Genetic Studies in Intellectual Disability and Related Disorders

Total Page:16

File Type:pdf, Size:1020Kb

Genetic Studies in Intellectual Disability and Related Disorders Nature Reviews Genetics | AOP, published online 27 October 2015; doi:10.1038/nrg3999 REVIEWS APPLICATIONS OF NEXT-GENERATION SEQUENCING Genetic studies in intellectual disability and related disorders Lisenka E. L. M. Vissers1, Christian Gilissen1 and Joris A. Veltman1,2 Abstract | Genetic factors play a major part in intellectual disability (ID), but genetic studies have been complicated for a long time by the extreme clinical and genetic heterogeneity. Recently, progress has been made using different next-generation sequencing approaches in combination with new functional readout systems. This approach has provided novel insights into the biological pathways underlying ID, improved the diagnostic process and offered new targets for therapy. In this Review, we highlight the insights obtained from recent studies on the role of genetics in ID and its impact on diagnosis, prognosis and therapy. We also discuss the future directions of genetics research for ID and related neurodevelopmental disorders. genetic heterogeneity Epilepsy Intellectual disability (ID), the world-wide prevalence with extreme , and a genetic diag- 1 2 Group of neurological diseases of which has been estimated at 1% , is characterized by nosis is still lacking in most cases . This is concerning, that are characterized by substantial limitations in both intellectual function- as a genetic diagnosis can provide detailed information episodes of shaking, which can ing and adaptive behaviour, starting before the age of on the subtype of ID, its prognosis, possible compli- range in severity from brief, nearly undetectable to long 18 years. Most individuals with ID are identified early cations, treatment options as well as information on and vigorous. in childhood because of developmental delays, and ID the inheritance relevant for family planning. Genetic is a prominent feature of most developmental disorders. research has focused on the use of unbiased genome- Autism spectrum disorder However, a formal diagnosis of ID is made only when wide approaches because of the genetic heterogeneity (ASD). Collective term to IQ testing identifies an IQ score of less than 70. ID can of ID. These include genomic microarrays and, more describe a wide range next-generation sequencing of conditions that are occur in isolation or in combination with congeni- recently, (NGS) using exten- characterized by social deficits tal malformations or other neurological features such sive gene panels, the exome or the whole genome. With and communication difficulties, as epilepsy, sensory impairment and autism spectrum the introduction of NGS technologies, new ID genes stereotyped or repetitive disorders (ASD), and its severity (mild, moderate, severe are now being identified in rapid succession. This com- behaviour and interests, sensory issues and, in some and profound) is highly variable. bination of novel technology and increased biological cases, cognitive delays. ID can be caused by exogenous factors such as understanding is rapidly increasing the diagnostic yield maternal alcohol abuse during pregnancy, infections, of genetic tests in ID and improving the usefulness of 1Department of Human birth complications and extreme malnutrition, but genetic test results for patients and families involved. In Genetics, Donders Centre for genetics is known to have an important role in its aeti- addition, it is providing possibilities for carrier testing Neuroscience, Radboud ology. The brain is an incredibly complex organ con- and prenatal screening, as well as new targets for treat- University Medical Center, sisting of a myriad of interconnected cell types. During ment. In studying the genetics of ID, it is important Geert Grooteplein 10, 6525 GA Nijmegen, development and day‑to‑day functioning throughout to note that ID, which by definition is an early-onset The Netherlands. life, numerous proteins need to be functionally active in disorder, has a significant impact on fitness. The exact 2Department of Clinical the right amount at the right place and the correct time. effect on fitness will depend on the severity of the ID Genetics, Maastricht It is therefore not unexpected that a mutation, deletion and the presence or absence of additional clinical fea- University Medical Centre. Universiteitssingel 50, or rearrangement affecting any one of the genes encod- tures. For this reason, severe ID is mostly sporadic, 6229 ER Maastricht, ing these proteins can have severe consequences for whereas milder forms of ID can occur in families and The Netherlands. brain development or cognitive functioning. Indeed, spread through the population. This difference in fit- Correspondence to J.A.V. family and population studies of intelligence show a ness effects will impact the genetic architecture under- e-mail: joris.veltman@ high heritability, but no reliable literature exists on the lying these different forms of ID. Indeed, genomic radboudumc.nl doi:10.1038/nrg3999 heritability of ID itself. ID has become the most fre- microarray studies have revealed a