Apertures & F Numbers

Total Page:16

File Type:pdf, Size:1020Kb

Apertures & F Numbers Apertures & F Numbers What are F/numbers? The aperture is an adjustable "hole" or iris that lets light through the lens to the cameras sensor & together with the shutter speed, creates the exposure. The size of the aperture is denoted as an f/number & you see this in most cameras viewfinders & on the rear screen. The f/number is one of the most important settings on your camera & you should keep an eye on which value you are using. Once you set the f/number on your camera it will not change, even when your power off or on your camera but you must change it according to conditions at the time or time of day. How does changing the f/number affect the aperture size? One of the most confusing things about the f/number & aperture is that smaller f/numbers indicate larger apertures & vice versa, e.g. f/1.4 is the largest aperture that any camera lens can be set to. f/22 is usually the largest aperture that most cameras can be set to but there are specialist cameras that will go to f/32 & even f/45. Where do f/numbers come from? The available f/numbers form a standard scale, with each value referred to as an f/stop. At first the f/numbers seem like a random sequence of numbers, but the scale has a mathematical basis. Each full stop lets in half as much light as the one above, & twice as much light as the one below. Thus f/8 lets in twice as much light as f/11 but only half the light of f/5.6 - the bigger the hole the greater the amount of light is allowed to pass into the camera. What does this mean for my exposures? An exposure is basically a balancing act between aperture (the amount of light coming through the lens aperture) & shutter speed (the amount of time the sensor is allowed to receive the light coming through the lens aperture). The bigger the "hole" or iris, the greater the amount of light coming through the lens, & that allows a shorter or faster shutter speed. If the iris is set to a higher value, thus giving a smaller "hole", a longer shutter speed is needed to compensate for the lower level of light coming through the lens. What are the full f/numbers? f/1.4, f/2, f2.8, f/4, f5.6, f/9, f/11, f/16 & f/22 What about the numbers in between the full f/numbers? On lenses for old cameras, the aperture control was less advanced & only full f/stop values were possible. On today's cameras, you can set the f/number to values in between the full stops. These are partial f/stops that divide each full f/stop into thirds, & they simply have one third of the effect. The third stops are: f/1.6, f/1.8, f/2.2, f/2.5, f/3.2, f/3.2, f/4.5, f/5, f/6.3, f/7.1, f/9, f/10, f/13, f/14, f/18 & f/20. 1 of 2 Apertures & F Numbers What other effects does changing the f/number have? Opening & closing the aperture not only changes the amount of light that passes through, but it affects something called depth-of-field. Depth-of-field (also known as DOF) is the amount of back-to-front sharpness in a scene. Controlling the f/number can therefore be used for creative effects. What is depth-of-field? With a shallow depth-of-field sharpness falls off quickly on either side of your focal point so that only a small amount of the scene is in sharp focus. a large depth-of-field keeps everything from front to back sharp. How can I use depth-of-field creatively? Using a shallow depth-of-field lets you direct attention by picking out your subject from its surroundings. For example, blurring the background with a shallow depth-of-field makes a portrait subject stand out, or in macro photography it highlights specific details. But keeping everything sharp with a large depth-of-field is what you want in landscapes or when capturing as scene as a whole. How does aperture affect Depth-of-Field? Increase the size of the aperture by selecting a lower f/number, & the depth-of-field becomes shallower. for example, if everything else is kept the same, switching from f/11 to f5.6 creates a shallower depth-of-field. By setting your camera to aperture priority mode, you can change the aperture to control the depth-of-field, & the camera adjusts the shutter speed automatically for a good exposure. What else affects depth-of-field? It is not just the aperture that determines the depth-of-field. Getting closer to your subject, without changing the aperture or focal length reduces the depth-of-field, as does increasing the focal length without changing the aperture or distance from your subject. 2 of 2 .
