Clyde E. Goulden, Ph.D

Total Page:16

File Type:pdf, Size:1020Kb

Clyde E. Goulden, Ph.D 1 Clyde E. Goulden, Ph.D. Personal Information Address: Director, Asia Center Director, Institute for Mongolian Biodiversity and Ecological Studies Academy of Natural Sciences 1900 Benjamin Franklin Parkway Philadelphia, PA 19103-1195 Hövsgöl ILTER Network Site Ecology Department National University of Mongolia c/o Bazartseren Boldgiv Ulaanbaatar, Mongolia Telephone: (610) 329-5916 (Philadelphia, USA) Fax: (215) 299-1028 E-Mail: [email protected] Web Page: http://asia.ansp.org Place of Birth: Kansas City, Kansas Present Positions: Director, Asia Center Director, Institute for Mongolian Biodiversity and Ecological Studies (IMBES), Patrick Center, Academy of Natural Sciences of Philadelphia International Consultant (2002-2006), Mongolian Academy of Sciences, Hövsgöl_GEF (Global Environment Facility) Targeted Research Project. Implemented by The World Bank. Site Manager, Lake Hovsgol International Long Term Ecological Research site, Mongolia. Honorary Professor, Ulaanbaatar University, Mongolia, 2000. Honorary Professor of Life Sciences, The National University of Mongolia 2002- Present. 1 2 Education: B.S., Biology, 1958. Kansas State Teachers College, Emporia. M.S., Biology, 1959. Kansas State Teachers College, Emporia. Ph.D., Zoology, 1962. Indiana University, Bloomington (Ph.D. Advisor David G. Frey). Post-Doctoral Research Fellow, Biology, 1962-1965; Yale University (Advisor G. Evelyn Hutchinson). Additional Study: Exchange Scientist, 1966, National Academy of Sciences of the U.S.A. and the Academy of Sciences of U.S.S.R.: four months at Zoological Institute, Leningrad, and four months at the Institute of Inland Water Biology at Borok, Yaroslavl Oblast, USSR, with brief study at Lake Baikal. Research Interests and Activities Research: Interaction between human activity and climate change impacts on ecosystems and nomadic pastoralism in Asia Biodiversity and Ecological Conservation, Environmental Protection and Capacity Building in Developing Countries. Prior Research: Paleoecology, Population Dynamics of Plankton, Role of Lipid Energy Reserves in freshwater zooplankton, Toxicology Prior Professional Experience Curator, Patrick Center, Division of Environmental Research, Academy of Natural Sciences of Philadelphia. 1981-2007. Associate Curator, Division of Limnology and Ecology, Academy of Natural Sciences of Philadelphia. 1977-1981 Adjunct Professor, Department of Biology, University Pennsylvania, Philadelphia; courses in Limnology. 1966-2002. Adjunct Professor, Environmental Studies, Drexel University, Philadelphia. 1999-2002. Director (Vice President), Division of Limnology and Ecology, Academy of Natural Sciences of Philadelphia. September 1973-December 1977. Scientific Director (Vice President for Research), 1972-1973, Academy of Natural Sciences of Philadelphia. Associate Curator, 1966-1972, Limnology Department, Academy of Natural 2 3 Sciences of Philadelphia. Assistant Professor, 1964-1965, Yale University, New Haven, Connecticut. Research Associate in Biology, 1962-1964, Yale University, New Haven, Connecticut. Paleoecology studies in collaboration with Prof. G. Evelyn Hutchinson. Research Assistant, 1959-1961: Indiana University, Bloomington, Indiana. Study of animal microfossils in lake sediments in collaboration with Dr. David G. Frey. Research Assistant, 1957-1959: Verdigris and Fall Rivers, Kansas Stream Project. Study of seasonal variation of plankton entomostraca and chemistry of stream waters. Professional Responsibilities Ecological Society of America Editor: Aquatics Section, Ecology, 1972-1974. Society for the Study of Evolution. Associate Editor: Evolution, 1970-1975. National Science Foundation Population Biology Review Panel, 1989-1991. Environmental Protection Agency Panel for review of proposals for Office of Exploratory Research, 1989-1995. Steering Committee, Mongolian International Long Term Ecological Research Network (MLTER). 