strong relationship Published online quent reason for referral to paediatric genetic services. between the number of genes affected by rare copy 27 October 2015 Unfortunately, the clinical heterogeneity of ID is reflected number variants (CNVs) and the severity of the ID3. In NATURE REVIEWS | GENETICS ADVANCE ONLINE PUBLICATION | 1 © 2015 Macmillan Publishers Limited. All rights reserved REVIEWS addition, dominantly acting rare de novo mutations have Smith–Magenis syndrome, Miller–Dieker syndrome and recently been shown to be a major cause of severe ID DiGeorge syndrome23. The introduction of genomic and associated developmental disorders4–10. By contrast, microarrays allowed the genome-wide detection of more common and complex forms of inheritance are CNVs at finer resolution than was possible using the 24 Clinical heterogeneity expected to underlie the milder forms of ID. At present, light microscope . Pioneering microarray studies in The phenomenon by which the however, much less is known about the genetics under- ID showed that these CNVs occurred de novo in the same (genetic) disease can lying these mild forms of ID. The genetics of ID also germline of ~10% of patients25–28. Although these have differences in clinical differs markedly in countries with a high frequency CNVs occurred all over the genome, numerous recur- manifestation. of consanguinity, owing to a more prominent role for rent de novo CNVs have now been identified in ID as 11 23 Genetic heterogeneity recessive inheritance (see REF. 12 for a recent review). autosomal-dominant causes . Detailed clinical and The phenomenon by which In this Review, we highlight the insights obtained genetic characterization of these patients has resulted mutations in different genes from recent studies on the role of genetics in ID and in the description of many new ID syndromes, pro- can cause a similar phenotype. its impact on diagnosis, prognosis and therapy. We vided insights into the genomic architecture under- Next-generation sequencing mainly focus on the genetic aspects of ID and do not lying these genomic disorders and revealed many (NGS). A collective term extensively discuss the clinical aspects of ID (for cover- causative dosage-sensitive genes located in these CNV to describe the modern age of this topic, see REF. 13). First, we provide a brief regions29–31. Because of their superior resolution and high-throughput sequencing historical overview of genomic approaches developed to diagnostic yield, genomic microarrays rapidly replaced technologies in the G‑banded karyotyping 32 post-Sanger sequencing era. study ID. Next, we discuss results from recent genomic as the first-tier test for ID . In studies, with a focus on both dominant de novo muta- spite of these successes, the number of autosomal- Diagnostic yield tions, as well recessive forms of inheritance. In addition, dominant ID genes is still small relative to the number The percentage of patients we describe overlap with related disorders, such as ASD of X‑linked ID genes. who receive a conclusive and epilepsy, as well as ID gene networks and pathways In the meantime, over 300 genes have been identi- molecular diagnosis for their disease. in which linked genes act in concert. Finally, we outline fied for autosomal-recessive forms of ID, mostly by the future of ID research and emerging approaches for homozygosity mapping using single nucleotide polymor- Copy number variants therapy. phism (SNP) microarrays and subsequent follow‑up (CNVs). Insertions or deletions of candidate genes by Sanger sequencing. This num- larger than 1,000 nucleotides A brief historical overview in size. ber may be slightly inflated, as more than 97% of these Historically, genetic diagnosis of ID started under the genes have a role in recessive disorders that include ID De novo mutations microscope with the identification of trisomy 21 as the as one of their main features. In fact, very few recessively Genetic alterations that are cause of Down syndrome14 and a marker chromosome X inherited genes have been identified that only cause an present for the first time in one for fragile X syndrome15. Because of these discoveries and ID phenotype (known as isolated ID)12,33. family member as a result of a mutation in the germ cell of the widespread introduction of cytogenetic banding Overall, over 700 genes have now been identi- one of the parents, or in the technologies, chromosomal abnormalities were soon fied across studies of X‑linked, autosomal-dominant fertilized egg itself. recognized as a common cause of ID, explaining up to and autosomal-recessive ID, which can be used for 15% of cases16,17, and Down syndrome was recognized as the molecular diagnosis of both isolated ID and Down syndrome FIG. 1 The first recognized and most the most frequent genetic form of ID. In 1991, expansion ID‑associated disorders ( ; see Supplementary common form of a human of a CGG repeat in the fragile X mental retardation 1 information S1 (table)). aneuploidy syndrome, (FMR1) gene was identified as the cause of fragile X consisting of trisomy of syndrome18,19, with an estimated frequency of 1 in 5,000 From genes to genomes chromosome 21 and males and accounting for ~0.5% of ID20.