Recommended publications
  • Shutter Stream Product Photography Software *IMPORTANT
    Quick Start Guide – Shutter Stream Product Photography Software *IMPORTANT – You must follow these steps before starting: 1. Registering the Software: After installing the software and at the time of first launch, users will be prompted with a registration page. This is required. Please fill out this form in its entirety, select ‘ShutterStream’ license type then submit – this will be automatically sent to our licensing server. Within 72 hours, user will receive their license file along with license file import instructions (sent via email to the address used at time of registration) the software. The software will remain fully functional in the meantime. 2. Setting up your Compatible Camera: Please select your specific camera model from this page for the required settings. Additional Training Documents: Shutter Stream Full User Guide: See here Features Overview Video: See Here Help Desk & Support: Help Desk: http://confluence.iconasys.dmmd.net/display/SHSKB/Shutter+Stream+Knowledge+Base Technical Support: Please email [email protected] to open up a support ticket. © Iconasys Inc. 2013-2018 Overview - Shutter Stream UI 1. Image Capture Tools 2. Image Viewing Gallery 3. Image Processing Tools 4. Live View / Image Viewing Window 5. Camera Setting Taskbar 6. Help and Options 4 6 1 3 5 2 **Make sure camera has been connected via USB to computer and powered on before launching software Shutter Stream Product Photography Workflow: Step 1 – Place an object in Cameras Field of View and Click the Live View button (top left corner of software): ‘Live View’ will stream the cameras live view to the monitor screen in real time so users can view the subject they wish to shoot before actually capturing the image.
    [Show full text]
  • “Digital Single Lens Reflex”
    PHOTOGRAPHY GENERIC ELECTIVE SEM-II DSLR stands for “Digital Single Lens Reflex”. In simple language, a DSLR is a digital camera that uses a mirror mechanism to either reflect light from a camera lens to an optical viewfinder (which is an eyepiece on the back of the camera that one looks through to see what they are taking a picture of) or let light fully pass onto the image sensor (which captures the image) by moving the mirror out of the way. Although single lens reflex cameras have been available in various shapes and forms since the 19th century with film as the recording medium, the first commercial digital SLR with an image sensor appeared in 1991. Compared to point-and-shoot and phone cameras, DSLR cameras typically use interchangeable lenses. Take a look at the following image of an SLR cross section (image courtesy of Wikipedia): When you look through a DSLR viewfinder / eyepiece on the back of the camera, whatever you see is passed through the lens attached to the camera, which means that you could be looking at exactly what you are going to capture. Light from the scene you are attempting to capture passes through the lens into a reflex mirror (#2) that sits at a 45 degree angle inside the camera chamber, which then forwards the light vertically to an optical element called a “pentaprism” (#7). The pentaprism then converts the vertical light to horizontal by redirecting the light through two separate mirrors, right into the viewfinder (#8). When you take a picture, the reflex mirror (#2) swings upwards, blocking the vertical pathway and letting the light directly through.
    [Show full text]
  • Completing a Photography Exhibit Data Tag
    Completing a Photography Exhibit Data Tag Current Data Tags are available at: https://unl.box.com/s/1ttnemphrd4szykl5t9xm1ofiezi86js Camera Make & Model: Indicate the brand and model of the camera, such as Google Pixel 2, Nikon Coolpix B500, or Canon EOS Rebel T7. Focus Type: • Fixed Focus means the photographer is not able to adjust the focal point. These cameras tend to have a large depth of field. This might include basic disposable cameras. • Auto Focus means the camera automatically adjusts the optics in the lens to bring the subject into focus. The camera typically selects what to focus on. However, the photographer may also be able to select the focal point using a touch screen for example, but the camera will automatically adjust the lens. This might include digital cameras and mobile device cameras, such as phones and tablets. • Manual Focus allows the photographer to manually adjust and control the lens’ focus by hand, usually by turning the focus ring. Camera Type: Indicate whether the camera is digital or film. (The following Questions are for Unit 2 and 3 exhibitors only.) Did you manually adjust the aperture, shutter speed, or ISO? Indicate whether you adjusted these settings to capture the photo. Note: Regardless of whether or not you adjusted these settings manually, you must still identify the images specific F Stop, Shutter Sped, ISO, and Focal Length settings. “Auto” is not an acceptable answer. Digital cameras automatically record this information for each photo captured. This information, referred to as Metadata, is attached to the image file and goes with it when the image is downloaded to a computer for example.
