Lenalidomide Inhibits Osteoclastogenesis, Survival Factors and Bone-Remodeling Markers in Multiple Myeloma

Total Page:16

File Type:pdf, Size:1020Kb

Lenalidomide Inhibits Osteoclastogenesis, Survival Factors and Bone-Remodeling Markers in Multiple Myeloma Leukemia (2008) 22, 1925–1932 & 2008 Macmillan Publishers Limited All rights reserved 0887-6924/08 $32.00 www.nature.com/leu ORIGINAL ARTICLE Lenalidomide inhibits osteoclastogenesis, survival factors and bone-remodeling markers in multiple myeloma I Breitkreutz1, MS Raab1, S Vallet1, T Hideshima1, N Raje1, C Mitsiades1, D Chauhan1, Y Okawa1, NC Munshi1, PG Richardson1 and KC Anderson1 1Department of Medical Oncology, LeBow Institute for Myeloma Therapeutics, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA Osteolytic bone disease in multiple myeloma (MM) is caused by survival of 28 months and a median progression-free survival of enhanced osteoclast (OCL) activation and inhibition of osteo- 7.7 months.2 In two large-phase III studies comparing lenalido- blast function. Lenalidomide and bortezomib have shown promising response rates in relapsed and newly diagnosed mide/dexamethasone versus dexamethasone in relapsed MM, MM, and bortezomib has recently been reported to inhibit OCLs. extent and frequency of response, as well as progress free and We here investigated the effect of lenalidomide on OCL overall survival, were prolonged in the combined therapy formation and osteoclastogenesis in comparison with bortezo- cohort.3,4 The proteasome inhibitor bortezomib has potent mib. Both drugs decreased aVb3-integrin, tartrate-resistant acid anti-MM activity with impressive clinical responses, prolonging phosphatase-positive cells and bone resorption on dentin time to progression and overall survival in patients with relapsed disks. In addition, both agents decreased receptor activator of 5,6 nuclear factor-jB ligand (RANKL) secretion of bone marrow or refractory MM. In spite of these novel agents, osteolytic stromal cells (BMSCs) derived from MM patients. We identified bone disease remains a major source of morbidity, occurring in PU.1 and pERK as major targets of lenalidomide, and nuclear 70–80% of MM patients and associated with severe bone pain, factor of activated T cells of bortezomib, resulting in inhibition pathologic fractures, paralysis through nerve compression, of osteoclastogenesis. Furthermore, downregulation of cathe- hypercalcemia and death.7 Bisphosphonates inhibit osteoclast psin K, essential for resorption of the bone collagen matrix, was (OCL) activity and have been successfully and widely used for observed. We demonstrated a significant decrease of growth 8 and survival factors including macrophage inflammatory the treatment of MM bone disease; however, complications protein-a, B-cell activating factor and a proliferation-inducing induced by bisphosphonates can occur including osteonecrosis ligand. Importantly, in serum from MM patients treated with of the jaw, and their use is not recommended over a long period lenalidomide, the essential bone-remodeling factor RANKL, as of time. well as the RANKL/OPG ratio, were significantly reduced, Osteolytic lesions are primarily due to a dysregulation of the whereas osteoprotegerin (OPG) was increased. We conclude normal bone-remodeling process, with a decrease of osteoblast that both agents specifically target key factors in osteoclasto- genesis, and could directly affect the MM-OCL-BMSCs activa- (OBL) function accompanied by increased activation of OCLs. tion loop in osteolytic bone disease. In MM, this destructive bone process is enhanced by interaction Leukemia (2008) 22, 1925–1932; doi:10.1038/leu.2008.174; of MM cells with OCLs in the bone marrow (BM) microenviron- published online 3 July 2008 ment. Specifically, adhesion of MM cells to bone marrow Keywords: multiple myeloma; osteoclastogenesis; bone disease; stromal cells (BMSCs) induces secretion of osteolytic factors lenalidomide; bortezomib such as interleukin-6 (IL-6) and receptor activator of NF-kB ligand (RANKL), a tumor necrosis factor (TNF) family cytokine. IL-3 production stimulates osteoclastogenesis directly and enhances the effect of RANKL and of macrophage inflammatory Introduction protein-a (MIP-1a), an important growth and survival factor for MM cells and OCL.9 In addition, MM cells in the BM produce Multiple myeloma (MM) is a currently incurable malignant Dickkopf homologue 