European Forest Reserves \Rwv
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Preface to Artificial Key to Common and Noteworthy Species of Inocybe from the Pacific Northwest
Preface to Artificial Key to Common and Noteworthy Species of Inocybe from the Pacific Northwest This key is aimed at an audience familiar with the determination of agarics in general but unfamiliar with Inocybe. The key stresses gross morphological characters as I think appropriate before yielding to taxa that are better distinguished microscopically. 43 species are enumerated below and several others are mentioned, but probably over 100 occur in the Pacific Northwest, a region circumscribed to include British Columbia, Washington, Idaho, western Montana, Oregon, and northern California. Of the 43 species in the key, few are endemic to the region based on gross morphological species concepts. However, the key is recommended for use with Pacific Northwest material. Many eastern North American species of Inocybe, for example, do not occur in the Pacific Northwest and are excluded from this treatment. The genus Inocybe (Fr.) Fr. traditionally has encompassed dull brown-spored agarics that are ectomycorrhizal and frequently occur on soil; exhibit a dry pileus that is often rimose, fibrillose, or scaly; and have a distinctive smell that is often spermatic or less often fruity, sweet, aromatic, like bruised Geranium leaves, like Lycoperdon, or green corn. Species of Hebeloma differ by their gelatinous pileus, often radish smell, typically verrucose basidiospores, and absence of metuloid cystidia. Decomposers such as Phaeomarasmius and Flammulaster differ by their occurrence on woody debris and lack of metuloid cystidia. The Crepidotaceae, including Pleuroflammula and Simocybe, is the closest related group to Inocybe, which I treat as a separate family in its own right (see Matheny et al. (2006) Mycologia 98:982- 995). -
Chapter 1 What Is a Plant?
OUP CORRECTED PROOF – FINAL, 02/17/12, SPi C h a p t e r 1 What is a plant? Plants, like love, are easier to recognize than to defi ne. At the entrance to many areas of outstanding natural beauty in England can be seen a sign that asks visitors to avoid ‘damaging trees and plants’. It is fair to ask in what way is a tree not a plant. A plant is often defi ned simply as a green, immobile organism that is able to feed itself (autotrophic) using photosynthesis. This is a heuristic defi nition for plants that can be refi ned if some more characters are added. Sometimes plants are described as organisms with the following combination of features: 1) the possession of chlorophyll and the ability to photosynthesize sugar from water and carbon dioxide; 2) a rigid cell wall made of cellulose; 3) storage of energy as carbohydrate and often as starch; 4) unlimited growth from an area of dividing and differentiating tissue known as a meristem; 5) cells with a relatively large vacuole fi lled with watery sap. So trees are clearly plants, and it is not diffi cult to think of other organisms that are unequivocally plants even though they lack one or more of these characteristics. For example, the orchid Corallorhiza wisteriana has the fl owers of an orchid, produces tiny seeds typical of the family Orchidaceae, and has the vascular tissue that you fi nd in the majority of land plants. However, what 1 OUP CORRECTED PROOF – FINAL, 02/17/12, SPi it does not have are green leaves, because this orchid is mycotrophic, meaning that it lives off fungi which themselves derive their energy from decaying material in the forest fl oor. -
The Importance of Protected Natural Areas
http://proceedings.lumenpublishing.com/ojs/index.php/lumenproceedings International Conference « Global interferences of knowledge society », November 16-17th, 2018, Targoviste, Romania Global Interferences of Knowledge Society The Importance of Protected Natural Areas Constantin POPESCU, Maria-Luiza HRESTIC https://doi.org/10.18662/lumproc.137 How to cite: Popescu, C., & Hrestic, M.