1996-2011. Steering Committee, East Asian International Long Term Ecological Research Network (ILTER), 1996-2003. Eisenhower Exchange Fellows Selection Committee, Embassy of U.S. in Mongolia, 1999-2003. Editorial Board, Journal of Mongolian Biology. 2002-2003. Steering Committee, American Center for Mongolian Studies. 2002-2003; Treasurer. World Heritage Nomination for Lake Hovsgol; Mongolian UNESCO Office. 2000-2005. 3 4 Committee of Visitors, OISE, National Science Foundation, 2008. Advisory Board, PISA, University of Pennsylvania, 2011- Educational Training Experience Yale University Biology of Invertebrates University of Pennsylvania Population Biology (Fall 1967, 1968) Physical and Chemical Limnology Biological Limnology (Spring 1968-1974) Aquatic Communities (Fall 1979-1985) Limnology (Fall 1985-2000) Aquatic Ecology (Fall 2001) Ph.D. Students (after 1980) Alan Tessier Research Advisor MS degree 15 students from University of Pennsylvania, Drexel University and other Philadelphia Institutes 25 students Mongolian Universities Post Doctoral (after 1980) Daniel Kreeger Elizabeth Walsh International Students (1995-2003) B. Boldgiv (Mongolia) N. Soninkhuishig (Mongolia) Training of 23 young Mongolian Researchers for Hövsgöl Project funded by Global Environment Facility (2002-2007) Research Colleagues in ILTER and IMBES Bazartseren Boldgiv, University of Pennsylvania, USA Bernd Etzelmuller, University of Oslo, Norway 4 5 Jon Gelhaus, Academy of Natural Sciences, Philadelphia, USA Barbara Hayford, Wayne State College, Nebraska, USA Eva Flo Heggem, University of Oslo, Norway W. Cully Hession, University of Vermont, USA Sergey Krivonogov, Russian Academy of Sciences, Novosibirsk Michio Kumagai, Lake Biwa Hydrobiological Station, Japan John Morse, Clemson University, USA Paul Schaefer, USDA Peter Petraitis, University of Pennsylvania, USA Eugene Potapov, Falcon Project, Mongolia and China Vlad Romanovsky, University of Alaska, Fairbanks, USA N. Sharkhuu, Geography Institute, MAS, Mongolia T. Galbaatar, President, Mongolian Academy of Sciences Tatiana Sitnikova, Limnological Institute, Russian Academy of Sciences, Irkutsk N. Soninkhuishig, National University of Mongolia, Mongolia J. Tsogtbaatar, Geoecology Institute, MAS, Mongolia Grants Received American Philosophical Society and Society of Sigma Xi grants to visit museums in Oslo, London, Hamburg, East Berlin, Budapest, and Rome; May and June 1964 ($1200). National Science Foundation Travel Grant to attend Society of Limnology meetings in Warsaw, Poland; August 1968 ($600). National Science Foundation Travel Grant to attend International Symposium on Paleolimnology held in Tihany, Hungary; August 1967 ($500) National Science Foundation Research Grant, "Diversity and Ecological Niches in Multi-Species Associations of Chydorid Cladocera (Crustacea)"; 1967-1969 ($40,000). National Science Foundation Research Grant, "Effects of Fluctuating Environments on Seasonal Diversity Patterns of Chydorid Cladocera"; 1969-1971 ($50,000). National Science Foundation Research Grant, "Effects of Midge Predation on Abundance and Diversity of Chydorid Cladocera"; 1971-1973 ($50,000). National Science Foundation Research Grant, "Consequences of Life History Characteristics in Plankton Cladoceran Associations"; 1976-1978 ($80,000). National Science Foundation Grant to edit "Changing Scenes in the Natural Sciences, 5 6 1776 - 1976," proceedings of a bicentennial symposium held at the Academy of Natural Sciences of Philadelphia; 1976-1977 ($9,000). Catherwood Foundation Grant, "Scientific Studies in the Altiplano of Bolivia and Peru, South America," 1977 ($11,000). National Science Foundation Grant, "Competition and Predation in Zooplankton Assemblages," 1979-1980 ($65,000). National Science Foundation Facilities Grant, "A Multi-user Equipment Proposal for the Purchase of a Liquid Scintillation