Dual Mode Vehicle and Infrastructure Alternative Analysis

Total Page:16

File Type:pdf, Size:1020Kb

Dual Mode Vehicle and Infrastructure Alternative Analysis Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. FHWA/TX-08/0-5827-1 4. Title and Subtitle 5. Report Date DUAL MODE VEHICLE AND INFRASTRUCTURE October 2007 ALTERNATIVES ANALYSIS Published: April 2008 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Christine Ehlig-Economides and Jim Longbottom Report 0-5827-1 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) Harold Vance Department of Petroleum Engineering Dwight Look College of Engineering 11. Contract or Grant No. Texas A&M University Project 0-5827 College Station, Texas 77843-3116 and Texas Transportation Institute The Texas A&M University System College Station, Texas 77843-3135 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered Texas Department of Transportation Technical Report: Research and Technology Implementation Office September 2006-August 2007 P.O. Box 5080 14. Sponsoring Agency Code Austin, Texas 78763-5080 15. Supplementary Notes Project performed in cooperation with the Texas Department of Transportation and the Federal Highway Administration. Project Title: Alternatives Analysis for Initial and Future TxDOT Deployment of a Dual Mode, Automated Transportation System URL: http://tti.tamu.edu/documents/0-5827-1.pdf 16. Abstract The United States has a transportation challenge that requires addressing four issues simultaneously: traffic congestion, environmental pollution, safety, and energy security. A potential solution to these transportation challenges is the concept of an electrified guideway infrastructure providing energy in real time to automated vehicles. This project surveyed existing electrified advanced transportation concepts and selected five systems for evaluation of their technology readiness. None of the systems evaluated were judged ready for commercialization, but potential benefits of the technology warrant further development. Stakeholder interviews and a survey of collaboration mechanisms identified organizational and research paths that would enable accelerated development of a system capable of handling personal vehicles, public transit, and driverless freight movement on a common 21st century infrastructure. 17. Key Words 18. Distribution Statement Energy, Congestion, Safety, Emissions, Dual Mode, No restrictions. This document is available to the Electric Vehicle, Personal Rapid Transit public through NTIS: National Technical Information Service Springfield, Virginia 22161 http://www.ntis.gov 19. Security Classif.(of this report) 20. Security Classif.(of this page) 21. No. of Pages 22. Price Unclassified Unclassified 136 Form DOT F 1700.7 (8-72) Reproduction of completed page authorized DUAL MODE VEHICLE AND INFRASTRUCTURE ALTERNATIVES ANALYSIS by Christine Ehlig-Economides, Ph.D. Professor Harold Vance Department of Petroleum Engineering Dwight Look College of Engineering Texas A&M University and Jim Longbottom TEES Associate Research Scientist Harold Vance Department of Petroleum Engineering Dwight Look College of Engineering Texas A&M University Report 0-5827-1 Project 0-5827 Project Title: Alternatives Analysis for Initial and Future TxDOT Deployment of a Dual Mode, Automated Transportation System Performed in cooperation with the Texas Department of Transportation and the Federal Highway Administration October 2007 Published: April 2008 HAROLD VANCE DEPARTMENT OF PETROLEUM ENGINEERING Dwight Look College of Engineering Texas A&M University College Station, Texas 77843-3116 and TEXAS TRANSPORTATION INSTITUTE The Texas A&M University System College Station, Texas 77843-3135 DISCLAIMER The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the Federal Highway Administration (FHWA) or the Texas Department of Transportation (TxDOT). This report does not constitute a standard, specification, or regulation. v ACKNOWLEDGMENTS This project was conducted in cooperation with the Texas Department of Transportation (TxDOT) and the Federal Highway Administration (FHWA). Project members extend thanks to the TxDOT project director Duncan Stewart and program coordinator Tonia Norman, and to members of the Project Management Committee (PMC) including Loretta Brown, Teresa Lemons, Don Lewis, Jackie Ploch, M. Kim Soucek, and Orlando Jamandre, Jr. vi TABLE OF CONTENTS Page LIST OF FIGURES ..................................................................................................................... ix LIST OF TABLES ........................................................................................................................ x EXECUTIVE SUMMARY—A CHALLENGE AND BOLD SOLUTION ............................. 1 1. RESEARCH METHOD OVERVIEW .................................................................................. 5 2. LITERATURE REVIEW AND BACKGROUND ............................................................... 7 Transportation Demand .............................................................................................................. 7 Congestion and Demographics ................................................................................................... 8 Energy Security ......................................................................................................................... 11 Emissions .................................................................................................................................. 