practices To Galveston Bay SUMMARY This report provides a comparison of the Dutch Delta Works, New Orleans and the Ike Dike concept. Methods of research include a study of literature, site visits and personal interviews.
    [Show full text]
  • 07-77817-02 Final Report Dickinson Bayou
    Dickinson Bayou Watershed Protection Plan February 2009 Dickinson Bayou Watershed Partnership 1 PREPARED IN COOPERATION WITH TEXAS COMMISSION ON ENVIRONMENTAL QUALITY AND U.S. ENVIRONMENTAL PROTECTION AGENCY The preparation of this report was financed though grants from the U.S. Environmental Protection Agency through the Texas Commission on Environmental Quality 2 TABLE OF CONTENTS LIST OF FIGURES ............................................................................................................................................ 7 LIST OF TABLES .............................................................................................................................................. 8 ACKNOWLEDGEMENTS ................................................................................................................................. 9 EXECUTIVE SUMMARY ................................................................................................................................ 10 SUMMARY OF MILESTONES ........................................................................................................................ 13 FORWARD ................................................................................................................................................... 17 1. INTRODUCTION ...................................................................................................................................................... 18 The Dickinson Bayou Watershed ..................................................................................................................
    [Show full text]
  • Widespread Flooding Continued Over Mississippi and Louisiana in the Wake of Hurricane Isaac…
    NWS FORM E-5 U.S. DEPARTMENT OF COMMERCE HYDROLOGIC SERVICE AREA (HSA) (11-88) NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION (PRES. by NWS Instruction 10-924) NATIONAL WEATHER SERVICE NEW ORLEANS/BATON ROUGE, LA REPORT FOR: MONTHLY REPORT OF HYDROLOGIC CONDITIONS MONTH YEAR SEPTEMBER 2012 SIGNATURE TO: Hydrometeorological Information Center, W/OH2 NOAA / National Weather Service KENNETH GRAHAM 1325 East West Highway, Room 7230 METEOROLOGIST-IN-CHARGE Silver Spring, MD 20910-3283 DATE OCTOBER 15, 2012 When no flooding occurs, include miscellaneous river conditions, such as significant rises, record low stages, ice conditions, snow cover, droughts, and hydrologic products issued (NWS Instruction 10-924) An X inside this box indicates that no flooding occurred within this hydrologic service area. …Widespread Flooding Continued over Mississippi and Louisiana in the Wake of Hurricane Isaac… Hurricane Isaac formed on August 28, 2012 and made landfall between Buras and Port Fourchon in Louisiana. The hurricane progressed to the Arkansas border on August 30th, although feeder bands persisted over Mississippi and Louisiana through the first days of September. By September 5th, a remnant of Hurricane Isaac moved south from the Ohio River Valley back to the Gulf of Mexico. That remnant remained quasi-stationary along the Gulf Coast until September 8th, when a cold front steered the storm northeast, away from Louisiana and Mississippi. The bulk of the heavy rains occurred during August in Hurricane Isaac. Rain totals over 10.0 inches were reported at several locations; Livingston, LA measured 17.87 inches by September 2nd. Areal rainfall totals for August 27th through September 2nd, were over 7.0 inches for southeast and east-central Louisiana.
    [Show full text]