Counter," 1980 ($18,000). Environmental Associates Grant-in-Aid-of-Applied Research, "Nutrition of Daphnia magna," 1979 ($10,000). Environmental Protection Agency and Battelle Columbus Laboratories Grant, "Nutrition of Daphnia Used in Bioassay Studies" 1979-1980 ($50,000). Environmental Protection Agency and Battelle Columbus Laboratories Grant Extension, "Nutrition of Daphnia Used in Bioassay Studies," 1980-1981 ($90,000). National Science Foundation Grant in Aid of Thesis Research for Alan Tessier, 1980-1981. Kleberg Foundation Grant. "The Effect of Water Hardness on Sensitivity to Stress in Daphnia," 1980-1982 ($90,000). Explorers Club Travel Grant, "Biological Studies in the High Himalaya," 1983 ($500). National Science Foundation Grant, "Biological Studies in the High Himalaya" with R. Horwitz, 1983 ($15,000). Mellon Foundation Grant, "Paleolimnological Evidence for Acid Rain Effect" with Dr. John Sherman (ANSP), 1983-1984 ($200,000). National Science Foundation Grant, "Lipid Energy Reserves and Their Role in Survival and Competitive Ability Among Planktonic Cladocera," 1983-1985 ($80,000). National Science Foundation Grant, "Energy Allocation in Natural Populations of Daphnia" A.J. Tessier Principal Investigator, 1983-1985. National Science Foundation Grant, "Nutritional Limitation in zooplankton (Lipids, 6 7 N,P) and their Implication for the Biological Structure of Lakes" with R. Moeller 1987-1989 ($200,000). Environmental Associates Grant, "Detoxification enzymes in aquatic animals and their use as an assay of toxicity effects in aquatic habitats ($24,000). National Science Foundation Grant, "Future directions in zooplankton population biology" with A.J. Tessier (P.I.), 1989-1990 ($37,000). National Science Foundation Grant, "Dietary deficiencies
Recommended publications
  • Cladocera: Anomopoda: Daphniidae) from the Lower Cretaceous of Australia
    Palaeontologia Electronica palaeo-electronica.org Ephippia belonging to Ceriodaphnia Dana, 1853 (Cladocera: Anomopoda: Daphniidae) from the Lower Cretaceous of Australia Thomas A. Hegna and Alexey A. Kotov ABSTRACT The first fossil ephippia (cladoceran exuvia containing resting eggs) belonging to the extant genus Ceriodaphnia (Anomopoda: Daphniidae) are reported from the Lower Cretaceous (Aptian) freshwater Koonwarra Fossil Bed (Strzelecki Group), South Gippsland, Victoria, Australia. They represent only the second record of (pre-Quater- nary) fossil cladoceran ephippia from Australia (Ceriodaphnia and Simocephalus, both being from Koonwarra). The occurrence of both of these genera is roughly coincident with the first occurrence of these genera elsewhere (i.e., Mongolia). This suggests that the early radiation of daphniid anomopods predates the breakup of Pangaea. In addi- tion, some putative cladoceran body fossils from the same locality are reviewed; though they are consistent with the size and shape of cladocerans, they possess no cladoceran-specific synapomorphies. They are thus regarded as indeterminate diplostracans. Thomas A. Hegna. Department of Geology, Western Illinois University, Macomb, IL 61455, USA. ta- [email protected] Alexey A. Kotov. A.N. Severtsov Institute of Ecology and Evolution, Leninsky Prospect 33, Moscow 119071, Russia and Kazan Federal University, Kremlevskaya Str.18, Kazan 420000, Russia. alexey-a- [email protected] Keywords: Crustacea; Branchiopoda; Cladocera; Anomopoda; Daphniidae; Cretaceous. Submission: 28 March 2016 Acceptance: 22 September 2016 INTRODUCTION tions that the sparse known fossil record does not correlate with a meager past diversity. The rarity of Water fleas (Crustacea: Cladocera) are small, the cladoceran fossils is probably an artifact, a soft-bodied branchiopod crustaceans and are a result of insufficient efforts to find them in known diverse and ubiquitous component of inland and new palaeontological collections (Kotov, aquatic communities (Dumont and Negrea, 2002).
