Characteristic Classes Notes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An Introduction to the Trace Formula
Clay Mathematics Proceedings Volume 4, 2005 An Introduction to the Trace Formula James Arthur Contents Foreword 3 Part I. The Unrefined Trace Formula 7 1. The Selberg trace formula for compact quotient 7 2. Algebraic groups and adeles 11 3. Simple examples 15 4. Noncompact quotient and parabolic subgroups 20 5. Roots and weights 24 6. Statement and discussion of a theorem 29 7. Eisenstein series 31 8. On the proof of the theorem 37 9. Qualitative behaviour of J T (f) 46 10. The coarse geometric expansion 53 11. Weighted orbital integrals 56 12. Cuspidal automorphic data 64 13. A truncation operator 68 14. The coarse spectral expansion 74 15. Weighted characters 81 Part II. Refinements and Applications 89 16. The first problem of refinement 89 17. (G, M)-families 93 18. Localbehaviourofweightedorbitalintegrals 102 19. The fine geometric expansion 109 20. Application of a Paley-Wiener theorem 116 21. The fine spectral expansion 126 22. The problem of invariance 139 23. The invariant trace formula 145 24. AclosedformulaforthetracesofHeckeoperators 157 25. Inner forms of GL(n) 166 Supported in part by NSERC Discovery Grant A3483. c 2005 Clay Mathematics Institute 1 2 JAMES ARTHUR 26. Functoriality and base change for GL(n) 180 27. The problem of stability 192 28. Localspectraltransferandnormalization 204 29. The stable trace formula 216 30. Representationsofclassicalgroups 234 Afterword: beyond endoscopy 251 References 258 Foreword These notes are an attempt to provide an entry into a subject that has not been very accessible. The problems of exposition are twofold. It is important to present motivation and background for the kind of problems that the trace formula is designed to solve. -
K-Theoryand Characteristic Classes
MATH 6530: K-THEORY AND CHARACTERISTIC CLASSES Taught by Inna Zakharevich Notes by David Mehrle [email protected] Cornell University Fall 2017 Last updated November 8, 2018. The latest version is online here. Contents 1 Vector bundles................................ 3 1.1 Grassmannians ............................ 8 1.2 Classification of Vector bundles.................... 11 2 Cohomology and Characteristic Classes................. 15 2.1 Cohomology of Grassmannians................... 18 2.2 Characteristic Classes......................... 22 2.3 Axioms for Stiefel-Whitney classes................. 26 2.4 Some computations.......................... 29 3 Cobordism.................................. 35 3.1 Stiefel-Whitney Numbers ...................... 35 3.2 Cobordism Groups.......................... 37 3.3 Geometry of Thom Spaces...................... 38 3.4 L-equivalence and Transversality.................. 42 3.5 Characteristic Numbers and Boundaries.............. 47 4 K-Theory................................... 49 4.1 Bott Periodicity ............................ 49 4.2 The K-theory spectrum........................ 56 4.3 Some properties of K-theory..................... 58 4.4 An example: K-theory of S2 ..................... 59 4.5 Power Operations............................ 61 4.6 When is the Hopf Invariant one?.................. 64 4.7 The Splitting Principle........................ 66 5 Where do we go from here?........................ 68 5.1 The J-homomorphism ........................ 70 5.2 The Chern Character and e invariant............... -
Characteristic Classes and K-Theory Oscar Randal-Williams
