Biomineralization of Carbonates in Modern Microbial Sediments and Its Implications for CO₂ Sequestration

Total Page:16

File Type:pdf, Size:1020Kb

Biomineralization of Carbonates in Modern Microbial Sediments and Its Implications for CO₂ Sequestration Scholars' Mine Doctoral Dissertations Student Theses and Dissertations Spring 2014 Biomineralization of carbonates in modern microbial sediments and its implications for CO₂ sequestration Varun Gnanaprian Paul Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations Part of the Geology Commons, and the Geophysics and Seismology Commons Department: Geosciences and Geological and Petroleum Engineering Recommended Citation Paul, Varun Gnanaprian, "Biomineralization of carbonates in modern microbial sediments and its implications for CO₂ sequestration" (2014). Doctoral Dissertations. 2138. https://scholarsmine.mst.edu/doctoral_dissertations/2138 This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. BIOMINERALIZATION OF CARBONATES IN MODERN MICROBIAL SEDIMENTS AND ITS IMPLICATIONS FOR CO2 SEQUESTRATION by VARUN GNANAPRIAN PAUL A DISSERTATION Presented to the Faculty of the Graduate School of the MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY In Partial Fulfillment of the Requirements for the Degree DOCTOR OF PHILOSOPHY in GEOLOGY AND GEOPHYSICS 2014 Approved by: David J. Wronkiewicz, Advisor Melanie R. Mormile, Co-Advisor Francisca Oboh-Ikuenobe Wan Yang Jamie S. Foster © 2014 Varun Gnanaprian Paul All Rights Reserved iii PUBLICATION DISSERTATION OPTION This dissertation is organized into four main sections. Section 1 (pages 1 to 17) introduces the two main research projects undertaken and states the hypotheses and objectives. Section 2 (pages 18 to 35) describes the sites, materials used and the experimental methodology that has been employed in all the projects. Paper I (pages 36 to 112) covering the first research project, focuses on the investigations on mineralization of carbonates influenced by sulfate-reducing bacteria, and its implications for subsurface carbon dioxide sequestration. Paper I is written in the form of a manuscript to be submitted to Geochimica et Cosmochimica Acta journal. Paper II (pages 113 to 180) describes the second research project, involving characterization of water and microbialites from Storr’s Lake, and is written in the form of a manuscript for submission to the Geobiology Journal. Section 3 (page 181) includes the general conclusions that were obtained from the overall research projects. Appendices A through E have been added for purposes of normal dissertation writing. iv ABSTRACT Several bacterial species influence carbonate mineral precipitation by modifying pH, alkalinity, Ca2+ activity and by providing nucleation sites for mineralization. Two studies have been undertaken to explore microbial influence in the mineralization of carbonates. In the first study, the ability of sulfate-reducing bacteria (SRB) to induce carbonate mineralization was investigated as a means to enhance mineral sequestration of CO2. Sulfate-reducing bacteria enriched from hypersaline Storr’s Lake, The Bahamas; Lake Estancia, New Mexico; and Great Salt Plains Lake, Oklahoma, were tested in reactors under varying CO2 concentrations. Carbonate mineral precipitation was achieved only in reactors with Lake Estancia SRB community and under a pCO2 of < 20 psi. Hydrogen, lactate and formate served as electron donors for SRB. Carbon isotopic studies confirmed that carbon in the carbonate minerals was derived from electron donors, CO2 or bicarbonate ions in the solution. Sulfate-reducing bacteria’s ability to induce immobile carbonate mineralization can be potentially applied to enhance long-term storage of CO2. Secondly, microbially lithified, organo-sedimentary structures called microbialites in the hypersaline Storr’s Lake were investigated to determine the influence of biotic and abiotic components of the lake on the microbialite formation. The lake water revealed fluctuations in several parameters depending upon rainfall and evaporation. Aragonite and Mg-calcite constituted the carbonate mineralogy of the five microbialites morphologic types examined. Microbial diversity studies by 16S rRNA gene analysis revealed high population percentages of anaerobic phototrophs, halo-respirers and sulfate-reducing bacteria and low population of cyanobacteria (3%). The fluctuating water characteristics, varied mineralogy and the low apparent abundance of cyanobacteria, makes Storr’s Lake, a distinct environment to study microbial interaction with their surroundings during carbonate mineralization. v ACKNOWLEDGEMENTS I extend my most sincere and heart-felt appreciation to my advisors, Drs. David Wronkiewicz and Melanie Mormile, for their continued support and guidance, and for pushing me to achieve my goals. I thank Drs. Francisca Oboh-Ikuenobe, Wan Yang and Jamie Foster, my committee members, for their invaluable inputs and direction. I