Role of Endocytic Proteins in Mechanotransduction and Impact on Autosomal Dominant Centronuclear Myopathy Agathe Franck

Total Page:16

File Type:pdf, Size:1020Kb

Role of Endocytic Proteins in Mechanotransduction and Impact on Autosomal Dominant Centronuclear Myopathy Agathe Franck Role of endocytic proteins in mechanotransduction and impact on autosomal dominant centronuclear myopathy Agathe Franck To cite this version: Agathe Franck. Role of endocytic proteins in mechanotransduction and impact on autosomal dom- inant centronuclear myopathy. Cellular Biology. Sorbonne Université, 2018. English. NNT : 2018SORUS453. tel-02926061 HAL Id: tel-02926061 https://tel.archives-ouvertes.fr/tel-02926061 Submitted on 31 Aug 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Université Pierre et Marie Curie École Doctorale Complexité du Vivant (ED 515) Institut de Myologie Équipe Physiopathologie & thérapie de la myopathie centronucléaire autosomique dominante Rôle des protéines de l’endocytose dans la mécanotransduction et la physiopathologie de la myopathie centronucléaire autosomique dominante Role of endocytic proteins in mechanotransduction and impact on autosomal dominant centronuclear myopathy Par Agathe Franck Thèse de doctorat Devant un jury composé de : Pr. Onnik Agbulut Président du jury & examinateur Dr. Jocelyn Laporte Rapporteur Dr. Athanassia Sotiropoulos Rapporteur Pr. Frances Brodsky Examinateur Dr. Stéphane Vassilopoulos Directeur de thèse To Lola Page | 3 Agathe Franck – phD thesis 2018 “On endocytic proteins in muscle” The woods are lovely, dark and deep, But I have promises to keep, And miles to go before I sleep, And miles to go before I sleep. — Robert Frost, Stopping by Woods on a Snowy Evening (1922) Page | 4 Disclaimer This thesis is delivered with a pair of red/cyan glasses for viewing of anaglyphs. The following logo means that you can wear the glasses for 3D viewing of the images: Please be aware that an absence of glasses does not impair reading of this thesis. Page | 5 Agathe Franck – phD thesis 2018 “On endocytic proteins in muscle” Acknowledgements First of all, I would like to thank Stéphane Vassilopoulos, my thesis supervisor. As I said, I’m not very good at this. Thank you for giving me a chance all these years ago, after reading the letter of a small master 1 student that just “wanted to do microscopy”. Thank you for the pep talks, the laughs, the evenings with Jeanne at the electron microscope, open mouthed in front of her beautiful pictures, the late lunches at the Japanese place near Jussieu, the pride I felt when I showed you my pictures, thank you for believing me, for your passion about our work, for maneuvering my boat through these years that have not always been easy… in short, thank you for everything. I’m also very grateful to Marc Bitoun, our great chief and leader. Thank you for your help, for always being caring and patient. Thank you also for your advices and very (very) pertinent questions. Jeanne, thank you forever for giving me the beautiful pictures that I included in this thesis manuscript. Thank you for your kindness and always being there when I needed to talk (most of the people I know think you are my shrink). You’ve helped me stay afloat and I will forever be grateful. How could I not thank lab 103. This melting pot of characters and personalities. Anaïs Fongy, Éline Lemerle, Corine, Margot, Bernard and Camilla. Sometimes we work there, but we also laugh. A lot. I’d like to thank especially Anaïs, who has helped me believe in myself at a time when no one could achieve it. Éline, I wish you all the best for the future, you can always call me. Anytime. I will also thank the expat members of team 2, Delphine and Gilles, and the one who is even further away, Bruno Cadot. I’m especially grateful to Gilles for the precious help and guidance since his arrival, and I am truly sorry for all the unlucky PCRs my cells have caused. Valérie Allamand, thank you for your reassuring presence in the lab, during evenings, during the weekends, thank you for your smile and for listening, and also… thank you for the milk! The YAP/TAZ part of this project could not have been realized without the help and expertise of Catherine Coirault. Thank you for the Flexcell and the various talks about YAP/TAZ shuttling, without you we would have been lost. This work was completed thanks to the receptiveness of the imaging platforms. A big thank you to the Cytometry and Imaging Platform of Gustave Roussy Institute, particularly to Corinne Laplace-Builhé and Sophie Salomé-Desnoulez. Thank you also to the imaging platforms of the Institut de Biologie Paris-Seine, Michaël Trichet for his enormous help in making metal replicas of our samples possible, and Susanne Bolte, Jean-François Gilles and France Lam for their expertise in fluorescence microscopy. I am also grateful to the Pitié-Salpêtrière cell imaging platform staff who often asked me if I wanted a bed installed next to their microscope. This work also relied on the biopsies given by patients affected by centronuclear myopathy or desminopathies. We are grateful to Muscle Tissue Culture Collection MTCC at Klinikum der Universität München for providing the p.R350P primary cells, and to Anne and Kamel of the Myology Institute’s immortalization platform for the immortalization of these cells and CNM patients’ myoblasts. I thank the Morphological Unit, especially Norma Romero, Michel Fardeau, Emmanuelle Lacène, Mai Thao Viou and Guy Brochier, for their precious help regarding the characterization of desmin anomalies in patients affected by AD CNM. Thanks also to Laura Julien of the vectorology platform