Recommended publications
  • Abstracts from the 51St European Society of Human Genetics Conference: Electronic Posters
    European Journal of Human Genetics (2019) 27:870–1041 https://doi.org/10.1038/s41431-019-0408-3 MEETING ABSTRACTS Abstracts from the 51st European Society of Human Genetics Conference: Electronic Posters © European Society of Human Genetics 2019 June 16–19, 2018, Fiera Milano Congressi, Milan Italy Sponsorship: Publication of this supplement was sponsored by the European Society of Human Genetics. All content was reviewed and approved by the ESHG Scientific Programme Committee, which held full responsibility for the abstract selections. Disclosure Information: In order to help readers form their own judgments of potential bias in published abstracts, authors are asked to declare any competing financial interests. Contributions of up to EUR 10 000.- (Ten thousand Euros, or equivalent value in kind) per year per company are considered "Modest". Contributions above EUR 10 000.- per year are considered "Significant". 1234567890();,: 1234567890();,: E-P01 Reproductive Genetics/Prenatal Genetics then compared this data to de novo cases where research based PO studies were completed (N=57) in NY. E-P01.01 Results: MFSIQ (66.4) for familial deletions was Parent of origin in familial 22q11.2 deletions impacts full statistically lower (p = .01) than for de novo deletions scale intelligence quotient scores (N=399, MFSIQ=76.2). MFSIQ for children with mater- nally inherited deletions (63.7) was statistically lower D. E. McGinn1,2, M. Unolt3,4, T. B. Crowley1, B. S. Emanuel1,5, (p = .03) than for paternally inherited deletions (72.0). As E. H. Zackai1,5, E. Moss1, B. Morrow6, B. Nowakowska7,J. compared with the NY cohort where the MFSIQ for Vermeesch8, A.
    [Show full text]
  • P31-33 G Case 2 PACS1.P65
    HK J Paediatr (new series) 2021;26:31-33 Case Report A New Case - Heterozygote PACS1 Mutation in a Patient with Schuurs-Hoeijmakers Syndrome and a Left Duplex Kidney: Case Report B DILBER, E ARSLAN ACAR, AH CEBI, A CANSU Abstract PACS1 is a rare form of monogenic disorder characterised by intellectual disability, developmental delay, and mild distinctive facial features. The typical facial features include a low hairline on the forehead, eyes that are spaced far apart and slanting downwards, thick eyebrows that may be connected to each other, long eyelashes, large ears that are set low on the head, and gaps between the teeth. Diagnosis is made through a genetic analysis, particularly by whole exome sequencing. Although renal abnormalities are rarely seen in such patients, we present an atypical case of a 33-month-old girl with a left duplex kidney. Key words Down-like face; Duplex kidney; PACS1; Typical facial features Introduction PACS1-associated symptoms were described by Gadzicki et al.2 PACS1 gene is found on the long arm of the chromosome The only known cause of Schuurs-Hoeijmakers 11 (11q13.1-13.2). The mutations showing autosomal syndrome is the PACS1 mutation. Typical manifestations dominant inheritance in this gene are known to cause of this syndrome include intellectual disability, Schuurs-Hoeijmakers syndrome. For the first time, Schuurs- characteristic facial features such as a mouth with down- Hoeijmakers et al diagnosed PACS1 as a de novo mutation turned corners, seizures, and cerebral abnormalities. A de in two boys who had similar findings and no cognation. novo c.607C>T (p.R203W) mutation is typically seen in The findings included similar typical facial appearance, PACS1.