1, thereby inhibiting OBL activation by plasma cell disorder affecting approximately 15 000 new blocking Wnt signaling.10 patients in the United States annually. Novel drugs targeting Clinical observations revealed that bortezomib may trigger MM and its microenvironment have shown promising clinical OBL activation, evidenced by increased alkaline phosphatase in results.1 Thalidomide and its more potent immunodmodulatory the serum of MM patients responding to bortezomib treat- analog (IMiDs) lenalidomide have been successfully used in ment.11 Moreover, treatment with bortezomib in patients with MM treatment. Specifically, the results of a multicenter, open- relapsed MM significantly decreased RANKL and C-terminal labeled, randomized phase 2 study evaluating two dose cross-linking telopeptide of collagen type I (CTX).12 Recently, regimens of lenalidomide for relapsed, refractory myeloma von Metzler et al.13 showed that bortezomib inhibits osteoclas- show an overall response rate of lenalidomide alone of 25%. It togenesis by downregulation of p38 mitogen-activated protein was well tolerated at 30 mg once daily, with a median overall kinase (MAPK) and AP1. To date, however, the effect of lenalidomide on OCLs remains unknown. Furthermore, it is Correspondence: Dr KC Anderson or Dr I Breitkreutz, Department of not clear whether there is an inhibitory effect of lenalidomide or Medical Oncology, LeBow Institute for Myeloma Therapeutics, Jerome bortezomib on growth and survival factors that trigger Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, osteoclastogenesis and OCL activation. In this study, we Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA. investigated whether lenalidomide, similar to bortezomib, E-mails: [email protected] or Iris_Breitkreutz@ dfci.harvard.edu affects activation and function of OCLs in the BM micro- Received 28 February 2008; revised 27 May 2008; accepted 30 May environment, osteoclastogenesis and related growths factors, as 2008; published online 3 July 2008 well as markers of bone turnover in MM. Lenalidomide, bortezomib inhibit osteoclasts in MM I Breitkreutz et al 1926 Materials and methods ELISA Cytokine secretion in supernatants from OCL cultures was Osteoclast formation assay measured using enzyme-linked immunosorbent assay (ELISA). OCLs were generated in vitro using peripheral blood mono- Specifically, OCLs were cultured in 96-well plates for 2 weeks; nuclear cells (PBMCs) from MM patients. Written informed supernatants were harvested, and MIP-1a, IL-6, B-cell activa- consent was obtained according to the Declaration of Helsinki. ting factor (BAFF) and a proliferation-inducing ligand (APRIL) For OCL formation assays, PBMCs were separated by secretion were measured using DuoSet ELISA development kits Ficoll-Paque gradient, and nonadherent cells were cultured in (R&D Systems Inc.) and Bender MedSystems (Burlingame, CA, 6- or 96-well plates (0.5 Â 06 cells per cm2), as previously USA), in accordance with manufacturer’s instructions. To described.14 OCLs were generated by culturing cells for 14–21 measure RANKL secretion, BMSCs were cultured in RPMI/ days in a-minimal essential medium containing 10% 20% FBS in the presence of lenalidomide or bortezomib. After fetal bovine serum (FBS), 1% penicillin-streptomycin (Media- 72 h, supernatant was harvested and subjected to RANKL ELISA tech Inc., Herndon, VA, USA), as well as 25 ng/ml of (Bender MedSystems Burlingame). macrophage colony-stimulating factor (M-CSF) (R&D Systems, Minneapolis, MN, USA) and RANKL (50 ng/ml) (PeproTech, Rocky Hill, NJ, USA). Western blot analysis PBMCs were cultured with RANKL (50 ng/ml) and M-CSF (25 ng/ ml) in the presence or absence of lenalidomide or bortezomib. Bone marrow stromal cell cultures PBMCs were seeded in six-well plates. Cells were harvested at BMSCs derived from MM patients were cultured in RPMI and specific time points with cell dissociation buffer (Invitrogen) and 20% FBS after separation of mononuclear cells via Ficoll-Paque M 4 lyzed in lysis buffer (50 m HEPES (N-2-hydroxyethylpipera- gradient. BMSCs were cultured in 96-well plates (0.5 Â 10 cells 0 M 2 zine-N 2-ethanesulfonic acid), pH 7.4, 150 m NaCl, 1% per cm ). Medium was changed twice weekly. Lenalidomide NP-40, 30 mM sodium pyrophosphate, 5 mM ethylenediamine- and bortezomib were diluted in culture medium and added to tetraacetic acid, 2 mM Na3VO4, 5 mM NaF, 1 mM phenylmethyl 1 