regarding the production of the AAV used in this study. Pr. Onnik Agbulut, thank you for your smile, and for the precious help to this study by giving us desmin -/- mice. Page | 6 I am grateful to the members of thesis committee who have followed me through these years: Stéphanie Miserey-Lenkei, Guillaume Montagnac and Denis Furling. Stéphanie, I will not forget your precious advice. Marie-Claude Potier, thank you for your support, I carry a bit of the expertise acquired in your lab everywhere I go. I am grateful to the committee attributing doctoral contracts for believing in my project. I cannot end without thanking all the people who have carried me to hell and back: my mom, Mallory, Lucile, Emmanuelle, Georges, Clément and Guilhem Salines, Ronan, Aless, Sophie, the Gründ team, my favorite cousin Émilie, Alice, Julie, Gertrude, Florent, Capucine, Romain, Ségolène… This will seem strange but I’d like to thank my cat. He’ll understand. I owe more than a « thank you » to a person named Lola Salines. Lola, this work is dedicated to you, and I would like to write, as an opening to this thesis manuscript, all my gratitude, and all my love. Page | 7 Agathe Franck – phD thesis 2018 “On endocytic proteins in muscle” Table of contents Table of figures ____________________________________________________________ 10 Table of movies ____________________________________________________________ 12 List of tables ______________________________________________________________ 12 Abstract __________________________________________________________________ 13 French abstract ____________________________________________________________ 14 Abbreviations _____________________________________________________________ 15 I. Introduction ___________________________________________________________ 17 1- The skeletal muscle _________________________________________________________ 17 a. Function _________________________________________________________________________ 17 b. Development and Myofibers _________________________________________________________ 17 i. A striated pattern of contractile units _______________________________________________ 18 ii. Excitation-contraction coupling ____________________________________________________ 20 iii. Costameres ____________________________________________________________________ 21 iv. Intermediate filaments ___________________________________________________________ 22 c. Mechanotransduction ______________________________________________________________ 26 i. Integrin-mediated mechanotransduction ____________________________________________ 26 ii. YAP/TAZ pathway _______________________________________________________________ 28 iii. MRTF-SRF ______________________________________________________________________ 31 2- Membranes and vesicular trafficking __________________________________________ 32 a. The Cell Theory ___________________________________________________________________ 32 b. Membrane trafficking ______________________________________________________________ 33 c. Clathrin-mediated membrane traffic __________________________________________________ 35 i. Clathrin _______________________________________________________________________ 35 ii. Adaptor proteins ________________________________________________________________ 38 iii. Dynamin _______________________________________________________________________ 39 iv. Sequential recruitment of CCV formation actors _______________________________________ 42 v. Role of actin filaments ___________________________________________________________ 43 d. Diversity of clathrin-coated structures _________________________________________________ 44 i. A very stable assembly
Recommended publications
  • Structural Biology of the Dystrophin-Deficient Muscle Fiber
    Dystrophin-deficient muscle fiber REVIEW ISSN- 0102-9010145 STRUCTURAL BIOLOGY OF THE DYSTROPHIN-DEFICIENT MUSCLE FIBER Maria Julia Marques Department of Anatomy, Institute of Biology, State University of Campinas (UNICAMP), Campinas, SP, Brazil. ABSTRACT The discovery of dystrophin and its gene has led to major advances in our understanding of the molecular basis of Duchenne, Becker and other muscular dystrophies related to the dystrophin-associated protein complex. The concept that dystrophin has a mechanical function in stabilizing the muscle fiber membrane has expanded in the last five years. The dystrophin-glycoprotein complex is now considered a multifunctional complex that contains molecules involved in signal transduction cascades important for cell survival. The roles of dystrophin and the dystrophin- glycoprotein complex in positioning and anchoring receptors and ion channels is also important, and much of what is known about these functions is based on studies of the neuromuscular synapse. In this review, we discuss the components and the cellular signaling molecules associated with the dystrophin-glycoprotein complex. We then focus on the molecular organization of the neuromuscular junction and its structural organization in the dystrophin-deficient muscle fibers of mdx mice, a well-established experimental model of Duchenne muscular dystrophy. Key words: Confocal microscopy, Duchenne muscular dystrophy, mdx, neuromuscular junction INTRODUCTION that can improve the quality of life of the patients, Duchenne muscular dystrophy (DMD) is an X- death usually occurs in the early twenties, as a result linked recessive, progressive muscle-wasting disease of cardiac and/or respiratory failures [24]. that affects primarily skeletal and cardiac muscle. Several other muscular dystrophies have been DMD was first reported in 1868 by Dr.