thank the Department of Energy – National Energy Technology Lab under agreement DE-FE0002416, the sponsors for my research. I thank the Donald Radcliffe Trust (Missouri S&T Geology & Geophysics) for partially covering travel expenses and for stipend and partial tuition expenses during Fall 2013. I thank the faculty and staff of the Departments of Geological Sciences & Engineering, and Biological Sciences. Cheers to Krista, Bobby and Alsedik for their help and for providing necessary comedic relief. I thank the staff of the Gerace Research Centre, San Salvador Island, for logistics and assistance in the Bahamas, and the Bahamas Environment Science & Technology Commission (BEST) for permission to export microbialite samples. I also thank Clarissa Wisner, Advanced Material Characterization Laboratory; Eric Bohannan, Materials Research Center; Shreya Gosh; and Honglan Shi, Environmental Research Center, for help with SEM, XRD, pyrosequencing data interpretation and ICP-OES, respectively. I am especially thankful to Dr. Ken MacLeod, Dr. Cheryl Kelley and Shannon Haynes of Mizzou’s Biogeochemistry IRMS Lab for analysis of the isotopic data. I thank Carlos and Josh for help with microscopy and XRD sample preparation. I am grateful to Dr. Emitt Witt, Dr. Eric (Florida), Dr. Wronk and the students in the field trips for their help during sample collection, and for holding my back under water. Finally, no words can express my love and gratitude to my parents, my brother, family and friends for believing in me and encouraging me to pursue my dreams. vi TABLE OF CONTENTS Page PUBLICATION DISSERTATION OPTION ................................................................... iii ABSTRACT ....................................................................................................................... iv ACKNOWLEDGEMENTS.. ...............................................................................................v LIST OF ILLUSTRATIONS ............................................................................................. xi LIST OF TABLES ........................................................................................................... xiii SECTION 1. INTRODUCTION ...........................................................................................................1 1.1. GEOLOGICAL CARBON SEQUESTRATION .....................................................1 1.2. MICROBIAL ROLE IN CARBONATE MINERAL PRECIPITATION ...............3 1.3. MICROBIALITES AND CARBONATE MINERALIZATION ...........................10 1.4. HYPOTHESES AND OBJECTIVES.. ..................................................................15 2. EXPERIMENTAL METHODS.....................................................................................18 2.1. STUDY SITES .......................................................................................................18 2.2. WATER ANALYSIS FROM DIFFERENT LAKES ............................................19 2.2.1. In-Situ Water Analysis .................................................................................19 2.2.2. Water Analysis in the Laboratory ................................................................21 2.3. SATURATION INDEX BY USING PHREEQ PROGRAM ................................23 2.4. MINERALOGY, ELEMENTAL ANALYSIS AND MICROSCOPY OF THE SEDIMENTS/MICROBIALITES..........................................................................23 2.4.1. X-Ray Diffraction (XRD) Analysis .............................................................23 2.4.2. Elemental Analysis of the Microbialite Samples .........................................24 2.4.3. Optical and Scanning Electron Microscopic (SEM) Analysis .....................25 2.5. MICROBIAL ENRICHMENT CULTURES .........................................................26 2.6. DNA EXTRACTION AND 16S rRNA GENE ANALYSIS .................................27 2.7. REACTOR TESTING ............................................................................................28 2.7.1. Continuous Reactors ....................................................................................28 2.7.2. Batch Reactors .............................................................................................29 vii 2.8. CARBON ISOTOPE ANALYSIS .........................................................................31 PAPER I. IMPACT OF ELEVATED CO2 CONCENTRATIONS ON THE CARBONATE MINERAL PRECIPITATION ABILITY OF SULFATE-REDUCING BACTERIA AND ITS IMPLICATION FOR CO2 SEQUESTRATION……….…………………..36 ABSTRACT……………………………………………………………...…..…………..36
Recommended publications
  • Confocal Raman Microscope Mapping As a Tool to Describe Different