    [Show full text]
  • Rare Variants in the Genetic Background Modulate the Expressivity of Neurodevelopmental Disorders
    bioRxiv preprint doi: https://doi.org/10.1101/257758; this version posted April 18, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Rare variants in the genetic background modulate the expressivity of neurodevelopmental disorders Short title: The rare genetic background and expressivity of neurodevelopmental disorders Lucilla Pizzo, MS1, Matthew Jensen, BA1, Andrew Polyak, BS1,2, Jill A. Rosenfeld, MS3, Katrin Mannik, PhD4,5 Arjun Krishnan, PhD6,7, Elizabeth McCready, PhD8, Olivier Pichon, MD9, Cedric Le Caignec, MD, PhD 9,10, Anke Van Dijck, MD11, Kate Pope, MS12, Els Voorhoeve, PhD13, Jieun Yoon, BS1, Paweł Stankiewicz MD, PhD3, Sau Wai Cheung, PhD3, Damian Pazuchanics, BS1, Emily Huber, BS1, Vijay Kumar, MAS1, Rachel Kember, PhD14, Francesca Mari, MD, PhD15,16, Aurora Curró, PhD15,16, Lucia Castiglia, MD17, Ornella Galesi, MD17, Emanuela Avola, MD17, Teresa Mattina, MD18, Marco Fichera, MD18, Luana Mandarà, MD19, Marie Vincent, MD9, Mathilde Nizon, MD9, Sandra Mercier, MD9, Claire Bénéteau, MD9, Sophie Blesson, MD20, Dominique Martin-Coignard, MD21, Anne-Laure Mosca-Boidron, MD22, Jean-Hubert Caberg, PhD23, Maja Bucan, PhD14, Susan Zeesman, MD24, Małgorzata J.M. Nowaczyk, MD24, Mathilde Lefebvre, MD25, Laurence Faivre, MD26, Patrick Callier, MD22, Cindy Skinner, RN27, Boris Keren, MD28, Charles Perrine, MD28, Paolo Prontera, MD29, Nathalie Marle, MD22, Alessandra Renieri, MD, PhD15,16, Alexandre Reymond, PhD4, R. Frank Kooy, PhD11, Bertrand Isidor, MD, PhD9, Charles Schwartz, PhD27, Corrado Romano, MD17, Erik Sistermans, PhD13, David J.
    [Show full text]
  • Rare Variants in the Genetic Background Modulate the Expressivity of Neurodevelopmental Disorders
    bioRxiv preprint doi: https://doi.org/10.1101/257758; this version posted February 1, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Rare variants in the genetic background modulate the expressivity of neurodevelopmental disorders Lucilla Pizzo1, Matthew Jensen1, Andrew Polyak1,2, Jill A. Rosenfeld3, Katrin Mannik4,5 Arjun Krishnan6,7, Elizabeth McCready8, Olivier Pichon9, Cedric Le Caignec9,10, Anke Van Dijck11, Kate Pope12, Els Voorhoeve13, Jieun Yoon1, Paweł Stankiewicz3, Sau Wai Cheung3, Damian Pazuchanics1, Emily Huber1, Vijay Kumar1, Rachel Kember14, Francesca Mari15,16, Aurora Curró15,16, Lucia Castiglia17, Ornella Galesi17, Emanuela Avola17, Teresa Mattina18, Marco Fichera18, Luana Mandarà19, Marie Vincent9, Mathilde Nizon9, Sandra Mercier9, Claire Bénéteau9, Sophie Blesson20, Dominique Martin-Coignard21, Anne-Laure Mosca-Boidron22, Jean-Hubert Caberg23, Maja Bucan14, Susan Zeesman24, Małgorzata J.M. Nowaczyk24, Mathilde Lefebvre25, Laurence Faivre26, Patrick Callier22, Cindy Skinner27, Boris Keren28, Charles Perrine28, Paolo Prontera29, Nathalie Marle22, Alessandra Renieri15,16, Alexandre Reymond4, R. Frank Kooy11, Bertrand Isidor9, Charles Schwartz27, Corrado Romano17, Erik Sistermans13, David J. Amor12, Joris Andrieux30, and Santhosh Girirajan1,* 1. Department of Biochemistry and Molecular Biology. The Pennsylvania State University, University Park, Pennsylvania, USA. 2. St. Georges University School of Medicine, Grenada. 3. Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, USA. 4. Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland. 5. Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia. 6. Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, Michigan, USA.
    [Show full text]
  • Transcriptomic Imputation of Bipolar Disorder and Bipolar Subtypes Reveals 29 Novel Associated 2 Genes 3 4 Laura M
    bioRxiv preprint doi: https://doi.org/10.1101/222786; this version posted November 21, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Transcriptomic Imputation of Bipolar Disorder and Bipolar subtypes reveals 29 novel associated 2 genes 3 4 Laura M. Huckins1,2,3,4,5, Amanda Dobbyn1,2,5, Whitney McFadden1,2,3, Weiqing Wang1,2, Douglas 5 M. Ruderfer6, Gabriel Hoffman1,2,4, Veera Rajagopal7, Hoang T. Nguyen1,2, Panos Roussos1,2, 6 Menachem Fromer1,2, Robin Kramer8, Enrico Domenci9, Eric Gamazon6,10, CommonMind 7 Consortium, the Bipolar Disorder Working Group of the Psychiatric Genomics Consortium, 8 iPSYCH Consortium, Ditte Demontis7, Anders Børglum7, Bernie Devlin11, Solveig K. Sieberts12, 9 Nancy Cox6,10, Hae Kyung Im10, Pamela Sklar1,2,3,4, Eli A. Stahl1,2,3,4 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 1 bioRxiv preprint doi: https://doi.org/10.1101/222786; this version posted November 21, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 40 Author Affiliations: 41 1. Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, NYC, NY; 42 2.