    [Show full text]
  • Biodiversity and Threats in Non-Protected Areas: a Multidisciplinary and Multi-Taxa Approach Focused on the Atlantic Forest
    Heliyon 5 (2019) e02292 Contents lists available at ScienceDirect Heliyon journal homepage: www.heliyon.com Biodiversity and threats in non-protected areas: A multidisciplinary and multi-taxa approach focused on the Atlantic Forest Esteban Avigliano a,b,*, Juan Jose Rosso c, Dario Lijtmaer d, Paola Ondarza e, Luis Piacentini d, Matías Izquierdo f, Adriana Cirigliano g, Gonzalo Romano h, Ezequiel Nunez~ Bustos d, Andres Porta d, Ezequiel Mabragana~ c, Emanuel Grassi i, Jorge Palermo h,j, Belen Bukowski d, Pablo Tubaro d, Nahuel Schenone a a Centro de Investigaciones Antonia Ramos (CIAR), Fundacion Bosques Nativos Argentinos, Camino Balneario s/n, Villa Bonita, Misiones, Argentina b Instituto de Investigaciones en Produccion Animal (INPA-CONICET-UBA), Universidad de Buenos Aires, Av. Chorroarín 280, (C1427CWO), Buenos Aires, Argentina c Grupo de Biotaxonomía Morfologica y Molecular de Peces (BIMOPE), Instituto de Investigaciones Marinas y Costeras, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (CONICET), Dean Funes 3350, (B7600), Mar del Plata, Argentina d Museo Argentino de Ciencias Naturales “Bernardino Rivadavia” (MACN-CONICET), Av. Angel Gallardo 470, (C1405DJR), Buenos Aires, Argentina e Laboratorio de Ecotoxicología y Contaminacion Ambiental, Instituto de Investigaciones Marinas y Costeras, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (CONICET), Dean Funes 3350, (B7600), Mar del Plata, Argentina f Laboratorio de Biología Reproductiva y Evolucion, Instituto de Diversidad
    [Show full text]
  • Download Chapter
    7 State of the World’s Fungi State of the World’s Fungi 2018 7. Country focus: China 方睿 (Rui Fang)a, Paul Kirka,b, 魏江春 (Jiang-Chun Wei)c, 李玉 (Yu Li)d, 蔡磊 (Lei Cai)b, 范黎 (Li Fan)e, 魏铁铮 (Tie-Zheng Wei)b, 赵瑞琳 (Rui-Lin Zhao)b, 王科 (Ke Wang)b, 杨祝良 (Zhu-Liang Yang)f, 李泰辉 (Tai-Hui Li)g, 李熠 (Yi Li)h, 普布多吉 (Phurbu-Dorji)i, 姚一建 (Yi-Jian Yao)b a Royal Botanic Gardens, Kew, UK; b Institute of Microbiology, Chinese Academy of Sciences, China; c University of Chinese Academy of Sciences, China; d Jilin Agricultural University, China; e Capital Normal University, China; f Kunming Institute of Botany, Chinese Academy of Sciences, China; g Guandong Institute of Microbiology, China; h College of Food Science and Engineering, Yangzhou University, China; i Tibet Plateau Institute of Biology, China 48 Positive interactions and insights Country focus: China What is the current status of knowledge of fungi in China? How many different Chinese fungal species are currently known, where are they distributed, which are most important economically, and how do they help combat the effects of desertification? stateoftheworldsfungi.org/2018/country-focus.html Country focus: China 49 THERE ARE 1,789 EDIBLE and 798 medicinal fungi reported from China 50 Positive interactions and insights century that Chinese authors started to publish their ARCHAEOLOGICAL EVIDENCE INDICATES research on fungi in China[4]. Since then, a large amount of THAT THE USE OF FUNGI BY HUMANS work has been carried out by Chinese mycologists, resulting in published studies on more than 6,700 species[5].