    Biogeosciences, 8, 3761–3769, 2011 www.biogeosciences.net/8/3761/2011/ Biogeosciences doi:10.5194/bg-8-3761-2011 © Author(s) 2011. CC Attribution 3.0 License. Confocal Raman microscope mapping as a tool to describe different mineral and organic phases at high spatial resolution within marine biogenic carbonates: case study on Nerita undata (Gastropoda, Neritopsina) G. Nehrke1 and J. Nouet2 1Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany 2University Paris Sud, IDES UMR 8148, batimentˆ 504, campus universitaire, 91405 Orsay cedex, France Received: 20 May 2011 – Published in Biogeosciences Discuss.: 9 June 2011 Revised: 10 November 2011 – Accepted: 7 December 2011 – Published: 20 December 2011 Abstract. Marine biogenic carbonates formed by inverte- 1 Introduction brates (e.g. corals and mollusks) represent complex compos- ites of one or more mineral phases and organic molecules. Calcium carbonates formed by marine calcifying organisms This complexity ranges from the macroscopic structures ob- (e.g. corals and mollusks) received much attention in the field served with the naked eye down to sub micrometric struc- of biogeosciences during the last decades. On the one hand tures only revealed by micro analytical techniques. Under- they represent important proxy archives (e.g. oxygen isotopic standing to what extent and how organisms can control the composition can be used for temperature reconstruction (Mc- formation of these structures requires that the mineral and Crea, 1950; Urey et al., 1951)) and on the other hand they are organic phases can be identified and their spatial distribution affected by the increasing acidification of the ocean due to related.
    [Show full text]
  • Polymorphic Protective Dps–DNA Co-Crystals by Cryo Electron Tomography and Small Angle X-Ray Scattering
    biomolecules Article Polymorphic Protective Dps–DNA Co-Crystals by Cryo Electron Tomography and Small Angle X-Ray Scattering Roman Kamyshinsky 1,2,3,* , Yury Chesnokov 1,2 , Liubov Dadinova 2, Andrey Mozhaev 2,4, Ivan Orlov 2, Maxim Petoukhov 2,5 , Anton Orekhov 1,2,3, Eleonora Shtykova 2 and Alexander Vasiliev 1,2,3 1 National Research Center “Kurchatov Institute”, Akademika Kurchatova pl., 1, 123182 Moscow, Russia; [email protected] (Y.C.); [email protected] (A.O.); [email protected] (A.V.) 2 Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, Leninskiy prospect, 59, 119333 Moscow, Russia; [email protected] (L.D.); [email protected] (A.M.); [email protected] (I.O.); [email protected] (M.P.); [email protected] (E.S.) 3 Moscow Institute of Physics and Technology, Institutsky lane 9, 141700 Dolgoprudny, Moscow Region, Russia 4 Shemyakin-Ovchinnikov Institute of bioorganic chemistry of Russian Academy of Sciences, Miklukho-Maklaya, 16/10, 117997 Moscow, Russia 5 Frumkin Institute of Physical Chemistry and Electrochemistry of Russian Academy of Sciences, Leninsky prospect, 31, 119071 Moscow, Russia * Correspondence: [email protected]; Tel.: +7-916-356-3963 Received: 6 November 2019; Accepted: 22 December 2019; Published: 26 December 2019 Abstract: Rapid increase of intracellular synthesis of specific histone-like Dps protein that binds DNA to protect the genome against deleterious factors leads to in cellulo crystallization—one of the most curious processes in the area of life science at the moment. However, the actual structure of the Dps–DNA co-crystals remained uncertain in the details for more than two decades.
    [Show full text]
  • PROGRAMME ABSTRACTS AGM Papers
    The Palaeontological Association 63rd Annual Meeting 15th–21st December 2019 University of Valencia, Spain PROGRAMME ABSTRACTS AGM papers Palaeontological Association 6 ANNUAL MEETING ANNUAL MEETING Palaeontological Association 1 The Palaeontological Association 63rd Annual Meeting 15th–21st December 2019 University of Valencia The programme and abstracts for the 63rd Annual Meeting of the Palaeontological Association are provided after the following information and summary of the meeting. An easy-to-navigate pocket guide to the Meeting is also available to delegates. Venue The Annual Meeting will take place in the faculties of Philosophy and Philology on the Blasco Ibañez Campus of the University of Valencia. The Symposium will take place in the Salon Actos Manuel Sanchis Guarner in the Faculty of Philology. The main meeting will take place in this and a nearby lecture theatre (Salon Actos, Faculty of Philosophy). There is a Metro stop just a few metres from the campus that connects with the centre of the city in 5-10 minutes (Line 3-Facultats). Alternatively, the campus is a 20-25 minute walk from the ‘old town’. Registration Registration will be possible before and during the Symposium at the entrance to the Salon Actos in the Faculty of Philosophy. During the main meeting the registration desk will continue to be available in the Faculty of Philosophy. Oral Presentations All speakers (apart from the symposium speakers) have been allocated 15 minutes. It is therefore expected that you prepare to speak for no more than 12 minutes to allow time for questions and switching between presenters. We have a number of parallel sessions in nearby lecture theatres so timing will be especially important.