13 Safety ........................................................................................................................................ 13 Roadway Costs.......................................................................................................................... 15 A View into the Future ............................................................................................................. 16 Why Focus on Automation ....................................................................................................... 19 Personal Rapid Transit and Dual Mode System History .......................................................... 20 Recent PRT Studies .................................................................................................................. 23 Current Department of Energy and Department of Transportation Technology Pathways ...... 25 ITS/VII .................................................................................................................................. 25 PNGV .................................................................................................................................... 25 FreedomCAR ........................................................................................................................ 26 Efficiency Myth ........................................................................................................................ 28 3. DUAL MODE TECHNOLOGY EVALUATION .............................................................. 31 System Requirements................................................................................................................ 31 Technology Options .................................................................................................................. 32 Technology Readiness Levels Summary .................................................................................. 35 4. A PATH FORWARD—EFFECTING NETWORKED SYSTEM CHANGE ................. 39 An Equilibrium Shift................................................................................................................. 39 Collaboration............................................................................................................................. 42 Who Are the Stakeholders and How Is Consensus Built? ........................................................ 45 Stakeholder Comments/Insight ................................................................................................. 46 A Dual Mode Benefits Coalition .............................................................................................. 48 A Policy of Flexibility and Competition ................................................................................... 50 Value of Competition ............................................................................................................ 51 Electric Grid and Homeland Security Impact ....................................................................... 52 Transit System and Funding Impact ..................................................................................... 52 Use of Corridor Authority for Demonstration Pilots ............................................................ 53 A Method of Monitoring Progress ............................................................................................ 53 5. CONCLUSIONS AND RECOMMENDATIONS ............................................................... 55 vii REFERENCES ............................................................................................................................ 59 APPENDIX A: DUAL MODE STAKEHOLDER/CUSTOMER ASSESSMENT ............... 63 A-1.0. Introduction.................................................................................................................... 65 A-2.0. Summary of Findings ...................................................................................................
Recommended publications
  • Introduction of Electronic Commerce
    Orf 467 – Transportation Systems Analysis Fall 2018/19 Enhancing Mobility Through Technology in a Congested Urban Environment Evolution of Ground Transport Technology: From the Omnibus through Personal Rapid Transit (PRT) to autonomousTaxis (aTaxis) The Problem: Urban Congestion Snarls Mobility Also issues about accessibility and equality of access Orf 467 – Transportation Systems Analysis Fall 2018/19 Over the years technology has evolved… From: To: Omnibus on Blackfriar’s Bridge, 1798 Hummers ~2007 (Pre Crisis) To: Prius & Tesla 2017 (?????) To: GoogleCars ~ 2017+ ??? Orf 467 – Transportation Systems Analysis Fall 2018/19 Evolution of the OmniBus for intra-urban mass transportation Start: Geo Enhancement: London,1798 NYC, 1830 Technology Elements: • Capacity: ~10 Seated Passengers • Propulsion: Horses or Mules • Externalities: Disease and non-operating revenue from pollution • Suspension: Steel Sprung Wooden Wheel with solid axel • Way: “Flat” Pavement (stone, wood, compacted earth) • Headway & Lateral Control: Human Capacity Enhancement: Propulsion Enhancement: Support Enhancement: Double Decker, London Steam, London Iron (Steel) Rails Orf 467 – Transportation Systems Analysis Fall 2018/19 Growth of Horse-Drawn Street Railway Technology 1850: NYC 1860: London 1875: Minneapolis 1890: Broadway NYC 1908: Washington , GA Week 8 Orf 467 – Transportation Systems Analysis Fall 2018/19 Evolution of Horse-Drawn Street Railway Technology Today: DisneyWorld Orf 467 – Transportation Systems Analysis Fall 2018/19 Growth of Cable Street Railway Technology