    [Show full text]
  • A REVIEW on ANTITUMOR ACTIONS of POLYSACCHARIDE ISOLATED from MEDICINAL MUSHROOMS Noure AL ALI ZIDAN* and Heba ALNEAMEH**
    IJASR International Journal of Academic Scientific Research ISSN: 2272-6446 Volume 2, Issue 1 (February-March 2014), PP 14-20 www.ijasrjournal.org A REVIEW ON ANTITUMOR ACTIONS OF POLYSACCHARIDE ISOLATED FROM MEDICINAL MUSHROOMS Noure AL ALI ZIDAN* and Heba ALNEAMEH** *Faculty of Biotechnology, Aleppo University, Aleppo, Syria ** Faculty of Pharmacy, Damascus University, Damascus, Syria ABSTRACT Mushrooms have long been attracting a great deal of interest in many areas of foods and biopharmaceuticals. They are well known for their nutritional and medicinal values. Mushrooms comprise a vast and yet largely untapped source of powerful new pharmaceutical products. In particular, and most importantly for modern medicine, they represent an unlimited source of polysaccharides with antitumor and immunostimulating properties. Recently, basidiomycete fungi have been used for the treatment of cancer. Many, if not all, Basidiomycetes mushrooms contain biologically active polysaccharides in fruit bodies, cultured mycelium, culture broth. Polysaccharides and polysaccharide-protein complexes from medicinal mushrooms may enhance innate immune responses, resulting in antitumor activities. In this review, in the search for the development of new anticancer drugs, the effects of polysaccharides isolated from medicinal mushrooms on tumor were studied. Keywords: Antitumor activity; polysaccharide; medicinal mushrooms INTRODUCTION Cancer is the largest single cause of death in both men and women, claiming over 6 million lives each year worldwide. Cancer chemotherapy drugs such as 5-fluorouracil derivatives, cisplatin , mitomycin, adriamycin, taxol, etc., have been used extensively for the treatment of certain types of cancer.However, with these treatments, severe gastrointestinal toxicity, with diarrhea and mucosis and hematological toxicity, with leucopenia and immune suppression, appear to be dose-limiting factors.
    [Show full text]
  • Alpha-Actinin-3 Deficiency Might Affect Recovery from Non-Contact
    G C A T T A C G G C A T genes Communication Alpha-Actinin-3 Deficiency Might Affect Recovery from Non-Contact Muscle Injuries: Preliminary Findings in a Top-Level Soccer Team Gil Rodas 1 ,Víctor Moreno-Pérez 2, Juan Del Coso 3,* , Daniel Florit 1, Lourdes Osaba 4 and Alejandro Lucia 5,6,* 1 Medical Department, Futbol Club Barcelona, Barça Innovation Hub, 08028 Barcelona, Spain; [email protected] (G.R.); daniel.fl[email protected] (D.F.) 2 Center for Translational Research in Physiotherapy, Department of Pathology and Surgery, Miguel Hernandez University of Elche, 03202 Elche, Spain; [email protected] 3 Centre for Sport Studies, Rey Juan Carlos University, 28943 Fuenlabrada, Spain 4 Progenika Biopharma, A Grifols Company, 48160 Derio, Spain; [email protected] 5 Faculty of Sport Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain 6 Research Institute Imas12, Hospital 12 de Octubre, 28041 Madrid, Spain * Correspondence: [email protected] (J.D.C.); [email protected] (A.L.) Abstract: There are recent data suggesting an association between the R577X polymorphism (rs1815 739) in the gene encoding α-actinin-3 (ACTN3) and the risk of musculoskeletal injuries. The purpose of this study was to analyze the association of rs1815739 with risk of, and recovery time from non- Citation: Rodas, G.; Moreno-Pérez, contact soft-tissue muscle injuries in professional soccer players. Forty-six (22 male and 24 female) V.; Del Coso, J.; Florit, D.; Osaba, L.; players from a top-level professional soccer team were assessed during five consecutive seasons: Lucia, A.