    [Show full text]
  • Magnesium Silicate on Chloroquine Phosphate, Against Plasmodium Berghei
    Ajuvant effect of a Synthetic Aluminium – Magnesium Silicate on chloroquine phosphate, against Plasmodium berghei. * Ezeibe Maduike, Elendu – Eleke Nnenna, Okoroafor Obianuju and Ngene Augustine Department of Veterinary Medicine, University of Nigeria, Nsukka. *Corresponding authur [email protected] Abstract Effect of a synthetic Aluminium – Magnesium Silicate (AMS) on antiplasmodial activity of chloroquine was tested.Plasmodium berghei infected mice were treated with 7 mg/ kg, 5 mg / kg and 3 mg / kg chloroquine, respectively.Subgroups in each experiment were treated with chloroquine alone and with chloroquine in AMS.Parasitaemia (%) of the group treated with 7 mg / kg was higher than that of the control.At 5 mg / kg, chloroquine treatment reduced parasitaemia from 3.60 to 2.46 (P = ).Incorporating chloroquine in AMS improved its ability to reduce P.berghei parasitaemia at 5 mg /kg and at 3 mg / kg, from 2.46 0.21 to 1.57 0.25 (P = ) and from 3.82 0.06 to 2.12 0.08 (P = ). It also increased mortality of mice treated at 7 mg / kg from 20 to 80 % (P = ). Key words: Antiplasmodial resistance, chloroquine toxicity, Aluminium – Magnesium Silicate, chloroquine phosphate. Background. Nature Precedings : hdl:10101/npre.2012.6749.1 Posted 2 Jan 2012 Protozoan parasites of the genus plasmodium are causative agents of malaria1, 2. Malaria is a zoonotic disease , affecting man, zoo primates, avian species and rodents3,4. It has also been reported that when species of plasmodium which infect animals were passaged in human volunteers they produced malaria in man5. In humans, malaria is cause of between one to three million deaths in sub saharan Africa every year 6.Malaria is not only an effect of poverty it is also a cause of poverty7.To combat malaria, most countries in Africa spend upto 40 % of their public health budget on the disease annually8.
    [Show full text]
  • Microorganisms
    microorganisms Article Comparative Proteomics Analysis Reveals New Features of the Oxidative Stress Response in the Polyextremophilic Bacterium Deinococcus radiodurans Lihua Gao, Zhengfu Zhou, Xiaonan Chen, Wei Zhang, Min Lin and Ming Chen * Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; [email protected] (L.G.); [email protected] (Z.Z.); [email protected] (X.C.); [email protected] (W.Z.); [email protected] (M.L.) * Correspondence: [email protected] Received: 20 February 2020; Accepted: 19 March 2020; Published: 23 March 2020 Abstract: Deinococcus radiodurans is known for its extreme resistance to ionizing radiation, oxidative stress, and other DNA-damaging agents. The robustness of this bacterium primarily originates from its strong oxidative resistance mechanisms. Hundreds of genes have been demonstrated to contribute to oxidative resistance in D. radiodurans; however, the antioxidant mechanisms have not been fully characterized. In this study, comparative proteomics analysis of D. radiodurans grown under normal and oxidative stress conditions was conducted using label-free quantitative proteomics. The abundances of 852 of 1700 proteins were found to significantly differ between the two groups. These differential proteins are mainly associated with translation, DNA repair and recombination, response to stresses, transcription, and cell wall organization. Highly upregulated expression was observed for ribosomal proteins such as RplB, Rpsl, RpsR, DNA damage response proteins (DdrA, DdrB), DNA repair proteins (RecN, RecA), and transcriptional regulators (members of TetR, AsnC, and GntR families, DdrI). The functional analysis of proteins in response to oxidative stress is discussed in detail. This study reveals the global protein expression profile of D. radiodurans in response to oxidative stress and provides new insights into the regulatory mechanism of oxidative resistance in D.