BMSCs for 72 h. Supernatant was collected and stored at –80 C. sulfonyl fluoride, 5 mg/ml leupeptin and 5 mg/ml aprotinin). Total protein lysates were then subjected to sodium dodecyl sulfate– polyacrylamide gel electrophoresis, transferred to nitrocellulose Osteoclast differentiation and bone resorption assay membrane and immunoblotted with antibodies against pERK, After 2 weeks of incubation, OCLs in control and treated groups nuclear factor of activated T cells (NFATe1), c-fos (Santa Cruz were fixed with citrate-acetone solution and stained for tartrate- Biotechnology, Santa Cruz, CA, USA), as well as PU.1 and resistant acid phosphatase (TRAP) using an acid phosphatase cathepsin K (Cell Signaling Technology, Beverly, MA, USA). leukocyte staining kit (Sigma Chemical, Saint Louis, MO, USA). Antigen–antibody complexes were detected by enhanced TRAP-positive multinucleated OCLs containing
Recommended publications
  • RANKL Acts Directly on RANK-Expressing Prostate Tumor Cells and Mediates Migration and Expression of Tumor Metastasis Genes
    TheProstate68:92^104(2008) RANKL Acts Directly on RANK-Expressing Prostate Tumor Cells and Mediates Migration and Expression of Tumor Metastasis Genes Allison P. Armstrong,1 Robert E. Miller,1 Jon C. Jones,1 Jian Zhang,2 Evan T. Keller,2 and William C. Dougall1* 1Departments of Hematology/Oncology Research, Amgen Inc., Seattle,Washington 2University of Michigan, Department of Urology, School of Medicine, Ann Arbor, Michigan BACKGROUND. Metastases to bone are a frequent complication of human prostate cancer and result in the development of osteoblastic lesions that include an underlying osteoclastic component. Previous studies in rodent models of breast and prostate cancer have established that receptor activator of NF-kB ligand (RANKL) inhibition decreases bone lesion development and tumor growth in bone. RANK is essential for osteoclast differentiation, activation, and survival via its expression on osteoclasts and their precursors. RANK expression has also been observed in some tumor cell types such as breast and colon, suggesting that RANKL may play a direct role on tumor cells. METHODS. Male CB17 severe combined immunodeficient (SCID) mice were injected with PC3 cells intratibially and treated with either PBS or human osteprotegerin (OPG)-Fc, a RANKL antagonist. The formation of osteolytic lesions was analyzed by X-ray, and local and systemic levels of RANKL and OPG were analyzed. RANK mRNA and protein expression were assessed on multiple prostate cancer cell lines, and events downstream of RANK activation were studied in PC3 cells in vitro. RESULTS. OPG-Fc treatment of PC3 tumor-bearing mice decreased lesion formation and tumor burden. Systemic and local levels of RANKL expression were increased in PC3 tumor bearing mice.
    [Show full text]
  • Effect of Denosumab on Osteolytic Lesion Activity After Total Hip Arthroplasty: a Single-Centre, Randomised, Double-Blind, Placebo-Controlled, Proof of Concept Trial
    This is a repository copy of Effect of denosumab on osteolytic lesion activity after total hip arthroplasty: a single-centre, randomised, double-blind, placebo-controlled, proof of concept trial. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/170557/ Version: Accepted Version Article: Mahatma, M.M., Jayasuriya, R.L., Hughes, D. et al. (8 more authors) (2021) Effect of denosumab on osteolytic lesion activity after total hip arthroplasty: a single-centre, randomised, double-blind, placebo-controlled, proof of concept trial. The Lancet Rheumatology. ISSN 2665-9913 https://doi.org/10.1016/s2665-9913(20)30394-5 Article available under the terms of the CC-BY-NC-ND licence (https://creativecommons.org/licenses/by-nc-nd/4.0/). Reuse This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can’t change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/ Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Effect of denosumab on osteolytic lesion activity after total hip arthroplasty: a single- centre, randomised, double-blind,
    [Show full text]
  • Bone Metastasis