    [Show full text]
  • Antitumor and Immunomodulatory Activities of Medicinal Mushroom Polysaccharides and Polysaccharide-Protein Complexes in Animals and Humans (Review)
    MYCOLOGIA BALCANICA 2: 221–250 (2005) 221 Antitumor and immunomodulatory activities of medicinal mushroom polysaccharides and polysaccharide-protein complexes in animals and humans (Review) Solomon P. Wasser *, Maryna Ya. Didukh & Eviatar Nevo Institute of Evolution, University of Haifa, Mt Carmel, 31905 Haifa, Israel M.G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine, 2 Tereshchenkovskaya St., 01001 Kiev, Ukraine Received 24 September 2004 / Accepted 9 June 2005 Abstract. Th e number of mushrooms on Earth is estimated at 140 000, yet perhaps only 10 % (approximately 14 000 named species) are known. Th ey make up a vast and yet largely untapped source of powerful new pharmaceutical products. Particularly, and most important for modern medicine, they present an unlimited source for polysaccharides with anticancer and immunostimulating properties. Many, if not all Basidiomycetes mushrooms contain biologically active polysaccharides in fruit bodies, cultured mycelia, and culture broth. Th e data about mushroom polysaccharides are summarized for 651 species and seven intraspecifi c taxa from 182 genera of higher Hetero- and Homobasidiomycetes. Th ese polysaccharides are of diff erent chemical composition; the main ones comprise the group of β-glucans. β-(1→3) linkages in the main chain of the glucan and further β-(1→ 6) branch points are needed for their antitumor action. Numerous bioactive polysaccharides or polysaccharide- protein complexes from medicinal mushrooms are described that appear to enhance innate and cell-mediated immune responses, and exhibit antitumour activities in animals and humans. Stimulation of host immune defense systems by bioactive polymers from medicinal mushrooms has signifi cant eff ects on the maturation, diff erentiation, and proliferation of many kinds of immune cells in the host.
    [Show full text]
  • Fluorescent Localization of Membrane Sites in Glycerinated Chicken
    Proc. Natl. Acad. Sci. USA Vol. 75, No. 8, pp. 3683-3687, August 1978 Biochemistry Fluorescent localization of membrane sites in glycerinated chicken skeletal muscle fibers and the relationship of these sites to the protein composition of the Z disc (actin/a-actinin/desmin/T system/sarcoplasmic reticulum) ELIAS LAZARIDES AND BRUCE L. GRANGER Division of Biology, California Institute of Technology, Pasadena, California 91125 Communicated by James Bonner, May 23, 1978 ABSTRACT Didansyl derivatives of amino acids and N- The weakest link of a muscle fiber appears to be between phe -l-naphthylamine were used to localize membrane h adjacent myofibrils. When glycerol-extracted muscle fibers are drlophobic sites in glycerol-extracted chicken skeletal muscle- fibers. Epifluorescence microscopy revealed that such sites sheared in a blender, they fragment longitudinally to produce coincide with the distribution of mitochondria, the transverse individual or, more frequently, bundles of myofibrils of random tubular (T) system and the sarcoplasmic reticulum (SR). They lengths. These newly generated myofibril bundles have Z lines are specifically associated with myofibril Z lines and occa- as their terminal boundaries. If, however, the glycerinated sionaly extend from one Z plane to the next longitudinally along muscle fibers are extracted with 0.6 M KI before shearing, then the muscle fiber. The hydrophobic probes interact noncov- the path of least resistance in the fiber changes and the alently with the Z lines, and their induced fluorescence can be cleavage eliminated by exposure of the myofibrils to ionic detergents, plane is altered. Extraction of muscle fibers with KI releases the nonionic detergents, or phospholipase C, before or after addition majority of actin and myosin filaments from the myofibrils.