    [Show full text]
  • Microbial Lithification in Marine Stromatolites and Hypersaline Mats
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by RERO DOC Digital Library Published in Trends in Microbiology 13,9 : 429-438, 2005, 1 which should be used for any reference to this work Microbial lithification in marine stromatolites and hypersaline mats Christophe Dupraz1 and Pieter T. Visscher2 1Institut de Ge´ ologie, Universite´ de Neuchaˆ tel, Rue Emile-Argand 11, CP 2, CH-2007 Neuchaˆ tel, Switzerland 2Center for Integrative Geosciences, Department of Marine Sciences, University of Connecticut, 1080 Shennecossett Road, Groton, Connecticut, 06340, USA Lithification in microbial ecosystems occurs when pre- crucial role in regulating sedimentation and global bio- cipitation of minerals outweighs dissolution. Although geochemical cycles. the formation of various minerals can result from After the decline of stromatolites in the late Proterozoic microbial metabolism, carbonate precipitation is pos- (ca. 543 million years before present), microbially induced sibly the most important process that impacts global and/or controlled precipitation continued throughout the carbon cycling. Recent investigations have produced geological record as an active and essential player in most models for stromatolite formation in open marine aquatic ecosystems [9,10]. Although less abundant than in environments and lithification in shallow hypersaline the Precambrian, microbial precipitation is observed in a lakes, which could be highly relevant for interpreting the multitude of semi-confined (physically or chemically)
    [Show full text]
  • A Test of the Biogenicity Criteria Established for Microfossils And
    1 A Test of the Biogenicity Criteria Established for 2 Microfossils and Stromatolites on Quaternary Tufa and 3 Speleothem Materials Formed in the “Twilight Zone” at 4 Caerwys, U.K. 5 6 A.T. Brasier1*, M.R. Rogerson2, R. Mercedes-Martin2, H.B. Vonhof3 and J.J.G. 7 Reijmer3. 8 1*: Corresponding Author: School of Geosciences, Meston Building, University 9 of Aberdeen, Old Aberdeen, Scotland, UK. AB24 3UE. Email: 10 [email protected]; Telephone: +44(0)1224 273 449; Fax: +44(0)1224 278 11 585. 12 2: Department of Geography, Environment and Earth Science University of 13 Hull Cottingham Road, Hull, UK. HU6 7RX 14 3: Faculty of Earth and Life Sciences, VU University Amsterdam, De Boelelaan 15 1085, 1081HV, Amsterdam, The Netherlands 16 17 Running title: Biogenicity of tufa stromatolites 1 18 2 19 Abstract 20 The ability to distinguish the features of a chemical sedimentary rock that can 21 only be attributed to biology is a challenge relevant to both geobiology and 22 astrobiology. This study aimed to test criteria for recognizing petrographically the 23 biogenicity of microbially influenced fabrics and fossil microbes in complex 24 Quaternary stalactitic carbonate rocks from Caerwys, UK. We found that the 25 presence of carbonaceous microfossils, fabrics produced by the calcification of 26 microbial filaments, and the asymmetrical development of tufa fabrics due to the 27 more rapid growth of microbially influenced laminations could be recognized as 28 biogenic features. Petrographic evidence also indicated that the development of 29 ”speleothem-like” laminae was related to episodes of growth interrupted by 30 intervals of non-deposition and erosion.