    [Show full text]
  • Självkörande Bussar I Stadstrafik
    Självkörande bussar i stadstrafik - förstudie Jan Jacobson, Kari Westgaard Berg, Daniel Bügel, Kristian Flink, Anders Thorsén, Charlotta Tornvall, Mari Lie Venjum RISE Rapport 2018:63 Självkörande bussar i stadstrafik - förstudie Jan Jacobson, Kari Westgaard Berg, Daniel Bügel, Kristian Flink, Anders Thorsén, Charlotta Tornvall, Mari Lie Venjum 1 Abstract Automated buses in urban traffic - prestudy Automated road transport is regarded as a key enabler for sustainable transport. One example is the use of small automated buses as a supplement to already existing public transport services. There are several manufacturers of these kind of buses, and field trials are in progress. The goal of the pre-project is to evaluate the feasibility and criteria for transport with automated buses in two middle-sized Nordic municipalities, Lørenskog in Norway and Borås in Sweden, by analyzing at least two different test-cases in each location. Feasibility, adaptation to existing traffic and conditions for public acceptance are described. The pre-project concludes that automated buses are possible in these two municipalities. Further test and demonstrations should be made. Key words: automated driving, shuttle bus, automated transport RISE Research Institutes of Sweden AB RISE Rapport 2018:63 ISBN: 978-91-88907-06-6 Borås 2018 2 Innehåll Abstract ....................................................................................................... 1 Innehåll .....................................................................................................
    [Show full text]
  • Innovation in Public Transportation
    W Co'" Sf*rts o* A DIRECTORY OF RESEARCH, DEVELOPMENT AND DEMONSTRATION PROJECTS Fiscal Year 1975 U.S. Department of Transportation Urban Mass Transportation Administration Washington, D.C. 20590 For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 - Price $1.80 Stock No. 050-014-00006-1 Introduction This annual publication contains descriptions of through contracts with private firms, or through tion Act of 1964, as amended. The principal current research, development and demonstration working agreements with other Federal depart- method of reporting is through annual publication (RD&D) projects sponsored and funded by the ments and agencies. UMTA generally initiates of the compilation of reports on the status of U.S. Department of Transportation's Urban Mass and plans these RD&D projects and performs individual projects. Transportation Administration (UMTA). analytical tasks as well. The volume dated June 30, 1972 constituted an These projects are conducted under the author- Research projects are intended to produce infor- historical record of all projects funded under the ity of Section 6(a) of the Urban Mass Transporta- mation about possible improvements in urban Act to that point as well as projects funded tion Act of 1964, as amended (78 Stat. 302, 49 mass transportation. The products of research earlier under authorization of the Housing Act of U.S.C. 1601 et. seq.). This statute authorizes the projects are reports or studies. 1961. This volume is available from the National Secretary of Transportation "to undertake re- Technical Information Service (NTIS), access num- Development projects involve fabrication, testing, search, development, and demonstration projects ber PB-2 13-228.
    [Show full text]
  • Personal Automated Transportation
    Personal Automated Transportation: Status and Potential of Personal Rapid Transit Technology Evaluation January 2003 by the Advanced Transit Association Bob Dunning, committee chair Ian Ford, report editor Committee Members Rob Bernstein Joe Shapiro Catie Burke Markus Szillat Dennis Cannon Göran Tegnér George Haikalis Ron Thorstad Jerry Kieffer David Ward Dennis Manning Michael Weidler David Maymudes William Wilde Jeral Poskey NOTE: This report is published in a group of documents. Other documents in the group include an executive summary, a discussion and rationale for PRT, technology primer, FAQ, and other supporting reports. The full set is detailed on the web site: www.advancedtransit.org/pub/2002/prt ATRA: Personal Transportation, Evaluation (January 2003) Page 1 Contents Purpose..........................................................................................................................................................4 Study process ................................................................................................................................................5 Non-participating vendors ............................................................................................................................8 Study organization ........................................................................................................................................9 Sources........................................................................................................................................................10
    [Show full text]
  • Mechatronics Design of an Unmanned Ground Vehicle for Military Applications 237