    [Show full text]
  • Analysis of the Morphology and Growth of the Fungus Phallus Indusiatus Vent
    ISSN: 0975-8585 Research Journal of Pharmaceutical, Biological and Chemical Sciences Analysis of the morphology and growth of the fungus Phallus indusiatus Vent. in Cocoa Plantation, Gaperta-Ujung Medan. Rama R Sitinjak* Faculty of Agrotechnology, Prima Indonesia University, Medan-Indonesia. ABSTRACT This research aimed to analyze the morphological characteristics and growth of the Phallus indusiatus Vent. which belong to the group Stinkhorn fungi. The method used is survey and description. This fungi grows individually, appear twice in one year on the ground that a pile of cocoa leaves that have died, during the heavy rainy season ends. The fungi was first found growing in the area of cocoa plantations in the village Gaperta-Ujung Medan, ie on August 6, 2013, around 9.00 am. Phallus indusiatus have major macroscopic morphological characteristics, namely the fruiting body has a height of ±19.13 cm, hood (cap or pileus) shaped brown cony and the side grooves with a width of ± 3 cm, and a height ± 2.6 cm, yellowish cream-colored gleba, has a white circular ring at the center of the stem, the stem (stalk or stipe) chewy white, cylindrical, cup (volva) gray that secrete mucus such as jellies, have a section that resembles roots (mycelium), has a coat or indusium such a network is creamy white and turned into golden yellow when wilting, that described from the bottom of the cap to the base of the stem. The process of growth and development of mushroom fruit body this happens starting from the egg stage (takes about 24 hours), and the budding stage, maturation stage, the stage of wilting (death) (third last stage of this only takes about 5 hours).
    [Show full text]
  • Typology and Profile of Spine Muscles. Structure of Myofibrils and Role of Protein Components – Review of Current Literature
    Ovidius University Annals, Series Physical Education and Sport / SCIENCE, MOVEMENT AND HEALTH Vol. XI, ISSUE 2 Supplement, 2011, Romania The JOURNAL is nationally acknowledged by C.N.C.S.I.S., being included in the B+ category publications, 2008-2011. The journal is indexed in: Ebsco, SPORTDiscus, INDEX COPERNICUS JOURNAL MASTER LIST, DOAJ DIRECTORY OF OPEN ACCES JOURNALS, Caby, Gale Cengace Learning TYPOLOGY AND PROFILE OF SPINE MUSCLES. STRUCTURE OF MYOFIBRILS AND ROLE OF PROTEIN COMPONENTS – REVIEW OF CURRENT LITERATURE STRATON ALEXANDRU1, ENE-VOICULESCU CARMEN1, GIDU DIANA1, PETRESCU ANDREI1 Abstract. Muscular profile of spine muscles has a great importance in trunk stability. It seems that muscles which support the spine show a high content of red muscle fiber with a cross section area equal or higher than white muscle fibers. It is possible that lumbar extensor muscles to have different functional capacity between sexes. Most of the myofibril structural proteins except protein actin and protein myosin have a role in maintaining the structural integrity of muscle cell. Key words: muscle, fibres, myofibrils, proteins, spine. thoracic muscle structure lying superficial and deep is Introduction composed of 74% type I fibers, lumbar muscle Proper understanding of muscle fibers profile of structure located superficially is composed of 57% muscles supporting the spine and the role of muscle type I fibers and lumbar muscle structure located deep cell structural proteins leads to better achievements in is composed of 63% type I fibers. Type I muscle fiber performance training and rehabilitation. diameter is significantly larger than that of type II fibers. Another study, conducted on 42 patients Muscle fibers typology divided into two groups - 21 patients with lumbar Skeletal muscle contains two major types of back pain and 21 patients without lumbar back pain muscle fibers: slow twitch red or type I fibers) and almost identical groups as gender, age and body mass fast twitch white or type II fibers).
    [Show full text]
  • Structural Characteristics and Antioxidative Capability of the Soluble Polysaccharides Present in Dictyophora Indusiata (Vent
    Hindawi Publishing Corporation Evidence-Based Complementary and Alternative Medicine Volume 2011, Article ID 396013, 9 pages doi:10.1093/ecam/neq041 Original Article Structural Characteristics and Antioxidative Capability of the Soluble Polysaccharides Present in Dictyophora indusiata (Vent. Ex Pers.) Fish Phallaceae Yaw-Bee Ker, 1 Kuan-Chou Chen,2 Chiung-Chi Peng,3, 4 Chiu-Lan Hsieh,5 and Robert Y. Peng6, 7 1 Department of Food and Nutrition, Hungkuang University, Taichung Hsien, Taiwan 2 Department of Urology, Taipei Medical University Shuang Ho Hospital, Taipei, Taiwan 3 Graduate Institute of Rehabilitation Science, Taiwan 4 School of Physical Therapy, College of Health Care, China Medical University, Taichung, Taiwan 5 Graduate Institute of Biotechnology, National Chang-Hua University of Education, 1 jin-De Road, Changhua 500, Taiwan 6 Research Institute of Biotechnology, Hungkuang University, 34 Chung-Chie Road, Shalu Country, Taichung Hsien 43302, Taiwan 7 Research Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan Correspondence should be addressed to Chiu-Lan Hsieh, [email protected] and Robert Y. Peng, [email protected] Received 12 November 2009; Accepted 9 April 2010 Copyright © 2011 Yaw-Bee Ker et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Dictyophora indusiata (Vent. ex Pers.) Fish Phallaceae (Chinese name Zhu-Sun,¯ the bamboo fungi) has been used as a medicinal mushroom to treat many inflammatory, gastric and neural diseases since 618 AD in China. We hypothesize that the soluble polysaccharides (SP) present in D.