    [Show full text]
  • A Test of the Biogenicity Criteria Established for Microfossils And
    1 A Test of the Biogenicity Criteria Established for 2 Microfossils and Stromatolites on Quaternary Tufa and 3 Speleothem Materials Formed in the “Twilight Zone” at 4 Caerwys, U.K. 5 6 A.T. Brasier1*, M.R. Rogerson2, R. Mercedes-Martin2, H.B. Vonhof3 and J.J.G. 7 Reijmer3. 8 1*: Corresponding Author: School of Geosciences, Meston Building, University 9 of Aberdeen, Old Aberdeen, Scotland, UK. AB24 3UE. Email: 10 [email protected]; Telephone: +44(0)1224 273 449; Fax: +44(0)1224 278 11 585. 12 2: Department of Geography, Environment and Earth Science University of 13 Hull Cottingham Road, Hull, UK. HU6 7RX 14 3: Faculty of Earth and Life Sciences, VU University Amsterdam, De Boelelaan 15 1085, 1081HV, Amsterdam, The Netherlands 16 17 Running title: Biogenicity of tufa stromatolites 1 19 Abstract 20 The ability to distinguish the features of a chemical sedimentary rock that can 21 only be attributed to biology is a challenge relevant to both geobiology and 22 astrobiology. This study aimed to test criteria for recognizing petrographically the 23 biogenicity of microbially influenced fabrics and fossil microbes in complex 24 Quaternary stalactitic carbonate rocks from Caerwys, UK. We found that the 25 presence of carbonaceous microfossils, fabrics produced by the calcification of 26 microbial filaments, and the asymmetrical development of tufa fabrics due to the 27 more rapid growth of microbially influenced laminations could be recognized as 28 biogenic features. Petrographic evidence also indicated that the development of 29 ”speleothem-like” laminae was related to episodes of growth interrupted by 30 intervals of non-deposition and erosion.
    [Show full text]
  • Journal of Pharmaceutics and Therapeutics Plant-Derived Drugs in Malaria Treatment Hempelmann E*
    Mini Review Journal of Pharmaceutics and Therapeutics Plant-Derived Drugs in Malaria Treatment Hempelmann E* Master of Science in biochemistry, University Tuebingen, Germany *Correspondence: Ernst Hempelmann, Dorfhalde 14, D-88662, Überlingen, Germany, E-mail: [email protected] Rec date: May 05, 2018; Acc date: June 04, 2018; Pub date: June 10, 2018 Introduction The First Recorded Use of the Term Mal aiere Every year 880,000 people are killed by malaria, most of them children in impoverished regions of the world In the 5th century, during the demise of the Western lacking adequate medical care. While many preventative Roman Empire, the mainland in northern Italy remained measures, such as mosquito nets have decreased the unsafe. At that time Torcello was one of the first islands to incidence of malaria, once the disease is contracted, be successfully settled in the Venetian Lagoon. Until the it must be treated. Many plasmodial species have 10th century Torcello remained the greatest commercial developed a frightening resistance to antimalarial agents, centre in the lagoon. As silt from rivers on the mainland making the search for new, effective antimalarial agents filled up the shallow waters around Torcello, trade an urgent priority of global importance. became more difficult and the foul-smelling waters of reduce salinity became perfect breeding places for Even now the World Health Organization estimates mosquitoes, turning the northern lagoon into dead water that 80% of the population in Africa and Asia relies (“laguna morta”). From the 12th century Torcello rapidly on plants and plant-derived products, rather than deteriorated and the inhabitants gradually made their way conventional medical therapies, to treat many different to nearby Venice.
    [Show full text]
  • TECHNISCHE PHYSICA Vereniging Voor Technische Physica
    RESEARCH GROUP GUIDE 2016 VERENIGING VOOR TECHNISCHE PHYSICA Vereniging voor Technische Physica Lorentzweg 1 Kamer A109 2628 CJ Delft (015) 278 612 20 [email protected] www.vvtp.tudelft.nl Table of Contents BioNanoscience Aubin-Tam Lab 4 Beaumont Lab 5 Cees Dekker Lab 7 Dogterom Lab 8 Idema Lab 9 Meyer Lab 10 Nynke Dekker Lab 11 Fluid Flow and Transport Phenomena Atmospheric Physics 13 Fluid Mechanics 14 Transport Phenomena 15 Imaging Physics Acoustical Wavefield Imaging 18 Charged Particle Optics 19 Optics 21 Quantitative Imaging 23 Systems and Control (DCSC) 25 Quantum Nanoscience High Resolution Electron Microscopy 27 Kavli Nanolab 28 Molecular Electronics & Devices 30 Quantum Transport 32 Theoretical Physics 35 Radiation Science and Technology Radiation and Health for Isotopes 38 Radiation Detection and Medical Imaging 38 Nuclear Energy and Radiation Applications 39 Neutron & Positron Methods in Materials 39 Fundamental Aspects of Materials and Energy 40 3 BioNanoscience Aubin-Tam Lab Aubin-Tam group We are developing biophysical tools that allow real-time control over single biomolecules and single cells. We are also exploiting the unique properties of some proteins to design novel bio- and nano materials. Freestanding membrane in microdevice à studies on protein-induced membrane deformation Master project: Pulling membrane tubes from freestanding membranes with optical tweezers In biology, we can find several example of membrane tubes. One important question is the role 75µm of proteins in shaping membranes. One step towards these interesting studies is to create networks of membrane tubes. In the Aubin-Tam A microfluidic device is custom-designed in your group in order to form group, we have the technology that could enable stable freestanding membranes.