    Mechatronics Design of an Unmanned Ground Vehicle for Military Applications 237 Mechatronics Design of an Unmanned Ground Vehicle for Military 15X Applications Pekka Appelqvist, Jere Knuuttila and Juhana Ahtiainen Mechatronics Design of an Unmanned Ground Vehicle for Military Applications Pekka Appelqvist, Jere Knuuttila and Juhana Ahtiainen Helsinki University of Technology Finland 1. Introduction In this chapter the development of an Unmanned Ground Vehicle (UGV) for task-oriented military applications is described. The instrumentation and software architecture of the vehicle platform, communication links, remote control station, and human-machine interface are presented along with observations from various field tests. Communication delay and usability tests are addressed as well. The research was conducted as a part of the FinUVS (Finnish Unmanned Vehicle Systems) technology program for the Finnish Defense Forces. The consortium responsible for this project included both industry and research institutions. Since the primary interest of the project was in the tactical utilization scenarios of the UGV and the available resources were relatively limited, the implementation of the vehicle control and navigation systems was tried to be kept as light and cost-effective as possible. The resources were focused on developing systems level solutions. The UGV was developed as a technology demonstrator using mainly affordable COTS components to perform as a platform for the conceptual testing of the UGV system with various types of payloads and missions. Therefore, the research methodology was rather experimental by nature, combining complex systems engineering and mechatronics design, trying to find feasible solutions. The ultimate goal of the research and development work was set to achieve high level of autonomy, i.e., to be able to realistically demonstrate capability potential of the system with the given mission.
    [Show full text]
  • Las Estrategias De Las Empresas Automovilísticas Con El Coche
    Facultad de Ciencias Económicas y Empresariales LAS ESTRATEGIAS DE LAS EMPRESAS AUTOMOVILÍSTICAS CON EL COCHE AUTÓNOMO Y LOS NUEVOS JUGADORES Autor: María Gabriela Anitua Galdón Director: Miguel Á ngel López Gómez MADRID | Abril 2019 2 RESUMEN El presente trabajo analiza las diversas estrategias concernientes al coche autónomo, implementadas por los nuevos jugadores en contraposición con los competidores tradicionales. En primer lugar, se contextualiza la temática en cuestión, a través de un enfoque histórico y conceptual del vehículo automatizado. Posteriormente, se presentan una serie de teorías estratégicas relacionadas con la temática planteada y las implicaciones de éstas. A continuación, a través del estudio de casos, se extraen determinadas conclusiones relativas al futuro del sector automovilístico, así como una serie de posibles líneas de investigación y estrategias ganadoras para los competidores, con el fin de alcanzar la victoria en la carrera planteada, que supondrá el cambio más relevante de los próximos siglos en relación a la industria automovilística. Palabras clave: vehículo autónomo, estrategia, transporte, nuevos jugadores, industria automovilística, innovación disruptiva y automatización. 3 ABSTRACT This paper analyses the various strategies concerning the autonomous vehicle, implemented by new players in contrast to traditional competitors. First of all, the subject matter is contextualized, through a historical and conceptual approach of the automated vehicle. Subsequently, a series of strategic theories related to the proposed theme and its consequences are presented. The case studies draw certain conclusions regarding the future of the automobile sector, as well as a series of possible lines of research and winning strategies for competitors, in order to achieve victory in the proposed race, which will represent the most important change in the coming centuries in relation to the automotive sector.
    [Show full text]
  • A Behavioural Lens on Transportation Systems: the Psychology of Commuter Behaviour and Transportation Choices
    A Behavioural Lens on Transportation Systems: The Psychology of Commuter Behaviour and Transportation Choices Kim Ly, Saurabh Sati, and Erica Singer, and Dilip Soman Research Paper originally prepared for the Regional Municipality of York Region 22 March 2017 Research Report Series Behavioural Economics in Action, Rotman School of Management University of Toronto 2 Correspondence and Acknowledgements For questions and enquiries, please contact: Professors Dilip Soman or Nina Mažar Rotman School of Management University of Toronto 105 St. George Street Toronto, ON M5S 3E6 Email: [email protected] or [email protected] Phone Number: (416) 946-0195 We thank the Regional Municipality of York Region for support, Philip Afèche, Eric Miller, Birsen Donmez, Tim Chen, and Liz Kang for insights, comments, and discussions. All errors are our own. 3 Table of Contents Executive Summary ...................................................................................................... 6 1. Introduction ............................................................................................................. 7 2. The Impact of Path Characteristics on Travel Choices ....................................... 9 2.1 Hassle factors – Mental effort and Commuter Orientation ................................... 11 2.2 Perceived Progress towards a Destination ............................................................... 14 2.3 Physical Environment Surrounding the Travel path and The Effect on The Commuter ...............................................................................................................................