    [Show full text]
  • Water Flea Daphnia Sp. ILLINOIS RANGE
    water flea Daphnia sp. Kingdom: Animalia FEATURES Phylum: Arthropoda Water fleas are compressed side to side. The body Class: Branchiopoda of these microscopic organisms is enclosed in a Order: Cladocera transparent shell that usually has a spine at the end. Four, five or six pairs of swimming legs are present. Family: Daphniidae One pair of antennae is modified for swimming and ILLINOIS STATUS helps to propel the organism through the water. The end of the female’s intestine is curled, while the end common, native of the male’s intestine is straight. Water fleas have a single, compound eye. BEHAVIORS Water fleas can be found throughout Illinois in almost any body of water. They prefer open water. These small arthropods migrate up in the water at night and down in the day, although a few live on the bottom. Water flea populations generally consist only of females in the spring and summer. Reproduction at these times is by parthenogenesis (males not required for eggs to develop). In the fall, males are produced, and they mate with the females. Fertilized eggs are deposited to “rest” on the bottom until hatching in the spring or even many years later. Water fleas eat bacteria and algae. They have a life span of several weeks. ILLINOIS RANGE © Illinois Department of Natural Resources. 2021. Biodiversity of Illinois. Unless otherwise noted, photos and images © Illinois Department of Natural Resources. © Paul Herbert female with eggs Aquatic Habitats bottomland forests; lakes, ponds and reservoirs; Lake Michigan; marshes; peatlands; rivers and streams; swamps; temporary water supplies; wet prairies and fens Woodland Habitats bottomland forests; southern Illinois lowlands Prairie and Edge Habitats none © Illinois Department of Natural Resources.
    [Show full text]
  • Check List the Journal Of
    13 3 the journal of 2144 biodiversity data 17 June 2017 Check List NOTES ON GEOGRAPHIC DISTRIBUTION Check List 13(3): 2144, 17 June 2017 https://doi.org/10.15560/13.3.2144 ISSN 1809-127X © 2017 Check List and Authors First record of Moina dumonti Kotov, Elías-Gutiérrez & Granado- Ramírez, 2005 (Branchiopoda: Anomopoda) in Brazil Daniel da Silva Farias,1, 3 Lourdes Maria Abdu Elmoor-Loureiro2 & Christina Wyss Castelo Branco1 1 Núcleo de Estudos Limnológicos, Universidade Federal do Estado do Rio de Janeiro, Av. Pasteur, 458, IBIO, sala 403, CEP 22290-240, Rio de Janeiro, RJ, Brazil 2 Laboratório de Zoologia, Universidade Católica de Brasília, QS 7 lote 1, Bloco M, sala 331, CEP 71966-700, Taguatinga, DF, Brazil 3 Corresponding author. E-mail: [email protected] Abstract. The cladoceran Moina dumonti Kotov, Elías- of the water surface and has also Lemna minor L. in marginal Gutiérrez & Granado-Ramírez, 2005 (Anomopoda: Moinidae) areas. This waterbody is part of the lagoon system of Jacarep- was found in a hypereutrophic lagoon, Lagoinha, Rio de aguá, which also includes the lagoons of Jacarepaguá, Camor- Janeiro, Brazil. It represents the first record of this species in im, Tijuca and Marapendi (Soares 1999). The lagoon system is Brazil and in the Southern Hemisphere; it also represents the polluted by the inflow of rainwater drainage, untreated sewage, first record of this species in a perennial lagoon. The reasons and wastes from various other sources. The park is known to be for the success of the species in Lagoinha are discussed. a refuge for the wildlife of large aquatic vertebrates, including populations of Capybaras (Hydrochoreus hydrochaeris) and Key words.