    [Show full text]
  • Valorization of Fish and Mariculture Waste Materials
    “INNOVATIVE TECHNOLOGIES AND SUSTAINABLE USE OF MEDITERRANEAN SEA FISHERY AND BIOLOGICAL RESOURCES” (FishMed-PhD) Valorization of fish and mariculture waste materials Giuseppe Falini Biocrystallization and Biomineralization Lab Dipartimento di Chimica “Giacomo Ciamician” Alma Mater Studiorum – Università di Bologna Italy Don’t waste seafood waste Turning cast-off shells into chemicals would benefit economies and the environment Every year, some 6 million to 8 million tonnes of seafood waste are produced globally. Whereas 75% of the weight of a tuna fish can be extracted as fillets, meat accounts for only around 40% of a crab’s mass and even less for mussels (about 30%). In developing countries, waste shells are often just dumped in landfill or the sea. In developed countries, disposal can be costly — up to US$150 per tonne in Australia, for example. Yet shells harbour useful chemicals — protein, calcium carbonate and chitin. Shells contain three primary chemicals that have many industrial uses. Developing a sustainable way to refine and give value them could add billions of dollars to the bioeconomy. Economic and scientific interest in calcium carbonate Global CaCO3 market is expected to reach USD 28 billion by 2027 and to show compound annual growth rate (CAGR) of 6%. Source: www.transparancymarketresearch.com. of scientific publications/patents (the data is got from Web of science/World Intellectual Property Organization (WIPO), by searching “CaCO3” in theme on January 2021). 2500 Publication Patent 2000 Statistics of scientific publications/patents 1500 (the data is got from Web of science/World Intellectual Property Organization (WIPO), 1000 by searching “CaCO3” in theme on January 500 2021).
    [Show full text]
  • Phototrophs in High Iron Microbial Mats: Microstructure of Mats in Iron-Depositing Hot Springs
    FEMS Microbiology Ecology 32 (2000) 181^196 www.fems-microbiology.org Phototrophs in high iron microbial mats: microstructure of mats in iron-depositing hot springs Beverly K. Pierson *, Mary N. Parenteau Biology Department, University of Puget Sound, 1500 N. Warner, Tacoma, WA 98416, USA Received 13 November 1999; received in revised form 3 March 2000; accepted 3 March 2000 Abstract Chocolate Pots Hot Springs in Yellowstone National Park are high in ferrous iron, silica and bicarbonate. The springs are contributing to the active development of an iron formation. The microstructure of photosynthetic microbial mats in these springs was studied with conventional optical microscopy, confocal laser scanning microscopy and transmission electron microscopy. The dominant mats at the highest temperatures (48^54³C) were composed of Synechococcus and Chloroflexus or Pseudanabaena and Mastigocladus. At lower temperatures (36^45³C), a narrow Oscillatoria dominated olive green cyanobacterial mats covering most of the iron deposit. Vertically oriented cyanobacterial filaments were abundant in the top 0.5 mm of the mats. Mineral deposits accumulated beneath this surface layer. The filamentous microstructure and gliding motility may contribute to binding the iron minerals. These activities and heavy mineral encrustation of cyanobacteria may contribute to the growth of the iron deposit. Chocolate Pots Hot Springs provide a model for studying the potential role of photosynthetic prokaryotes in the origin of Precambrian iron formations. ß 2000 Federation of European Micro- biological Societies. Published by Elsevier Science B.V. All rights reserved. Keywords: Phototroph; Iron; Hot spring mat; Cyanobacterium; Microstructure 1. Introduction CO2 ¢xation under anoxic conditions. The environmental cycling of iron is a complex process involving these bio- Prokaryotes play major roles in the transformations of logical in£uences as well as purely chemical or photochem- iron in the environment [1^4].
    [Show full text]