Characteristic classes and K-theory Oscar Randal-Williams https://www.dpmms.cam.ac.uk/∼or257/teaching/notes/Kthy.pdf 1 Vector bundles 1 1.1 Vector bundles . 1 1.2 Inner products . 5 1.3 Embedding into trivial bundles . 6 1.4 Classification and concordance . 7 1.5 Clutching . 8 2 Characteristic classes 10 2.1 Recollections on Thom and Euler classes . 10 2.2 The projective bundle formula . 12 2.3 Chern classes . 14 2.4 Stiefel–Whitney classes . 16 2.5 Pontrjagin classes . 17 2.6 The splitting principle . 17 2.7 The Euler class revisited . 18 2.8 Examples . 18 2.9 Some tangent bundles . 20 2.10 Nonimmersions . 21 3 K-theory 23 3.1 The functor K ................................. 23 3.2 The fundamental product theorem . 26 3.3 Bott periodicity and the cohomological structure of K-theory . 28 3.4 The Mayer–Vietoris sequence . 36 3.5 The Fundamental Product Theorem for K−1 . 36 3.6 K-theory and degree . 38 4 Further structure of K-theory 39 4.1 The yoga of symmetric polynomials . 39 4.2 The Chern character . 41 n 4.3 K-theory of CP and the projective bundle formula . 44 4.4 K-theory Chern classes and exterior powers . 46 4.5 The K-theory Thom isomorphism, Euler class, and Gysin sequence . 47 n 4.6 K-theory of RP ................................ 49 4.7 Adams operations . 51 4.8 The Hopf invariant . 53 4.9 Correction classes . 55 4.10 Gysin maps and topological Grothendieck–Riemann–Roch . 58 Last updated May 22, 2018. -
Characteristic Classes and Smooth Structures on Manifolds Edited by S
7102 tp.fh11(path) 9/14/09 4:35 PM Page 1 SERIES ON KNOTS AND EVERYTHING Editor-in-charge: Louis H. Kauffman (Univ. of Illinois, Chicago) The Series on Knots and Everything: is a book series polarized around the theory of knots. Volume 1 in the series is Louis H Kauffman’s Knots and Physics. One purpose of this series is to continue the exploration of many of the themes indicated in Volume 1. These themes reach out beyond knot theory into physics, mathematics, logic, linguistics, philosophy, biology and practical experience. All of these outreaches have relations with knot theory when knot theory is regarded as a pivot or meeting place for apparently separate ideas. Knots act as such a pivotal place. We do not fully understand why this is so. The series represents stages in the exploration of this nexus. Details of the titles in this series to date give a picture of the enterprise. Published*: Vol. 1: Knots and Physics (3rd Edition) by L. H. Kauffman Vol. 2: How Surfaces Intersect in Space — An Introduction to Topology (2nd Edition) by J. S. Carter Vol. 3: Quantum Topology edited by L. H. Kauffman & R. A. Baadhio Vol. 4: Gauge Fields, Knots and Gravity by J. Baez & J. P. Muniain Vol. 5: Gems, Computers and Attractors for 3-Manifolds by S. Lins Vol. 6: Knots and Applications edited by L. H. Kauffman Vol. 7: Random Knotting and Linking edited by K. C. Millett & D. W. Sumners Vol. 8: Symmetric Bends: How to Join Two Lengths of Cord by R. -
Characteristic Classes and Bounded Cohomology
DISS. ETH Nr. 15636 Characteristic Classes and Bounded Cohomology A dissertation submitted to the SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZURICH for the degree of Doctor of Mathematics presented by Michelle Karlsson Dipl. Math. Univ. Gen`eve born on the 25th of July 1976 citizen of Kerns (OW) accepted on the recommendation of Prof. Dr. Marc Burger, examiner Prof. Dr. Wolfgang L¨uck, co-examiner 2004 Acknowledgments I wish to express my sincere gratitude to Prof. Marc Burger for having taken me under his directorship and suggested to me a fascinating subject which brought me into several areas of mathematics. I am also grateful to Prof. Wolfgang L¨uck for kindly accepting to be the external examiner of this dissertation. For fruitful discussions related to my work I owe special thanks to Prof. Johan L. Dupont, PD. Oliver Baues and Prof. Alessandra Iozzi. Many thanks to the whole of Group 1 for providing a productive working environment. Espe- cially to Prof. Guido Mislin for organizing enlightening seminars and reading a short version of this work. Finally, I heartily thank my family and friends for their patience and constant support. Contents Introduction vii 1 Bundles 1 1.1 Principal bundles and classifying spaces . 1 1.1.1 Principal bundles . 1 1.1.2 Classifying spaces . 8 1.2 Elements of Differential geometry . 12 1.2.1 Connections . 12 1.2.2 Curvature . 17 1.3 Flat bundles . 20 1.3.1 Definition . 20 1.3.2 Transition functions . 21 1.3.3 The space of representations . 23 2 Simplicial complexes 25 2.1 Definitions . -