    Bone Metastasis: Mechanisms, Therapies and Biomarkers Philippe Clézardin, Rob Coleman, Margherita Puppo, Penelope Ottewell, Edith Bonnelye, Frédéric Paycha, Cyril Confavreux, Ingunn Holen To cite this version: Philippe Clézardin, Rob Coleman, Margherita Puppo, Penelope Ottewell, Edith Bonnelye, et al.. Bone Metastasis: Mechanisms, Therapies and Biomarkers. Physiological Reviews, American Physiological Society, In press, 10.1152/physrev.00012.2019. hal-03102895 HAL Id: hal-03102895 https://hal.archives-ouvertes.fr/hal-03102895 Submitted on 7 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Bone Metastasis: mechanisms, therapies and biomarkers. 2 Philippe Clézardin,1,2 Rob Coleman,2 Margherita Puppo,2 Penelope Ottewell,2 Edith Bonnelye,1 Frédéric 3 Paycha,3 Cyrille B. Confavreux,1,4 Ingunn Holen.2 4 5 1 INSERM, Research Unit UMR_S1033, LyOS, Faculty of Medicine Lyon-Est, University of Lyon 1, 6 Lyon, France. 7 2 Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK. 8 3 Service de Médecine Nucléaire, Hôpital Lariboisière,
    [Show full text]
  • Inhibiting the Osteocyte Specific Protein Sclerostin Increases Bone Mass and Fracture Resistance in Multiple Myeloma
    From www.bloodjournal.org by guest on May 18, 2017. For personal use only. Blood First Edition Paper, prepublished online May 17, 2017; DOI 10.1182/blood-2017-03-773341 Inhibiting the osteocyte specific protein sclerostin increases bone mass and fracture resistance in multiple myeloma Michelle M McDonald1,2, Michaela R Reagan3,4, Scott. E. Youlten1,2, Sindhu T Mohanty1, Anja Seckinger5, Rachael L Terry1,2, Jessica A Pettitt1, Marija K Simic1, Tegan L Cheng 6, Alyson Morse 6, Lawrence M T Le1, David Abi-Hanna1,2, Ina Kramer 7, Carolyne Falank4, Heather Fairfield4 , Irene M Ghobrial3, Paul A Baldock1,2, David G Little6, Michaela Kneissel7, Karin Vanderkerken8, J H Duncan Bassett9, Graham R Williams9, Babatunde O Oyajobi10, Dirk Hose5, Tri G Phan1,2, Peter I Croucher1,2. 1The Garvan Institute of Medical Research, Sydney, NSW, Australia; 2St Vincent’s School of Medicine, UNSW, Australia. 3Dana-Farber Cancer Institute, Boston, MA, USA; 4Maine Medical Center Research Institute, Scarborough, ME, USA.; 5 Universitätsklinikum Heidelberg, Medizinische Klinik V, Labor für Myelomforschung, Ruprecht-Karls-Universiät Heidelberg, Germany. 6Centre for Children’s Bone and Musculoskeletal Health, The Children’s Hospital at Westmead, Sydney, Australia; 7Novartis Institutes for BioMedical Research, Basel, Switzerland; 8Frei University, Brussels, Belgium; 9Imperial College, London, UK; 10University of Texas Health Science Centre, San Antonio, Texas, USA. 1 Copyright © 2017 American Society of Hematology From www.bloodjournal.org by guest on May 18, 2017.
    [Show full text]
  • Incidence of Bisphosphonate-Related Osteonecrosis of the Jaw in Consideration of Primary Diseases and Concomitant Therapies
    ANTICANCER RESEARCH 33: 3917-3924 (2013) Incidence of Bisphosphonate-related Osteonecrosis of the Jaw in Consideration of Primary Diseases and Concomitant Therapies ALEXANDRE T. ASSAF1*, RALF SMEETS1, BJÖRN RIECKE1, EVA WEISE2, ALEXANDER GRÖBE1, MARCO BLESSMANN1, TIM STEINER2, JOHANNES WIKNER1, REINHARD E. FRIEDRICH1, MAX HEILAND1, FRANK HOELZLE2 and FRANK GERHARDS2 1Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg Eppendorf, University of Hamburg, Hamburg, Germany; 2Department of Oral and Maxillofacial Surgery, University Hospital Aachen, Aachen, Germany Abstract. Background: Since its first description by Marx in analysis did show a significant correlation concerning 2003, the etiology of bisphosphonate-related osteonecrosis of monocytostatic (p=0.0215) and triple-cytostatic therapy the jaw (BRONJ) is the subject of numerous scientific (p=0.0137). The majority of patients with BRONJ (60%) discussions for oral and maxillofacial surgeons. Many received a bisphosphonate therapy including zoledronate. retrospective studies on its etiology and pathogenesis have Single application with one bisphosphonate was administered been carried out to explain pathological mechanisms; most in 28 cases; 44 patients had a medical history of different use of them just take a close look at the issue of dosage and of bisphosphonate. Concomitant medication did not suggest application. Recently, attempts have been made, to identify possible correlation, nor did accompanying diseases, arterial co-factors which might promote the development of BRONJ. hypertension (33.33%) or arterial microcirculatory Patients and Methods: The present study is based on data of disturbances (20%). Conclusion: The evaluation of our 169 patients with osseous metastatic malignancies. All results is pioneering. The influence of cytostatics and patients received intravenous bisphosphonate therapy.