    [Show full text]
  • Phallus Fuscoechinovolvatus (Phallaceae, Basidiomycota), a New Species with a Dark Spinose Volva from Southern China
    Phytotaxa 334 (1): 019–027 ISSN 1179-3155 (print edition) http://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2018 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.334.1.3 Phallus fuscoechinovolvatus (Phallaceae, Basidiomycota), a new species with a dark spinose volva from southern China BIN SONG1, TING LI1, TAIHUI LI*, QIUJU HUANG & WANGQIU DENG State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collec- tion and Application, Guangdong Open laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, China * Corresponding author: [email protected] 1 BIN SONG and TING LI contributed equally to this work. Abstract Phallus fuscoechinovolvatus is described as a new species from southern China, mainly characterized by its dark brown vol- va with white spines. Molecular phylogenetic analyses based on the sequences of nuclear ribosomal large subunit (nrLSU) and nuclear ribosomal internal transcribed spacer (ITS) confirm its species status within Phallaceae. Detailed morphological description, colour photographs, line drawings of the new species and comparisons with similar taxa are presented. Key words: Phallales, phylogenetics, subtropical fungus, taxonomy Introduction Phallus Junius ex L. (1753: 1178) is a fungal genus under the family Phallaceae (Phallales, Phallomycetidae, Agaricomycotina, Basidiomycota) with P. impudicus L. (1753: 1178) as the type species, and it includes taxa typically characterized by their noticeably foetid, a bell-shaped or campanulate to conical receptacle, an erect to curved spongy pseudostipe, presence or absence of an indusium (a pseudoparenchymatous reticulum) hanging from the pseudostipe apex beneath the receptacle, and a volva with rhizomorphs most of the time (Linnæi & Salvius 1753; Cunningham 1944; Zeller 1949; Baseia et al.
    [Show full text]
  • Current Understanding of the Role of Cytoskeletal Cross-Linkers in the Onset and Development of Cardiomyopathies
    International Journal of Molecular Sciences Review Current Understanding of the Role of Cytoskeletal Cross-Linkers in the Onset and Development of Cardiomyopathies Ilaria Pecorari 1, Luisa Mestroni 2 and Orfeo Sbaizero 1,* 1 Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy; [email protected] 2 University of Colorado Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; [email protected] * Correspondence: [email protected]; Tel.: +39-040-5583770 Received: 15 July 2020; Accepted: 10 August 2020; Published: 15 August 2020 Abstract: Cardiomyopathies affect individuals worldwide, without regard to age, sex and ethnicity and are associated with significant morbidity and mortality. Inherited cardiomyopathies account for a relevant part of these conditions. Although progresses have been made over the years, early diagnosis and curative therapies are still challenging. Understanding the events occurring in normal and diseased cardiac cells is crucial, as they are important determinants of overall heart function. Besides chemical and molecular events, there are also structural and mechanical phenomena that require to be investigated. Cell structure and mechanics largely depend from the cytoskeleton, which is composed by filamentous proteins that can be cross-linked via accessory proteins. Alpha-actinin 2 (ACTN2), filamin C (FLNC) and dystrophin are three major actin cross-linkers that extensively contribute to the regulation of cell structure and mechanics. Hereby, we review the current understanding of the roles played by ACTN2, FLNC and dystrophin in the onset and progress of inherited cardiomyopathies. With our work, we aim to set the stage for new approaches to study the cardiomyopathies, which might reveal new therapeutic targets and broaden the panel of genes to be screened.
    [Show full text]