    [Show full text]
  • Population Dynamics of <Emphasis Type="Italic">Moina Micrura
    Proc, Indian Acad. Sci. (Anim, Sci.), Vol. 98, No.3, May 1989, pp. 211-222. © Printed in India. Population dynamics of Moina micrurs Kurz (Cladocera: Moinidae) inhabiting a eutrophic pond of Madurai (south India)* N MURUGAN Department of Zoology, Madura College, Madurai 625011. India MS received 13 July 1988; revised 10 March 1989 Abstract. Population density, composition, age structure and fecundity of Moina micrura have been studied in a eutrophic pond. The average clutch size of this species ranged from 1-4-4 eggs. The relationship between mean brood size and body length has been established. The volume of parthenogenetic eggs of this cladoceran ranges between 0·2 and 0·9 millions JL J and the adaptive significance of this has been discussed. The mean instantaneous birth rate which preceded maximum density of population resulted in a value of more than one. Keywords. Moina micrura; population density; composition; age structure; fecundity; egg volume. l. Introduction Moina micrura, a member of the family Moinidae primarily inhabits astatic ponds and pools in tropical and subtropical regions. This species is highly adapted to survive frequent dry periods and propagate rapidly in newly formed ponds. The review of literature on zooplankton species of Moina shows that the information about the population dynamics of M. micrura from tropical Indian waters is far from complete. Hence, an attempt has been made to investigate its population density and composition, fecundity and age structure in natural habitats. 2. Study area The present study was carried out in a seasonal shallow pond (figure 1) located in the Madura College campus at Madurai (Long: 78'8' E; Lat: 9'56' N), south India.
    [Show full text]
  • Cladocera (Crustacea: Branchiopoda) of the South-East of the Korean Peninsula, with Twenty New Records for Korea*
    Zootaxa 3368: 50–90 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2012 · Magnolia Press ISSN 1175-5334 (online edition) Cladocera (Crustacea: Branchiopoda) of the south-east of the Korean Peninsula, with twenty new records for Korea* ALEXEY A. KOTOV1,2, HYUN GI JEONG2 & WONCHOEL LEE2 1 A. N. Severtsov Institute of Ecology and Evolution, Leninsky Prospect 33, Moscow 119071, Russia E-mail: [email protected] 2 Department of Life Science, Hanyang University, Seoul 133-791, Republic of Korea *In: Karanovic, T. & Lee, W. (Eds) (2012) Biodiversity of Invertebrates in Korea. Zootaxa, 3368, 1–304. Abstract We studied the cladocerans from 15 different freshwater bodies in south-east of the Korean Peninsula. Twenty species are first records for Korea, viz. 1. Sida ortiva Korovchinsky, 1979; 2. Pseudosida cf. szalayi (Daday, 1898); 3. Scapholeberis kingi Sars, 1888; 4. Simocephalus congener (Koch, 1841); 5. Moinodaphnia macleayi (King, 1853); 6. Ilyocryptus cune- atus Štifter, 1988; 7. Ilyocryptus cf. raridentatus Smirnov, 1989; 8. Ilyocryptus spinifer Herrick, 1882; 9. Macrothrix pen- nigera Shen, Sung & Chen, 1961; 10. Macrothrix triserialis Brady, 1886; 11. Bosmina (Sinobosmina) fatalis Burckhardt, 1924; 12. Chydorus irinae Smirnov & Sheveleva, 2010; 13. Disparalona ikarus Kotov & Sinev, 2011; 14. Ephemeroporus cf. barroisi (Richard, 1894); 15. Camptocercus uncinatus Smirnov, 1971; 16. Camptocercus vietnamensis Than, 1980; 17. Kurzia (Rostrokurzia) longirostris (Daday, 1898); 18. Leydigia (Neoleydigia) acanthocercoides (Fischer, 1854); 19. Monospilus daedalus Kotov & Sinev, 2011; 20. Nedorchynchotalona chiangi Kotov & Sinev, 2011. Most of them are il- lustrated and briefly redescribed from newly collected material. We also provide illustrations of four taxa previously re- corded from Korea: Sida crystallina (O.F.