    [Show full text]
  • The Role of Osteoblasts in Bone Metastasis
    Journal of Bone Oncology ∎ (∎∎∎∎) ∎∎∎–∎∎∎ Contents lists available at ScienceDirect Journal of Bone Oncology journal homepage: www.elsevier.com/locate/jbo Research paper The role of osteoblasts in bone metastasis Penelope D Ottewell n Academic Unit of Clinical Oncology, Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK article info abstract Article history: The primary role of osteoblasts is to lay down new bone during skeletal development and remodelling. Received 26 November 2015 Throughout this process osteoblasts directly interact with other cell types within bone, including os- Received in revised form teocytes and haematopoietic stem cells. Osteoblastic cells also signal indirectly to bone-resorbing os- 22 March 2016 teoclasts via the secretion of RANKL. Through these mechanisms, cells of the osteoblast lineage help Accepted 23 March 2016 retain the homeostatic balance between bone formation and bone resorption. When tumour cells dis- seminate in the bone microenvironment, they hijack these mechanisms, homing to osteoblasts and disrupting bone homeostasis. This review describes the role of osteoblasts in normal bone physiology, as well as interactions between tumour cells and osteoblasts during the processes of tumour cell homing to bone, colonisation of this metastatic site and development of overt bone metastases. & 2016 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 1. The osteoblast in normal bone physiology osteoclasts directly affect osteoclastogenesis, regulating osteo- clastic bone resorption and the release of growth factors from the Under normal physiological conditions osteoblasts are re- bone matrix.
    [Show full text]
  • Targeted Overexpression of BSP in Osteoclasts Promotes Bone Metastasis of Breast Cancer Cells
    ORIGINAL ARTICLE 135 JournalJournal ofof Cellular Targeted Overexpression of BSP Physiology in Osteoclasts Promotes Bone Metastasis of Breast Cancer Cells QISHENG TU,1* JIN ZHANG,1,2 AMANDA FIX,1 ERIKA BREWER,1 YI-PING LI,3 4 1 ZHI-YUAN ZHANG, AND JAKE CHEN ** 1Division of Oral Biology, Tufts University School of Dental Medicine, Boston, Massachusetts 2School of Dentistry, Shandong University, Jinan, Shandong Province, China 3Department of Cytokine Biology, The Forsyth Institute and Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts 4College of Stomatology, Shanghai Jiao Tong University, Shanghai, China Bone is one of the most common sites of breast cancer metastasis while bone sialoprotein (BSP) is thought to play an important role in bone metastasis of malignant tumors. The objective of this study is to determine the role of BSP overexpression in osteolytic metastasis using two homozygous transgenic mouse lines in which BSP expression is elevated either in all the tissues (CMV-BSP mice) or only in the osteoclasts (CtpsK-BSP mice). The results showed that skeletal as well as systemic metastases of 4T1 murine breast cancer cells were dramatically increased in CMV-BSP mice. In CtpsK-BSP mice, it was found that targeted BSP overexpression in osteoclasts promoted in vitro osteoclastogenesis and activated osteoclastic differentiation markers such as Cathepsin K, TRAP and NFAT2. MicroCT scan demonstrated that CtpsK/BSP mice had reduced trabecular bone volume and bone mineral density (BMD). The real-time IVIS Imaging System showed that targeted BSP overexpression in osteoclasts promoted bone metastasis of breast cancer cells. The osteolytic lesion area was significantly larger in CtpsK/BSP mice than in the controls as demonstrated by both radiographic and histomorphometric analyses.