    [Show full text]
  • Session Outline: History of the Daguerreotype
    Fundamentals of the Conservation of Photographs SESSION: History of the Daguerreotype INSTRUCTOR: Grant B. Romer SESSION OUTLINE ABSTRACT The daguerreotype process evolved out of the collaboration of Louis Jacques Mande Daguerre (1787- 1851) and Nicephore Niepce, which began in 1827. During their experiments to invent a commercially viable system of photography a number of photographic processes were evolved which contributed elements that led to the daguerreotype. Following Niepce’s death in 1833, Daguerre continued experimentation and discovered in 1835 the basic principle of the process. Later, investigation of the process by prominent scientists led to important understandings and improvements. By 1843 the process had reached technical perfection and remained the commercially dominant system of photography in the world until the mid-1850’s. The image quality of the fine daguerreotype set the photographic standard and the photographic industry was established around it. The standardized daguerreotype process after 1843 entailed seven essential steps: plate polishing, sensitization, camera exposure, development, fixation, gilding, and drying. The daguerreotype process is explored more fully in the Technical Note: Daguerreotype. The daguerreotype image is seen as a positive to full effect through a combination of the reflection the plate surface and the scattering of light by the imaging particles. Housings exist in great variety of style, usually following the fashion of miniature portrait presentation. The daguerreotype plate is extremely vulnerable to mechanical damage and the deteriorating influences of atmospheric pollutants. Hence, highly colored and obscuring corrosion films are commonly found on daguerreotypes. Many daguerreotypes have been damaged or destroyed by uninformed attempts to wipe these films away.
    [Show full text]
  • Digital Camera Functions All Photography Is Based on the Same
    Digital Camera Functions All photography is based on the same optical principle of viewing objects with our eyes. In both cases, light is reflected off of an object and passes through a lens, which focuses the light rays, onto the light sensitive retina, in the case of eyesight, or onto film or an image sensor the case of traditional or digital photography. The shutter is a curtain that is placed between the lens and the camera that briefly opens to let light hit the film in conventional photography or the image sensor in digital photography. The shutter speed refers to how long the curtain stays open to let light in. The higher the number, the shorter the time, and consequently, the less light gets in. So, a shutter speed of 1/60th of a second lets in half the amount of light than a speed of 1/30th of a second. For most normal pictures, shutter speeds range from 1/30th of a second to 1/100th of a second. A faster shutter speed, such as 1/500th of a second or 1/1000th of a second, would be used to take a picture of a fast moving object such as a race car; while a slow shutter speed would be used to take pictures in low-light situations, such as when taking pictures of the moon at night. Remember that the longer the shutter stays open, the more chance the image will be blurred because a person cannot usually hold a camera still for very long. A tripod or other support mechanism should almost always be used to stabilize the camera when slow shutter speeds are used.
    [Show full text]
  • Sample Manuscript Showing Specifications and Style
    Information capacity: a measure of potential image quality of a digital camera Frédéric Cao 1, Frédéric Guichard, Hervé Hornung DxO Labs, 3 rue Nationale, 92100 Boulogne Billancourt, FRANCE ABSTRACT The aim of the paper is to define an objective measurement for evaluating the performance of a digital camera. The challenge is to mix different flaws involving geometry (as distortion or lateral chromatic aberrations), light (as luminance and color shading), or statistical phenomena (as noise). We introduce the concept of information capacity that accounts for all the main defects than can be observed in digital images, and that can be due either to the optics or to the sensor. The information capacity describes the potential of the camera to produce good images. In particular, digital processing can correct some flaws (like distortion). Our definition of information takes possible correction into account and the fact that processing can neither retrieve lost information nor create some. This paper extends some of our previous work where the information capacity was only defined for RAW sensors. The concept is extended for cameras with optical defects as distortion, lateral and longitudinal chromatic aberration or lens shading. Keywords: digital photography, image quality evaluation, optical aberration, information capacity, camera performance database 1. INTRODUCTION The evaluation of a digital camera is a key factor for customers, whether they are vendors or final customers. It relies on many different factors as the presence or not of some functionalities, ergonomic, price, or image quality. Each separate criterion is itself quite complex to evaluate, and depends on many different factors. The case of image quality is a good illustration of this topic.