    [Show full text]
  • Feasibility of Personal Rapid Transit in Ithaca, New York: Final Report
    FEASIBILITY OF PERSONAL RAPID TRANSIT IN ITHACA, NEW YORK Final Report Prepared for THE NEW YORK STATE ENERGY RESEARCH AND DEVELOPMENT AUTHORITY Albany, NY Joseph D. Tario, P.E. Senior Project Manager and THE NEW YORK STATE DEPARTMENT OF TRANSPORTATION Albany, NY Gary Frederick, P.E. Office of Technical Services, Director Prepared by C&S ENGINEERS, INC. Syracuse, NY Aileen Maguire Meyer, P.E., AICP Principal Investigator and CONNECT ITHACA Ithaca, NY Robert Morache Principal Investigator Contract Nos. 11101 / C-08-25 September 2010 [blank] NOTICE This report was prepared by C&S Engineers, Inc. and Connect Ithaca in the course of performing work contracted for and sponsored by the New York State Energy Research and Development Authority and the New York State Department of Transportation (hereafter the “Sponsors”). The opinions expressed in this report do not necessarily reflect those of the Sponsors or the State of New York, and reference to any specific product, service, process, or method does not constitute an implied or expressed recommendation or endorsement of it. Further, the Sponsors and the State of New York make no warranties or representations, expressed or implied, as to the fitness for particular purpose or merchantability of any product, apparatus, or service, or the usefulness, completeness, or accuracy of any processes, methods, or other information contained, described, disclosed, or referred to in this report. The Sponsors, the State of New York, and the contractor make no representation that the use of any product, apparatus, process, method, or other information will not infringe privately owned rights and will assume no liability for any loss, injury, or damage resulting from, or occurring in connection with, the use of information contained, described, disclosed, or referred to in this report.
    [Show full text]
  • Personal Rapid Transit (Prt)
    ATRA 1989 PRT Report digital format PERSONAL RAPID TRANSIT (PRT) ANOTHER OPTION FOR URBAN TRANSIT? A Report by the Technical Committee on Personal Rapid Transit (PRT) of the Advanced Transit Association, Inc. 1200 18th Street NW, Suite 610 Washington, D.C. 20036 March 1989 ATRA 1989 PRT Report digital format PERSONAL RAPID TRANSIT (PRT) ANOTHER OPTION FOR URBAN TRANSIT? A Report by the Technical Comittee on Personal Rapid Transit (PRT) of the Advanced Transit Association, Inc. 1200 18th Street NW, Suite 610 Washington, D.C. 20036 March 1989 ATRA 1989 PRT Report digital format Officers of the Advanced Transit Association Edward S. Neumann, President George Raikalis, Vice President Jarold A. Kieffer, Treasurer Board Officers Thomas H. Floyd Jr., Chairman Byron Johnson, Chairman, 1986-1989 Jarold A. Kieffer, Secretary The Advanced Transit Association exists to focus attention on unmet urban transportation needs and the ways in which advanced transit concepts can help satisfy them. One of these unmet needs results from the gap between the poor quality of transit service in medium and low-density locations within urban areas and the availability of transit technology that can furnish high quality service at affordable costs. ATRA’s objectives, with particular respect to this report, are to: § Focus public attention on the medium and low density transit problem and the ways in which advanced transit concepts can help solve it; § Seek wider agreement on the main features that advanced transit should possess to cope with this problem, including
    [Show full text]
  • Dutch Reality Putting ITS Promises Into Practice
    Smart Mobility – Dutch reality Putting ITS promises into practice The ITS promise is to make transport smarter, safer, more efficient and more sustainable. The demonstrations during the ITS European Congress 2019, at the Automotive Campus in Helmond as well as at the Evoluon in Eindhoven, show the current status of bringing ITS promises into practice. It ranges from commercial available automated vehicles, to on-going new research and development, to nation-wide rollout of dedicated infrastructure in the Netherlands and Europe. It is a complex transition, in which not only technology has to work together but above all people who have to make it a success. We are proud to show you how joined effort has resulted in this ITS dedicated demo-site with 19 demonstrations. Come and experience the ITS reality. Autonomous vehicles for public transport When thinking of autonomous vehicles, it is not only about cars and trucks in development, but also about public transport. At the Automotive Campus demo location, two companies offer you the ability to experience their automated mini-buses. - The company 2getthere will show their 3rd generation vehicle. It is able to transport up to 26 people operates bi-directional, has doors on both side, has accurate docking, but above all operates at high speed with a maximum speed up to 60 km/h. This vehicle is an upgrade of their ParkShuttle in Rotterdam, which becomes the unique link between the Rotterdam metro network and the Waterbus. - The company Navya will show their 100% autonomous and electric vehicle in urban environment in the Dutch province of Groningen.