    [Show full text]
  • Paradoxical Stress Fracture in a Patient with Multiple Myeloma and Bisphosphonate Use
    Open Access Case Report DOI: 10.7759/cureus.9837 Paradoxical Stress Fracture in a Patient With Multiple Myeloma and Bisphosphonate Use Edwin Chiu 1 , Michael Cabanero 2 , Gurinder Sidhu 1 1. Medicine, State University of New York (SUNY) Downstate Medical Center, Brooklyn, USA 2. Anatomic Pathology, University Health Network, Toronto, CAN Corresponding author: Gurinder Sidhu, [email protected] Abstract Multiple myeloma (MM) is a plasma cell disorder with related organ dysfunction, including hypercalcemia, renal insufficiency, anemia, and bone disease. Osteolytic bone lesions that result in pain and pathologic fractures are a major source of morbidity and the use of bisphosphonates is generally safe and effective treatment in reducing myeloma-related skeletal fractures and associated morbidity. We present a 73-year- old African American woman with MM in remission and on intravenous (IV) bisphosphonate therapy in the past five years who reported gradually worsening bilateral thigh pain of six months duration. A bone survey showed no neoplastic focus, and bilateral hip X-rays showed incomplete insufficiency stress fractures with characteristic features suspicious for bisphosphonate-related atypical femoral fracture (AFF). Increasingly reported in the literature, bilateral AFF is a unique and serious adverse effect for patients on bisphosphonates. Our case illustrates the distinct challenges in managing a patient with MM on long-term bisphosphonate therapy who suffered bilateral atypical femoral fractures, an uncommon presentation of a relatively
    [Show full text]
  • Radiological Evaluation of the Efficacy of Denosumab As a Treatment For
    Hong Kong J Radiol. 2018;21:158-65 | DOI: 10.12809/hkjr1816801 ORIGINAL ARTICLE CME Radiological Evaluation of the Efficacy of Denosumab as a Treatment for Giant-cell Tumour of Bone with Histopathological Correlation Ce Le 1,m ACS La 1, RCH Yau2, WH Shek3,m YL La 1 1Department of Radiology, 2Department of Orthopaedics and Traumatology, 3Department of Pathology, Queen Mary Hospital, Pokfulam, Hong Kong ABSTRACT Objective: To evaluate the efficacy of denosumab as a treatment for giant-cell tumour of bone (GCTB) with histopathological correlation. Methods: This was a single-centre retrospective study of patients with histologically proven GCTB. Clinical data of all patients treated with neoadjuvant and adjuvant denosumab according to a standardised protocol were reviewed. Duration of follow-up from the time of diagnosis ranged from 4 to 30 months. Clinical response in terms of pain reduction or functional improvement and major adverse drug effects were documented. Pre- and post-treatment tumour responses were evaluated using available radiographs, computed tomography (CT) and magnetic resonance imaging (MRI) images taken at irregular intervals. Concomitant histopathological evaluations of tissue samples were also conducted to assess the percentage of giant cells and de novo bone matrix. Results: A total of 12 patients received denosumab treatment for GCTB from 20 July 2012 to 5 June 2015. Among them, 10 (83.3%) patients had no tumour recurrence before September 2016; and 11 (91.6%) patients reported reduced pain or functional improvement with no major treatment complications. Excellent treatment response was achieved for 10 (90.9%) of 11 patients who underwent radiographic assessment and four (100%) of four patients who underwent CT assessment.
    [Show full text]
  • © Ferrata Storti Foundation
    LETTERS TO THE EDITOR Well-defined osteolytic lesions with a diameter of ≥10 Bone healing in multiple myeloma: a prospective mm on CT-scans were identified as target lesions at base- evaluation of the impact of first-line anti-myeloma line. Each target lesion was then evaluated in terms of treatment size and development of osteosclerosis in all consecutive CT-scans. The presence of osteosclerosis at the edge of a target lesion was interpreted as an early sign of healing Myeloma cells disturb a normally balanced bone and classified dichotomously as being either present or remodeling process. This imbalance of bone metabolism not present (Figure 1). More pronounced formation of may cause osteopenic bones, focal osteolytic lesions and sclerotic bone, together with a simultaneous reduction in clinical symptoms. the largest diameter of the osteolytic lesion by ≥30%, The excess bone resorption resulting in osteolytic was interpreted as a more advanced sign of healing lesions has traditionally been perceived as irreversible. (Figure 1). We investigated the potential for bone healing in a Tracer uptake by the osteolytic target lesions by bone prospective study of previously untreated multiple SPECT was classified as decreased, equal to or increased myeloma (MM) patients using a five-drug bortezomib- when compared to uninvolved bone. containing treatment regimen. The serum bone resorption marker C-terminal telopep- Thirty-five newly diagnosed MM patients requiring tide type-I (CTX) and the serum bone formation marker treatment1 were enrolled in a prospective single-center N-terminal propeptide of procollagen I (P1NP) were meas- phase-II study to evaluate the safety and efficacy of first- ured in fasting blood samples collected in the morning.