Chapter 2 C -Algebras
Chapter 2 C∗-algebras This chapter is mainly based on the first chapters of the book [Mur90]. Material bor- rowed from other references will be specified. 2.1 Banach algebras Definition 2.1.1. A Banach algebra C is a complex vector space endowed with an associative multiplication and with a norm k · k which satisfy for any A; B; C 2 C and α 2 C (i) (αA)B = α(AB) = A(αB), (ii) A(B + C) = AB + AC and (A + B)C = AC + BC, (iii) kABk ≤ kAkkBk (submultiplicativity) (iv) C is complete with the norm k · k. One says that C is abelian or commutative if AB = BA for all A; B 2 C . One also says that C is unital if 1 2 C , i.e. if there exists an element 1 2 C with k1k = 1 such that 1B = B = B1 for all B 2 C . A subalgebra J of C is a vector subspace which is stable for the multiplication. If J is norm closed, it is a Banach algebra in itself. Examples 2.1.2. (i) C, Mn(C), B(H), K (H) are Banach algebras, where Mn(C) denotes the set of n × n-matrices over C. All except K (H) are unital, and K (H) is unital if H is finite dimensional. (ii) If Ω is a locally compact topological space, C0(Ω) and Cb(Ω) are abelian Banach algebras, where Cb(Ω) denotes the set of all bounded and continuous complex func- tions from Ω to C, and C0(Ω) denotes the subset of Cb(Ω) of functions f which vanish at infinity, i.e. -
K-Theory and Characteristic Classes in Topology and Complex Geometry (A Tribute to Atiyah and Hirzebruch)
K-theory and characteristic classes in topology and complex geometry (a tribute to Atiyah and Hirzebruch) Claire Voisin CNRS, Institut de math´ematiquesde Jussieu CMSA Harvard, May 25th, 2021 Plan of the talk I. The early days of Riemann-Roch • Characteristic classes of complex vector bundles • Hirzebruch-Riemann-Roch. Ref. F. Hirzebruch. Topological Methods in Algebraic Geometry (German, 1956, English 1966) II. K-theory and cycle class • The Atiyah-Hirzebruch spectral sequence and cycle class with integral coefficients. • Resolutions and Chern classes of coherent sheaves Ref. M. Atiyah, F. Hirzebruch. Analytic cycles on complex manifolds (1962) III. Later developments on the cycle class • Complex cobordism ring. Kernel and cokernel of the cycle class map. • Algebraic K-theory and the Bloch-Ogus spectral sequence The Riemann-Roch formula for curves • X= compact Riemann surface (= smooth projective complex curve). E ! X a holomorphic vector bundle on X. •E the sheaf of holomorphic sections of E. Sheaf cohomology H0(X; E)= global sections, H1(X; E) (eg. computed as Cˇech cohomology). Def. (holomorphic Euler-Poincar´echaracteristic) χ(X; E) := h0(X; E) − h1(X; E). • E has a rank r and a degree deg E = deg (det E) := e(det E). • X has a genus related to the topological Euler-Poincar´echaracteristic: 2 − 2g = χtop(X). • Hopf formula: 2g − 2 = deg KX , where KX is the canonical bundle (dual of the tangent bundle). Thm. (Riemann-Roch formula) χ(X; E) = deg E + r(1 − g) Sketch of proof Sketch of proof. (a) Reduction to line bundles: any E has a filtration by subbundles Ei such that Ei=Ei+1 is a line bundle. -
Notes on the Chern-Character Maakestad H* Department of Mathematics, NTNU, Trondheim, Norway