    [Show full text]
  • Fourth International Visual Field Symposium Bristol, April 13-16,198O
    Documenta Ophthalmologica Proceedings Series volume 26 Editor H. E. Henkes Dr W. Junk bv Publishers The Hague-Boston-London 1981 Fourth International Visual Field Symposium Bristol, April 13-16,198O Edited by E. L. Greve and G. Verriest Dr W. Junk bv Publishers The Hague - Boston -London 1981 Distributors for the United States and Canada Kluwer Boston, Inc. 190 Old Derby Street Hingham, MA 02043 USA for all other countries Kluwer Academic Publishers Group Distribution Center P.O. Box 322 3300 AH Dordrecht The Netherlands ISBN 90 6193 165 7 (this volume) 90 6193 882 1 (series) Cover design: Max Velthuijs Copyright 0 1981 Dr W Junk bv Publishers, The Hague. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publishers. Dr W. Junk bv Publishers, P.O. Box 13713, 2501 ES The Hague, The Netherlands PRINTED IN THE NETHERLANDS INTRODUCTION The 4th International Visual Field Symposium of the International Perimetric Society, was held on the 13-16 April 1980 in Bristol, England, at the occasion of the 6th Congress of the European Society of Ophthalmology. The main themes of the symposium were comparison of classical perimetry with visual evoked response, comparison of classical perimetry with special psychophysi- cal methods, and optic nerve pathology. Understandably many papers dealt with computer assisted perimetry. This rapidly developing subgroup of peri- metry may radically change the future of our method of examination. New instruments were introduced, new and exciting software was proposed and the results of comparative investigations reported.
    [Show full text]
  • Seeing Like Your Camera ○ My List of Specific Videos I Recommend for Homework I.E
    Accessing Lynda.com ● Free to Mason community ● Set your browser to lynda.gmu.edu ○ Log-in using your Mason ID and Password ● Playlists Seeing Like Your Camera ○ My list of specific videos I recommend for homework i.e. pre- and post-session viewing.. PART 2 - FALL 2016 ○ Clicking on the name of the video segment will bring you immediately to Lynda.com (or the login window) Stan Schretter ○ I recommend that you eventually watch the entire video class, since we will only use small segments of each video class [email protected] 1 2 Ways To Take This Course What Creates a Photograph ● Each class will cover on one or two topics in detail ● Light ○ Lynda.com videos cover a lot more material ○ I will email the video playlist and the my charts before each class ● Camera ● My Scale of Value ○ Maximum Benefit: Review Videos Before Class & Attend Lectures ● Composition & Practice after Each Class ○ Less Benefit: Do not look at the Videos; Attend Lectures and ● Camera Setup Practice after Each Class ○ Some Benefit: Look at Videos; Don’t attend Lectures ● Post Processing 3 4 This Course - “The Shot” This Course - “The Shot” ● Camera Setup ○ Exposure ● Light ■ “Proper” Light on the Sensor ■ Depth of Field ■ Stop or Show the Action ● Camera ○ Focus ○ Getting the Color Right ● Composition ■ White Balance ● Composition ● Camera Setup ○ Key Photographic Element(s) ○ Moving The Eye Through The Frame ■ Negative Space ● Post Processing ○ Perspective ○ Story 5 6 Outline of This Class Class Topics PART 1 - Summer 2016 PART 2 - Fall 2016 ● Topic 1 ○ Review of Part 1 ● Increasing Your Vision ● Brief Review of Part 1 ○ Shutter Speed, Aperture, ISO ○ Shutter Speed ● Seeing The Light ○ Composition ○ Aperture ○ Color, dynamic range, ● Topic 2 ○ ISO and White Balance histograms, backlighting, etc.
    [Show full text]
  • Aperture, Exposure, and Equivalent Exposure Aperture
    Aperture, Exposure, and Equivalent Exposure Aperture Also known as f-stop Aperture Controls opening’s size during exposure Another term for aperture: f-stop Controls Depth of Field Each full stop on the aperture (f-stop) either doubles or halves the amount of light let into the camera Light is halved this direction Light is doubled this direction The Camera/Eye Comparison Aperture = Camera body = Pupil Shutter = Eyeball Eyelashes Lens Iris diaphragm = Film = Iris Light sensitive retina Aperture and Depth of Field Depth of Field • The zone of sharpness variable by aperture, focal length, or subject distance f/22 f/8 f/4 f/2 Large Depth of Field Shot at f/22 Jacob Blade Shot at f/64 Ansel Adams Shallow Depth of Field Shot at f/4 Keely Nagel Shot at f/5.6 How is a darkroom test strip like a camera’s light meter? They both tell how much light is being allowed into an exposure and help you to pick the correct amount of light using your aperture and proper time (either timer or shutter speed) This is something called Equivalent Exposure Which will be explained now… What we will discuss • Exposure • Equivalent Exposure • Why is equivalent exposure important? Photography – Greek photo = light graphy = writing What is an exposure? Which one is properly exposed and what happened to the others? A B C Under Exposed A Over Exposed B Properly Exposed C Exposure • Combined effect of volume of light hitting the film or sensor and its duration. • Volume is controlled by the aperture (f-stop) • Duration (time) is controlled by the shutter speed Equivalent