    [Show full text]
  • Recurrent De Novo Mutations in Neurodevelopmental Disorders: Properties and Clinical Implications Amy B
    Wilfert et al. Genome Medicine (2017) 9:101 DOI 10.1186/s13073-017-0498-x REVIEW Open Access Recurrent de novo mutations in neurodevelopmental disorders: properties and clinical implications Amy B. Wilfert1†, Arvis Sulovari1†, Tychele N. Turner1, Bradley P. Coe1 and Evan E. Eichler1,2* Abstract Next-generation sequencing (NGS) is now more accessible to clinicians and researchers. As a result, our understanding of the genetics of neurodevelopmental disorders (NDDs) has rapidly advanced over the past few years. NGS has led to the discovery of new NDD genes with an excess of recurrent de novo mutations (DNMs) when compared to controls. Development of large-scale databases of normal and disease variation has given rise to metrics exploring the relative tolerance of individual genes to human mutation. Genetic etiology and diagnosis rates have improved, which have led to the discovery of new pathways and tissue types relevant to NDDs. In this review, we highlight several key findings based on the discovery of recurrent DNMs ranging from copy number variants to point mutations. We explore biases and patterns of DNM enrichment and the role of mosaicism and secondary mutations in variable expressivity. We discuss the benefit of whole-genome sequencing (WGS) over whole-exome sequencing (WES) to understand more complex, multifactorial cases of NDD and explain how this improved understanding aids diagnosis and management of these disorders. Comprehensive assessment of the DNM landscape across the genome using WGS and other technologies will lead to the development of novel functional and bioinformatics approaches to interpret DNMs and drive new insights into NDD biology.
    [Show full text]
  • Schuurs–Hoeijmakers Syndrome (PACS1 Neurodevelopmental Disorder): Seven Novel Patients and a Review
    G C A T T A C G G C A T genes Article Schuurs–Hoeijmakers Syndrome (PACS1 Neurodevelopmental Disorder): Seven Novel Patients and a Review Jair Tenorio-Castaño 1,2,3,4, Beatriz Morte 1,3,†, Julián Nevado 1,3,4,6 ,Víctor Martinez-Glez 1,4,6,7 , Fernando Santos-Simarro 1,3,4,7, Sixto García-Miñaúr 1,4,7, María Palomares-Bralo 1,3,4,6, Marta Pacio-Míguez 1,3,4,6, Beatriz Gómez 1,3, Pedro Arias 1,2, Alba Alcochea 8, Juan Carrión 8, Patricia Arias 8, Berta Almoguera 1,3,9, Fermina López-Grondona 3,9, Isabel Lorda-Sanchez 1,9, Enrique Galán-Gómez 10, Irene Valenzuela 4,11 , María Pilar Méndez Perez 12, Ivón Cuscó 11, Francisco Barros 1,13, Juan Pié 1,14 , Sergio Ramos 1,2, Feliciano J. Ramos 1,14,† , Alma Kuechler 15, Eduardo Tizzano 4,11, Carmen Ayuso 1,3,9 , Frank J. Kaiser 15,16, Luis A. Pérez-Jurado 1,5,† , Ángel Carracedo 1,13,17 , The ENoD-CIBERER Consortium †, The SIDE Consortium 3 and Pablo Lapunzina 1,2,3,4,7,*,† 1 CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Melchor Fernández Almagro 3, 28029 Madrid, Spain; [email protected] (J.T.-C.); [email protected] (B.M.); [email protected] (J.N.); [email protected] (V.M.-G.); [email protected] (F.S.-S.); [email protected] (S.G.-M.); [email protected] (M.P.-B.); [email protected] (M.P.-M.); [email protected] (B.G.); [email protected] (P.A.); [email protected] (B.A.); [email protected] (I.L.-S.); [email protected] (F.B.); [email protected] (J.P.); [email protected] (S.R.); [email protected]
    [Show full text]
  • The Promise of Whole-Exome Sequencing in Medical Genetics
    Journal of Human Genetics (2014) 59, 5–15 & 2014 The Japan Society of Human Genetics All rights reserved 1434-5161/14 www.nature.com/jhg REVIEW The promise of whole-exome sequencing in medical genetics Bahareh Rabbani1, Mustafa Tekin2 and Nejat Mahdieh3 Massively parallel DNA-sequencing systems provide sequence of huge numbers of different DNA strands at once. These technologies are revolutionizing our understanding in medical genetics, accelerating health-improvement projects, and ushering to a fully understood personalized medicine in near future. Whole-exome sequencing (WES) is application of the next-generation technology to determine the variations of all coding regions, or exons, of known genes. WES provides coverage of more than 95% of the exons, which contains 85% of disease-causing mutations in Mendelian disorders and many disease-predisposing SNPs throughout the genome. The role of more than 