    [Show full text]
  • Biology and Conservation of the Unique and Diverse Halophilic Macroinvertebrates of Australian Salt Lakes
    CSIRO PUBLISHING Marine and Freshwater Research Corrigendum https://doi.org/10.1071/MF21088_CO Biology and conservation of the unique and diverse halophilic macroinvertebrates of Australian salt lakes Angus D’Arcy Lawrie, Jennifer Chaplin and Adrian Pinder Marine and Freshwater Research. [Published online 2 July 2021]. https://doi.org/10.1071/MF21088 The authors of the above-mentioned paper regret to inform readers that there were errors published in the systematics of one of the taxa in the manuscript. The list of groups in the Cladocera section (on p. F) was published as below: The bulk of Cladocera that occur in inland waters in Australia are restricted to fresh water, but three groups have representatives in salt lakes. These groups comprise: (1) six species of Daphniopsis (or Daphnia; see below); (2) two species of Daphnia (Daphnia salinifera Hebert and Daphnia neosalinifera Hebert) from the Daphnia carinata (King) subgenus; and (3) three species of chydorid: Moina baylyi Forro´, Moina mongolica Daday and Extremalona timmsi Sinev & Shiel. This text should have been as below (changes underlined): The bulk of Cladocera that occur in inland waters in Australia are restricted to fresh water, but four groups have representatives in salt lakes. These groups comprise: (1) six species of Daphniopsis (or Daphnia; see below); (2) two species of Daphnia (Daphnia salinifera Hebert and Daphnia neosalinifera Hebert) from the Daphnia carinata (King) subgenus; (3) two Moina species (Moina baylyi Forro´ and Moina mongolica Daday); and (4) one species of chydorid (Extremalona timmsi Sinev & Shiel). Furthermore, the title of the Chydorids section should have been titled Moinids and chydorids.
    [Show full text]
  • Taxonomic Atlas of the Water Fleas, “Cladocera” (Class Crustacea) Recorded at the Old Woman Creek National Estuarine Research Reserve and State Nature Preserve, Ohio
    Taxonomic Atlas of the Water Fleas, “Cladocera” (Class Crustacea) Recorded at the Old Woman Creek National Estuarine Research Reserve and State Nature Preserve, Ohio by Jakob A. Boehler, Tamara S. Keller and Kenneth A. Krieger National Center for Water Quality Research Heidelberg University Tiffin, Ohio, USA 44883 January 2012 Taxonomic Atlas of the Water Fleas, “Cladocera” (Class Crustacea) Recorded at the Old Woman Creek National Estuarine Research Reserve and State Nature Preserve, Ohio by Jakob A. Boehler, Tamara S. Keller* and Kenneth A. Krieger Acknowledgements The authors are grateful for the assistance of Dr. David Klarer, Old Woman Creek National Estuarine Research Reserve, for providing funding for this project, directing us to updated taxonomic resources and critically reviewing drafts of this atlas. We also thank Dr. Brenda Hann, Department of Biological Sciences at the University of Manitoba, for her thorough review of the final draft. This work was funded under contract to Heidelberg University by the Ohio Department of Natural Resources. This publication was supported in part by Grant Number H50/CCH524266 from the Centers for Disease Control and Prevention. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of Centers for Disease Control and Prevention. The Old Woman Creek National Estuarine Research Reserve in Ohio is part of the National Estuarine Research Reserve System (NERRS), established by Section 315 of the Coastal Zone Management Act, as amended. Additional information about the system can be obtained from the Estuarine Reserves Division, Office of Ocean and Coastal Resource Management, National Oceanic and Atmospheric Administration, U.S.