    [Show full text]
  • Bone Metabolism in Langerhans Cell Histiocytosis
    ID: 18-0186 7 7 A D Anastasilakis et al. Langerhans cell histiocytosis 7:7 R246–R253 and bone REVIEW Bone metabolism in Langerhans cell histiocytosis Athanasios D Anastasilakis1, Marina Tsoli2, Gregory Kaltsas2 and Polyzois Makras3 1Department of Endocrinology, 424 General Military Hospital, Thessaloniki, Greece 21st Propaedeutic Department of Internal Medicine, National and Kapodistrian University of Athens, Athens, Greece 3Department of Endocrinology and Diabetes, 251 Hellenic Air Force & VA General Hospital, Athens, Greece Correspondence should be addressed to A D Anastasilakis: [email protected] Abstract Langerhans cell histiocytosis (LCH) is a rare disease of not well-defined etiology that Key Words involves immune cell activation and frequently affects the skeleton. Bone involvement f Langerhans cell in LCH usually presents in the form of osteolytic lesions along with low bone mineral histiocytosis (LCH) density. Various molecules involved in bone metabolism are implicated in the f receptor activator of NF-κB ligand (RANKL) pathogenesis of LCH or may be affected during the course of the disease, including f denosumab interleukins (ILs), tumor necrosis factor α, receptor activator of NF-κB (RANK) and its f bisphosphonates soluble ligand RANKL, osteoprotegerin (OPG), periostin and sclerostin. Among them f osteoporosis IL-17A, periostin and RANKL have been proposed as potential serum biomarkers for LCH, particularly as the interaction between RANK, RANKL and OPG not only regulates bone homeostasis through its effects on the osteoclasts but also affects the activation and survival of immune cells. Significant changes in circulating and lesional RANKL levels have been observed in LCH patients irrespective of bone involvement. Standard LCH management includes local or systematic administration of corticosteroids and chemotherapy.
    [Show full text]
  • Differential Effect of Doxorubicin and Zoledronic Acid on Intraosseous Versus Extraosseous Breast Tumor Growth in Vivo
    Cancer Therapy: Preclinical Differential Effect of Doxorubicin and Zoledronic Acid onIntraosseousversusExtraosseousBreast Tu m o r Gr o w t h In vivo Penelope D. Ottewell,1Blandine Deux,3 Hannu Mo« nkko« nen,1,4 Simon Cross,2 Robert E. Coleman,1 Philippe Clezardin,3 andIngunnHolen1 Abstract Purpose: Breast cancer patients with bone metastases are commonly treated with chemothera- peutic agents such as doxorubicin and zoledronic acid to control their bone disease. Sequential administration of doxorubicin followed by zoledronic acid has been shown to increase tumor cell apoptosis in vitro.We have therefore investigated the antitumor effects of clinically relevant doses of these drugs in a mouse model of breast cancer bone metastasis. Experimental Design: MDA-MB-231/BO2 cells were injected via the tail vein into athymic mice. Tumor-induced osteolytic lesions were detected in all animals following X-ray analysis 18 days after tumor cell inoculation (day18). Mice were administered saline,100 Ag/kg zoledronic acid, 2 mg/kg doxorubicin, doxorubicin and zoledronic acid simultaneously, or doxorubicin followed 24 h later by zoledronic acid. Doxorubicin-treated animals received a second injection on day 25. Tumor growth in the marrow cavity and on the outside surface of the bone was measured as well as tumor cell apoptosis and proliferation.The effects of treatments on bone were evaluated following X-ray and ACTanalysis. Results: Sequential treatment with doxorubicin followed by zoledronic acid caused decreased intraosseous tumor burden, which was accompanied by increased levels of tumor cell apoptosis and decreased levels of proliferation, whereas extraosseous parts of the same tumors were unaffected.
    [Show full text]