150 genes has been distinguished by means of WES, and this statistics is quickly growing. In this review, the impacts of WES in medical genetics as well as its consequences leading to improve health care are summarized. Journal of Human Genetics (2014) 59, 5–15; doi:10.1038/jhg.2013.114; published online 7 November 2013 Keywords: cancer; common disease; medical genomics; Mendelian disorder; whole-exome sequencing INTRODUCTION VALUE OF WES IN MEDICINE DNA sequencing is one of the main concerns of medical research Human genome comprises B3 Â 109 bases having coding and nowadays. Union of chain termination sequencing by Sanger et al.1 noncoding sequences. About 3 Â 107 base pairs (1%) (30 Mb) of and the polymerase chain reaction (PCR) by Mullis et al.2 established the genome are the coding sequences.
    [Show full text]
  • PACS1 Related Syndrome
    PACS1 related syndrome (Schuurs- Hoeijmakers syndrome) rarechromo.org What is PACS1 related syndrome? How is it caused? PACS1 related syndrome is a recently discovered rare genetic condition whose hallmarks are developmental delay/intellectual disability and a specific facial appearance which is subtle but recognisable. It can be accompanied by various congenital (found at birth) abnormalities. The first two individuals with the PACS1 related syndrome were reported in the medical literature in 2012, and are from the Netherlands and Belgium. When this guide was written, almost 20 people had been described in the medical literature from countries around the world. About 10 more people were known but had not been formally reported; their parents are active on the PACS1 Facebook group [see back page]. There will be many more individuals in whom the syndrome has not yet been recognised. PACS1 related syndrome occurs when there is a specific change in the DNA code of the PACS1 gene. This specific change is called c.607C>T (NM_018026.3). DNA consists of four building blocks: A (adenine), C (cytosine), G (guanine), T (thymine). At building block 607 of the PACS1 gene, a cytosine is changed to a thymine. Research is ongoing to establish if other DNA changes in the PACS1 gene give the same disorder, or if they cause a different disorder, or perhaps no disorder at all. Genes are instructions for the cells of our body, which have important roles in our growth and development. They are made of DNA and are incorporated along with many other genes into organised structures called chromosomes.
    [Show full text]
  • Investigating Developmental and Epileptic Encephalopathy Using Drosophila Melanogaster
    International Journal of Molecular Sciences Review Investigating Developmental and Epileptic Encephalopathy Using Drosophila melanogaster Akari Takai 1 , Masamitsu Yamaguchi 2,3, Hideki Yoshida 2 and Tomohiro Chiyonobu 1,* 1 Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; [email protected] 2 Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 603-8585, Japan; [email protected] (M.Y.); [email protected] (H.Y.) 3 Kansai Gakken Laboratory, Kankyo Eisei Yakuhin Co. Ltd., Kyoto 619-0237, Japan * Correspondence: [email protected] Received: 15 August 2020; Accepted: 1 September 2020; Published: 3 September 2020 Abstract: Developmental and epileptic encephalopathies (DEEs) are the spectrum of severe epilepsies characterized by early-onset, refractory seizures occurring in the context of developmental regression or plateauing. Early infantile epileptic encephalopathy (EIEE) is one of the earliest forms of DEE, manifesting as frequent epileptic spasms and characteristic electroencephalogram findings in early infancy. In recent years, next-generation sequencing approaches have identified a number of monogenic determinants underlying DEE. In the case of EIEE, 85 genes have been registered in Online Mendelian Inheritance in Man as causative genes. Model organisms are indispensable tools for understanding the in vivo roles of the newly identified causative genes. In this review, we first present an overview of epilepsy and its genetic etiology, especially focusing on EIEE and then briefly summarize epilepsy research using animal and patient-derived induced pluripotent stem cell (iPSC) models. The Drosophila model, which is characterized by easy gene manipulation, a short generation time, low cost and fewer ethical restrictions when designing experiments, is optimal for understanding the genetics of DEE.