Theory an ie d L A p d p Maakestad, J Generalized Lie Theory Appl 2017, 11:1 e l z i i c l a a t Journal of Generalized Lie r DOI: 10.4172/1736-4337.1000253 i o e n n s e G ISSN: 1736-4337 Theory and Applications Research Article Open Access Notes on the Chern-Character Maakestad H* Department of Mathematics, NTNU, Trondheim, Norway Abstract Notes for some talks given at the seminar on characteristic classes at NTNU in autumn 2006. In the note a proof of the existence of a Chern-character from complex K-theory to any cohomology Lie theory with values in graded Q-algebras equipped with a theory of characteristic classes is given. It respects the Adams and Steenrod operations. Keywords: Chern-character; Chern-classes; Euler classes; Singular H* : Top→−Q algebras cohomology; De Rham-cohomology; Complex K-theory; Adams operations; Steenrod operations from the category of topological spaces to the category of graded commutative Q-algebras with respect to continuous maps of topological Introduction spaces. We say the theory satisfy the projective bundle property if the The aim of this note is to give an axiomatic and elementary following axioms are satisfied: For any rankn complex continuous treatment of Chern-characters of vectorbundles with values in a vectorbundle E over a compact space B There is an Euler class. class of cohomology-theories arising in topology and algebra. Given ∈ 2 uE H (P(E)) (1) a theory of Chern-classes for complex vectorbundles with values in → singular cohomology one gets in a natural way a Chern-character from Where π:P(E) B is the projective bundle associated to E. -
Characteristic Classes on Grassmannians
Turkish Journal of Mathematics Turk J Math (2014) 38: 492 { 523 http://journals.tubitak.gov.tr/math/ ⃝c TUB¨ ITAK_ Research Article doi:10.3906/mat-1302-54 Characteristic classes on Grassmannians Jin SHI1, Jianwei ZHOU2;∗ 1Suzhou Senior Technical Institute, Suzhou, P.R. China 2Department of Mathematics, Suzhou University, Suzhou, P.R. China Received: 27.02.2013 • Accepted: 03.04.2013 • Published Online: 14.03.2014 • Printed: 11.04.2014 Abstract: In this paper, we study the geometry and topology on the oriented Grassmann manifolds. In particular, we use characteristic classes and the Poincar´eduality to study the homology groups of Grassmann manifolds. We show that for k = 2 or n ≤ 8, the cohomology groups H∗(G(k; n); R) are generated by the first Pontrjagin class, the Euler classes q of the canonical vector bundles. In these cases, the Poincar´eduality: H (G(k; n); R) ! Hk(n−k)−q(G(k; n); R) can be expressed explicitly. Key words: Grassmann manifold, fibre bundle, characteristic class, homology group, Poincar´eduality 1. Introduction Let G(k; n) be the Grassmann manifold formed by all oriented k -dimensional subspaces of Euclidean space n R . For any π 2 G(k; n), there are orthonormal vectors e1; ··· ; ek such that π can be represented by V k n e1 ^ · · · ^ ek . Thus G(k; n) becomes a submanifold of the space (R ); then we can use moving frame to study the Grassmann manifolds. There are 2 canonical vector bundles E = E(k; n) and F = F (k; n) over G(k; n) with fibres generated by vectors of the subspaces and the vectors orthogonal to the subspaces, respectively. -
GROUP REPRESENTATIONS and CHARACTER THEORY Contents 1
GROUP REPRESENTATIONS AND CHARACTER THEORY DAVID KANG Abstract. In this paper, we provide an introduction to the representation theory of finite groups. We begin by defining representations, G-linear maps, and other essential concepts before moving quickly towards initial results on irreducibility and Schur's Lemma. We then consider characters, class func- tions, and show that the character of a representation uniquely determines it up to isomorphism. Orthogonality relations are introduced shortly afterwards. Finally, we construct the character tables for a few familiar groups. Contents 1. Introduction 1 2. Preliminaries 1 3. Group Representations 2 4. Maschke's Theorem and Complete Reducibility 4 5. Schur's Lemma and Decomposition 5 6. Character Theory 7 7. Character Tables for S4 and Z3 12 Acknowledgments 13 References 14 1. Introduction The primary motivation for the study of group representations is to simplify the study of groups. Representation theory offers a powerful approach to the study of groups because it reduces many group theoretic problems to basic linear algebra calculations. To this end, we assume that the reader is already quite familiar with linear algebra and has had some exposure to group theory. With this said, we begin with a preliminary section on group theory. 