    [Show full text]
  • Daphnia As an Emerging Model for Toxicological Genomics Joseph R
    165 Daphnia as an emerging model for toxicological genomics Joseph R. Shaw1,Ã, Michael E. Pfrender2, Brian D. Eads3, Rebecca Klaper4, Amanda Callaghan5, Richard M. Sibly5, Isabelle Colson6, Bastiaan Jansen7, Donald Gilbert3 and John K. Colbourne8 1The School of Public and Environmental Affairs, Bloomington, IN 47405, USA 2Department of Biology, Utah State University, 5305 Old Main Hill Road, Logan, UT 84322, USA 3Department of Biology, Indiana University, Bloomington, IN 47405, USA 4Great Lakes WATER Institute, University of Wisconsin-Milwaukee, 600 East Greenfield Ave, Milwaukee, Wisconsin 53204, USA 5School of Biological Sciences, University of Reading, PO Box 68, Reading RG6 6AJ, UK 6Zoologisches Institut, Universita¨t Basel, Biozentrum/Pharmazentrum, Klingelbergstrasse 50, 4056 Basel, Switzerland 7Laboratory of Aquatic Ecology, Katholieke Universiteit Leuven, Ch. De Beriostraat 32, B-3000, Leuven, Belgium 8The Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN 47405, USA Abstract. Daphnia are already an established model species in toxicology. This freshwater crustacean is used commonly for environmental monitoring of pollutants around the globe and plays an important role in establishing regulatory criteria by government agencies (e.g., US EPA, Environment Canada organization for Economic Cooperation and Development, Environment Agency of Japan). Consequently, daphniids represent 8% of all experimental data for aquatic animals within the toxicological databases (Denslow et al., 2007). As such, their incorporation
    [Show full text]
  • Diversity and Density of Cladoceran Population in Different Types Of
    Journal of Entomology and Zoology Studies 2017; 5(3): 1568-1572 E-ISSN: 2320-7078 P-ISSN: 2349-6800 Diversity and density of cladoceran population in JEZS 2017; 5(3): 1568-1572 © 2017 JEZS different types of water bodies of Ludhiana, Received: 04-03-2017 Accepted: 05-04-2017 Punjab (India) Ankita Thakur Ph.D Scholar, Department of Zoology, Punjab Agricultural Ankita Thakur and Devinder Kaur Kocher University, Ludhiana, Punjab, India Abstract The present study was conducted to record the diversity and density of cladoceran population during the Devinder Kaur Kocher year 2015. Water samples were collected from different types of water bodies viz; village ponds, fish Associate Professor, Department of Zoology, Punjab Agricultural ponds and paddy fields of Ludhiana, Punjab (India). Identification of cladocerans was done on the basis University, Ludhiana, Punjab, of morphological features and their enumeration with the help of Sedgewick-Rafter counting chamber (S- India R cell). Out of the recorded nine species of cladocerans, six were found to belong to family Daphnidae, two to family Moinidae and only one to family Chydoridae. Average percent composition of cladocerans in village ponds showed the distribution pattern with predominance of Daphnidae (51.01%) > Moinidae (48.27%) > Chydoridae (0.68%). In fish ponds Moinidae family was found to be predominant (62.95%) > Daphnidae (34.61%) > chydoridae (1.29%). Paddy fields were represented by Moinidae family only. Keywords: Cladocerans, density, diversity, water bodies 1. Introduction Among aquatic biota, freshwater zooplankton community comprises of protozoans, rotifers, cladocerans, copepods and ostracods. Out of these, cladocera is an ancient group of palaeozoic [6] origin and found in almost all kind of aquatic habitats.