    [Show full text]
  • Macro Photography Camera Richard J
    Evaluating A Macro Photography Camera Richard J. Nelson Introduction My company, AMF, purchased a general-purpose digital camera five years ago, the Sony Mavica, model MVC-FD83. The digital capability and floppy disc drive media proved very practical for general documentation purposes. The floppy discs made it convenient for any employee to work with the images. After about 20,000+ images the floppy drive wore out and a new camera was needed. Meanwhile I had personally purchased a Nikon Coolpix 995 camera with a 3.3 Megapixel resolution (a big improvement over the Sony Mavica 0.9 megapixel resolution) and close focus (2 cm) capability. This became a consideration for an AMF camera and we ordered one on eBay, which was lost by the USPS - it was insured. Earlier in 2005 I purchased a Sony T1 with a Magnify mode that featured a very close focus (1 cm) and 5- megapixel resolution. This camera has provided many of the images used on posters, reports, fundraiser book, procedures, and power point presentations, especially for the BPB project. The ability to produce a large image of a very small object has proved very useful for our engineering and publicity projects. The Sony T1 works especially well as a general documentation camera for me because I always have it with me, I have extra memory cards, 1 GB total for about 500 images, and 2 extra batteries for any photo shoot requirements. All of this fits in my shirt pocket and is with me 24/7. The T1 has two serious limitations. The first is sharpness with magnification, and the second is working distance for lighting.
    [Show full text]
  • Depth of Field PDF Only
    Depth of Field for Digital Images Robin D. Myers Better Light, Inc. In the days before digital images, before the advent of roll film, photography was accomplished with photosensitive emulsions spread on glass plates. After processing and drying the glass negative, it was contact printed onto photosensitive paper to produce the final print. The size of the final print was the same size as the negative. During this period some of the foundational work into the science of photography was performed. One of the concepts developed was the circle of confusion. Contact prints are usually small enough that they are normally viewed at a distance of approximately 250 millimeters (about 10 inches). At this distance the human eye can resolve a detail that occupies an angle of about 1 arc minute. The eye cannot see a difference between a blurred circle and a sharp edged circle that just fills this small angle at this viewing distance. The diameter of this circle is called the circle of confusion. Converting the diameter of this circle into a size measurement, we get about 0.1 millimeters. If we assume a standard print size of 8 by 10 inches (about 200 mm by 250 mm) and divide this by the circle of confusion then an 8x10 print would represent about 2000x2500 smallest discernible points. If these points are equated to their equivalence in digital pixels, then the resolution of a 8x10 print would be about 2000x2500 pixels or about 250 pixels per inch (100 pixels per centimeter). The circle of confusion used for 4x5 film has traditionally been that of a contact print viewed at the standard 250 mm viewing distance.
    [Show full text]
  • Depth of Focus (DOF)
    Erect Image Depth of Focus (DOF) unit: mm Also known as ‘depth of field’, this is the distance (measured in the An image in which the orientations of left, right, top, bottom and direction of the optical axis) between the two planes which define the moving directions are the same as those of a workpiece on the limits of acceptable image sharpness when the microscope is focused workstage. PG on an object. As the numerical aperture (NA) increases, the depth of 46 focus becomes shallower, as shown by the expression below: λ DOF = λ = 0.55µm is often used as the reference wavelength 2·(NA)2 Field number (FN), real field of view, and monitor display magnification unit: mm Example: For an M Plan Apo 100X lens (NA = 0.7) The depth of focus of this objective is The observation range of the sample surface is determined by the diameter of the eyepiece’s field stop. The value of this diameter in 0.55µm = 0.6µm 2 x 0.72 millimeters is called the field number (FN). In contrast, the real field of view is the range on the workpiece surface when actually magnified and observed with the objective lens. Bright-field Illumination and Dark-field Illumination The real field of view can be calculated with the following formula: In brightfield illumination a full cone of light is focused by the objective on the specimen surface. This is the normal mode of viewing with an (1) The range of the workpiece that can be observed with the optical microscope. With darkfield illumination, the inner area of the microscope (diameter) light cone is blocked so that the surface is only illuminated by light FN of eyepiece Real field of view = from an oblique angle.
    [Show full text]