2. Preliminaries Definition 2.1. A group is a set G with a binary operation satisfying (1) 8 g; h; i 2 G; (gh)i = g(hi)(associativity) (2) 9 1 2 G such that 1g = g1 = g; 8g 2 G (identity) (3) 8 g 2 G; 9 g−1 such that gg−1 = g−1g = 1 (inverses) Definition 2.2. -
The Chern Characteristic Classes
The Chern characteristic classes Y. X. Zhao I. FUNDAMENTAL BUNDLE OF QUANTUM MECHANICS Consider a nD Hilbert space H. Qauntum states are normalized vectors in H up to phase factors. Therefore, more exactly a quantum state j i should be described by the density matrix, the projector to the 1D subspace generated by j i, P = j ih j: (I.1) n−1 All quantum states P comprise the projective space P H of H, and pH ≈ CP . If we exclude zero point from H, there is a natural projection from H − f0g to P H, π : H − f0g ! P H: (I.2) On the other hand, there is a tautological line bundle T (P H) over over P H, where over the point P the fiber T is the complex line generated by j i. Therefore, there is the pullback line bundle π∗L(P H) over H − f0g and the line bundle morphism, π~ π∗T (P H) T (P H) π H − f0g P H . Then, a bundle of Hilbert spaces E over a base space B, which may be a parameter space, such as momentum space, of a quantum system, or a phase space. We can repeat the above construction for a single Hilbert space to the vector bundle E with zero section 0B excluded. We obtain the projective bundle PEconsisting of points (P x ; x) (I.3) where j xi 2 Hx; x 2 B: (I.4) 2 Obviously, PE is a bundle over B, p : PE ! B; (I.5) n−1 where each fiber (PE)x ≈ CP . -
Vector Bundles. Characteristic Classes. Cobordism. Applications
Math 754 Chapter IV: Vector Bundles. Characteristic classes. Cobordism. Applications Laurenţiu Maxim Department of Mathematics University of Wisconsin [email protected] May 3, 2018 Contents 1 Chern classes of complex vector bundles 2 2 Chern classes of complex vector bundles 2 3 Stiefel-Whitney classes of real vector bundles 5 4 Stiefel-Whitney classes of manifolds and applications 5 4.1 The embedding problem . .6 4.2 Boundary Problem. .9 5 Pontrjagin classes 11 5.1 Applications to the embedding problem . 14 6 Oriented cobordism and Pontrjagin numbers 15 7 Signature as an oriented cobordism invariant 17 8 Exotic 7-spheres 19 9 Exercises 20 1 1 Chern classes of complex vector bundles 2 Chern classes of complex vector bundles We begin with the following Proposition 2.1. ∗ ∼ H (BU(n); Z) = Z [c1; ··· ; cn] ; with deg ci = 2i ∗ Proof. Recall that H (U(n); Z) is a free Z-algebra on odd degree generators x1; ··· ; x2n−1, with deg(xi) = i, i.e., ∗ ∼ H (U(n); Z) = ΛZ[x1; ··· ; x2n−1]: Then using the Leray-Serre spectral sequence for the universal U(n)-bundle, and using the fact that EU(n) is contractible, yields the desired result. Alternatively, the functoriality of the universal bundle construction yields that for any subgroup H < G of a topological group G, there is a fibration G=H ,! BH ! BG. In our A 0 case, consider U(n − 1) as a subgroup of U(n) via the identification A 7! . Hence, 0 1 there exists fibration U(n)=U(n − 1) ∼= S2n−1 ,! BU(n − 1) ! BU(n): Then the Leray-Serre spectral sequence and induction on n gives the desired result, where 1 ∗ 1 ∼ we use the fact that BU(1) ' CP and H (CP ; Z) = Z[c] with deg c = 2.