    [Show full text]
  • An Overview of the Contribution of Studies with Cladocerans
    Acta Limnologica Brasiliensia, 2015, 27(2), 145-159 http://dx.doi.org/10.1590/S2179-975X3414 An overview of the contribution of studies with cladocerans to environmental stress research Um panorama da contribuição de estudos com cladóceros para as pesquisas sobre o estresse ambiental Albert Luiz Suhett1, Jayme Magalhães Santangelo2, Reinaldo Luiz Bozelli3, Christian Eugen Wilhem Steinberg4 and Vinicius Fortes Farjalla3 1Unidade Universitária de Biologia, Centro Universitário Estadual da Zona Oeste – UEZO, CEP 23070-200, Rio de Janeiro, RJ, Brazil e-mail: [email protected] 2Departamento de Ciências Ambientais, Instituto de Florestas, Universidade Federal Rural do Rio de Janeiro – UFRRJ, CEP 23890-000, Seropédica, RJ, Brazil e-mail: [email protected] 3Departamento de Ecologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro – UFRJ, CEP 21941-590, Rio de Janeiro, RJ, Brazil e-mail: [email protected]; [email protected] 4Institute of Biology, Faculty of Mathematics and Natural Sciences I, Humboldt Universität zu Berlin, 12437, Berlin, Germany e-mail: [email protected] Abstract: Cladocerans are microcrustaceans component of the zooplankton in a wide array of aquatic ecosystems. These organisms, in particular the genusDaphnia , have been widely used model organisms in studies ranging from biomedical sciences to ecology. Here, we present an overview of the contribution of studies with cladocerans to understanding the consequences at different levels of biological organization of stress induced by environmental factors. We discuss how some characteristics of cladocerans (e.g., small body size, short life cycles, cyclic parthenogenesis) make them convenient models for such studies, with a particular comparison with other major zooplanktonic taxa.
    [Show full text]
  • Classification Scheme of Freshwater Aquatic Organisms Freshwater Keys: Classification
    Compendium of Recommended Keys for British Columbia Freshwater Organisms: Part 3 Classification Scheme of Freshwater Aquatic Organisms Freshwater Keys: Classification Table of Contents TABLE OF CONTENTS.............................................................................................................................. 2 INTRODUCTION......................................................................................................................................... 4 KINGDOM MONERA................................................................................................................................. 5 KINGDOM PROTISTA............................................................................................................................... 5 KINGDOM FUNGI ...................................................................................................................................... 5 KINGDOM PLANTAE ................................................................................................................................ 6 KINGDOM ANIMALIA .............................................................................................................................. 8 SUBKINGDOM PARAZOA ........................................................................................................................ 8 SUBKINGDOM EUMETAZOA.................................................................................................................. 8 2 Freshwater Keys: Classification 3 Freshwater Keys: Classification
    [Show full text]
  • Daphnia Galeata Sars 1864 Mendotae Birge 1918 D
    McNaught and Hasler (1966) were unable to define distinct cladocerans by their distinct rostrum and oval carapace that migration patterns for the Ceriodaphnia populations they usually terminates in an elongated spine. D. galeata men­ observed. dotae is distinguished from other Daphnia by its ocellus broad pointed helmet (Plate 8), and the very fine, uniforn: Feeding Ecology. Ceriodaphnia, like the other members pecten on the postabdominal claw (not visible at 50 x mag­ of the family Daphnidae, are filter feeders (Brooks 1959). nification). Males are distinguished from females by their O'Brien and De Noyelles (1974) determined the filtering elongate first antennae (Plate 9). rate of C. reticulata in several ponds with different levels Head shape is varible (Plate 10), but the peak of the of phytoplankton. McNaught et al. (1980) found that Lake helmet is generally near the midline of the body. Huron Ceriodaphnia species filtered nannoplankton at a rate of 0.270 ml · animal·• · hour" in Lake Huron. SIZE As Food for Fish and Other Organisms. Ceriodaphnia Brooks (1959) reported adult females ranging from 1.3- are eaten by many species of fish including rock bass, large­ 3.0 mm long while males were much smaller, measuring mouth bass, shiners, carp, mosquito fish, yellow perch, only 1.0 mm. ln Lake Superior we found females from and crappie (Pearse 1921: Ewers 1933; Wilson 1960). An­ 1.5-2.0 mm and males averaging 1.25 mm. The dry weight derson (1970) also found that the copepods Diacyclops of animals from Lake Michigan varies from 2.5-8.9µg thomasi and Acanthocyclops vernalis consume Ceriodaph­ (Hawkins and Evans 1979).
    [Show full text]