    [Show full text]
  • Heterozygote PACS1 Mutation in Schuurs-Hoeijmakers Syndrome
    ndrom Sy es tic & e G n e e n G e f T o h l e a Journal of Genetic Syndromes and Gene r n a r p u y o J ISSN: 2157-7412 Therapy Editorial note Heterozygote PACS1 Mutation in Schuurs-Hoeijmakers Syndrome Dilber B* Karadeniz Technical University, Department of Pediatric Neurology, Turkey EDITORIAL NOTE experienced in their families and for future follow-up. We present the first description of PACS1 mutation in Turkey. PACS1 gene is found on the long arm of the 11th chromosome (11q13.1-13.2). Mutations showing autosomal dominant Cranial nerve migration anomalies resulted from replacement of inheritance in this gene cause Schuurs-Hoeijmakers syndrome. arginine by tryptophane in furin binding region are thought to For the first time, Schuurs-Hoeijmakers et al. diagnosed PACS1 play a role in the etiopathogenesis of PACS1, and similar facial with de novo mutation because of similar findings in two boys findings are explained by zebrafish method. In our case, who had no cognation. These boys had findings such as similar although there were difficulties in the differential diagnosis, typical facial appearance, intellectual and motor retardation, and because of the characteristic facial findings that were compatible cryptorchidism. De novo c.607C>T mutation was detected in with Baraitser Winter syndrome, Cornelia de Lange syndrome, both boys, and clinical pictures were overlapped. Later, three Mowat-Wilson syndrome, and Kabuki syndrome; we found that further patients with similar findings were described by Gadzicki differences and similarities were slightly different and confirmed et al. in 2014, PACS1 associated symptoms were introduced with the diagnosis with WES.
    [Show full text]
  • Table S1. 103 Ferroptosis-Related Genes Retrieved from the Genecards
    Table S1. 103 ferroptosis-related genes retrieved from the GeneCards. Gene Symbol Description Category GPX4 Glutathione Peroxidase 4 Protein Coding AIFM2 Apoptosis Inducing Factor Mitochondria Associated 2 Protein Coding TP53 Tumor Protein P53 Protein Coding ACSL4 Acyl-CoA Synthetase Long Chain Family Member 4 Protein Coding SLC7A11 Solute Carrier Family 7 Member 11 Protein Coding VDAC2 Voltage Dependent Anion Channel 2 Protein Coding VDAC3 Voltage Dependent Anion Channel 3 Protein Coding ATG5 Autophagy Related 5 Protein Coding ATG7 Autophagy Related 7 Protein Coding NCOA4 Nuclear Receptor Coactivator 4 Protein Coding HMOX1 Heme Oxygenase 1 Protein Coding SLC3A2 Solute Carrier Family 3 Member 2 Protein Coding ALOX15 Arachidonate 15-Lipoxygenase Protein Coding BECN1 Beclin 1 Protein Coding PRKAA1 Protein Kinase AMP-Activated Catalytic Subunit Alpha 1 Protein Coding SAT1 Spermidine/Spermine N1-Acetyltransferase 1 Protein Coding NF2 Neurofibromin 2 Protein Coding YAP1 Yes1 Associated Transcriptional Regulator Protein Coding FTH1 Ferritin Heavy Chain 1 Protein Coding TF Transferrin Protein Coding TFRC Transferrin Receptor Protein Coding FTL Ferritin Light Chain Protein Coding CYBB Cytochrome B-245 Beta Chain Protein Coding GSS Glutathione Synthetase Protein Coding CP Ceruloplasmin Protein Coding PRNP Prion Protein Protein Coding SLC11A2 Solute Carrier Family 11 Member 2 Protein Coding SLC40A1 Solute Carrier Family 40 Member 1 Protein Coding STEAP3 STEAP3 Metalloreductase Protein Coding ACSL1 Acyl-CoA Synthetase Long Chain Family Member 1 Protein
    [Show full text]