    [Show full text]
  • Autonomous Cars: Past, Present and Future
    Autonomous Cars: Past, Present and Future A Review of the Developments in the Last Century, the Present Scenario and the Expected Future of Autonomous Vehicle Technology Keshav Bimbraw Mechanical Engineering Department, Thapar University, P.O. Box 32, Patiala, Punjab, India Keywords: Autonomous Cars, Autonomous Vehicles, Cars, Mechatronics Systems, Intelligent Transportation Technologies and Systems, Automation. Abstract: The field of autonomous automation is of interest to researchers, and much has been accomplished in this area, of which this paper presents a detailed chronology. This paper can help one understand the trends in autonomous vehicle technology for the past, present, and future. We see a drastic change in autonomous vehicle technology since 1920s, when the first radio controlled vehicles were designed. In the subsequent decades, we see fairly autonomous electric cars powered by embedded circuits in the roads. By 1960s, autonomous cars having similar electronic guide systems came into picture. 1980s saw vision guided autonomous vehicles, which was a major milestone in technology and till date we use similar or modified forms of vision and radio guided technologies. Various semi-autonomous features introduced in modern cars such as lane keeping, automatic braking and adaptive cruise control are based on such systems. Extensive network guided systems in conjunction with vision guided features is the future of autonomous vehicles. It is predicted that most companies will launch fully autonomous vehicles by the advent of next decade. The future of autonomous vehicles is an ambitious era of safe and comfortable transportation. 1 INTRODUCTION ‘Linriccan Wonder’. Significant advances in autonomous car technology has been made after the Consumers all around the whole world are enthusiastic advent of the vision guided Mercedes-Benz robotic about the advent of autonomous cars for public.
    [Show full text]
  • Evolution of Personal Rapid Transit
    October 30, 2009 Evolution of Personal Rapid Transit J. Edward Anderson, Ph.D., P. E. PRT International, LLC Abstract The paper reviews the evolution of the PRT concept from its modern beginning in 1953. The early inventors, the projects, and the response of government are discussed. PRT ac- tivity diminished to almost nothing by 1980, but then revived strongly as a result of activ- ity by the Northeastern Illinois Regional Transportation Authority. Their interest ignited enthusiastic activity on a growing front to the point that today one can truly say that the concept is coming of age. Contents Page Introduction 2 Early Beginnings in the United States 4 The Urban Mass Transportation Administration 8 Activities in Other Countries 10 The Aerospace Corporation 14 U. S. Government Involvement 16 Page from Congressional Record 17 Morgantown 19 Transpo 72 19 1974-1981 21 1981-1990 22 The PRT Program of the Northeastern Illinois Regional 22 Transportation Authority The Future – an RTA Publication 24 An Editorial from the Chicago Tribune 25 Post RTA 25 Today 27 What Have We Learned? 27 Acknowledgements 29 Evolution of this Paper 30 References 31 1 October 30, 2009 Introduction The evolution of Personal Rapid Transit (PRT) can be traced back to at least 1953. Some of the ideas embodied in PRT go back even to the last century, but were premature, briefly flowered and died. Since 1953 the evolution has been continuous, though fluctuating − continuous per- haps mainly because the concept of automatic control, essential to PRT, had been firmly estab- lished by the early 1950’s; and fluctuating for reasons that had little or nothing to do with the technical feasibility of the idea or its potential value to urban society.
    [Show full text]