-L. (2019). The Importance of Protected Natural Areas. In M. Negreponti Delivanis (ed.), International Conference «Global interferences of knowledge society», November 16-17th, 2018, Targoviste, Romania (pp. 201-212). Iasi, Romania: LUMEN Proceedings. https://doi.org/10.18662/lumproc.137 © The Authors, LUMEN Conference Center & LUMEN Proceedings. Selection and peer-review under responsibility of the Organizing Committee of the conference International Conference « Global interferences of knowledge society », November 16-17th, 2018, Targoviste, Romania The Importance of Protected Natural Areas Constantin POPESCU1, Maria-Luiza HRESTIC2* Abstract Economic relationships lead to the determination of behavior towards resources, including those related to biodiversity. Economic relationships lead to the determination of behavior towards resources, including those related to biodiversity. Human interventions are not negative only by making maximum use of biological resources, but also through activities that do not directly target these categories. The main ways humans contribute to the degradation of biodiversity are: modification and destruction of habitats, voluntary and involuntary transfer of species, overexploitation in all areas, starting with resources. The purpose of this research is to highlight the importance of protected areas in the world, as well as in Romania, highlighting economic activities that help to preserve and protect nature and the natural environment, activities that are included in management plans for sustainable development. -
Book of Abstracts
Annual Zoological Congress of “Grigore Antipa” Museum 23-25 November 2011 Bucharest - Romania Book of Abstracts Edited by: Dumitru Murariu, Costică Adam, Gabriel Chişamera, Elena Iorgu, Luis Ovidiu Popa, Oana Paula Popa Annual Zoological Congress of “Grigore Antipa” Museum 23-25 NOVEMBER 2011 BUCHAREST, ROMANIA Book of Abstracts Edited by: Dumitru Murariu, Costică Adam, Gabriel Chişamera, Elena Iorgu, Luis Ovidiu Popa, Oana Paula Popa DEDICATION CZGA 2011 is dedicated to the memory of Academician Nicolae BOTNARIUC, Senior researcher Teodor T. NALBANT, Professor Dr. Constantin PISICĂ, Dr. Alexandrina NEGREA CZGA 2011 Organizing Committee Chair: Dumitru MURARIU (“Grigore Antipa” National Museum of Natural History) Members: Costică ADAM (“Grigore Antipa” National Museum of Natural History) Gabriel CHIŞAMERA (“Grigore Antipa” National Museum of Natural History) Marieta COSTACHE (Faculty of Biology, University of Bucharest, Romania) Elena Iulia IORGU (“Grigore Antipa” National Museum of Natural History) Ionuţ Ştefan IORGU (“Grigore Antipa” National Museum of Natural History) Luis Ovidiu POPA (“Grigore Antipa” National Museum of Natural History) Oana Paula POPA (“Grigore Antipa” National Museum of Natural History) Melanya STAN (“Grigore Antipa” National Museum of Natural History) CZGA 2011 Scientific Committee Chair: Acad. Dr. Maya SIMIONESCU President of the Section of Biological Sciences - Romanian Academy; Director of the Institute for Cellular Biology and Pathology “Nicolae Simionescu”, The Romanian Academy, Bucharest, Romania Members: Conf. univ. Dr. Luminiţa BEJENARU Faculty of Biology, “Alexandru Ioan Cuza” University of Iaşi, Romania Dr. Imad CHERKAOUI Biology Department, Faculty of Sciences, “Mohammed V” University - Agdal, Rabat, Morocco; Head of the BirdLife Morocco Country Programme; SEO/BirdLife International representative and WetCap project Regional Coordinator Prof. -
Herbariet Publ 2010-2019 (PDF)
Publikationer 2019 Amorim, B. S., Vasconcelos, T. N., Souza, G., Alves, M., Antonelli, A., & Lucas, E. (2019). Advanced understanding of phylogenetic relationships, morphological evolution and biogeographic history of the mega-diverse plant genus Myrcia and its relatives (Myrtaceae: Myrteae). Molecular phylogenetics and evolution, 138, 65-88. Anderson, C. (2019). Hiraea costaricensis and H. polyantha, Two New Species Of Malpighiaceae, and circumscription of H. quapara and H. smilacina. Edinburgh Journal of Botany, 1-16. Athanasiadis, A. (2019). Carlskottsbergia antarctica (Hooker fil. & Harv.) gen. & comb. nov., with a re-assessment of Synarthrophyton (Mesophyllaceae, Corallinales, Rhodophyta). Nova Hedwigia, 108(3-4), 291-320. Athanasiadis, A. (2019). Amphithallia, a genus with four-celled carpogonial branches and connecting filaments in the Corallinales (Rhodophyta). Marine Biology Research, 15(1), 13-25. Bandini, D., Oertel, B., Moreau, P. A., Thines, M., & Ploch, S. (2019). Three new hygrophilous species of Inocybe, subgenus Inocybe. Mycological Progress, 18(9), 1101-1119. Baranow, P., & Kolanowska, M. (2019, October). Sertifera hirtziana (Orchidaceae, Sobralieae), a new species from southeastern Ecuador. In Annales Botanici Fennici (Vol. 56, No. 4-6, pp. 205-209). Barboza, G. E., García, C. C., González, S. L., Scaldaferro, M., & Reyes, X. (2019). Four new species of Capsicum (Solanaceae) from the tropical Andes and an update on the phylogeny of the genus. PloS one, 14(1), e0209792. Barrett, C. F., McKain, M. R., Sinn, B. T., Ge, X. J., Zhang, Y., Antonelli, A., & Bacon, C. D. (2019). Ancient polyploidy and genome evolution in palms. Genome biology and evolution, 11(5), 1501-1511. Bernal, R., Bacon, C. D., Balslev, H., Hoorn, C., Bourlat, S. -
Room with a View David Jewell
©Matt Pringle Room with a view David Jewell ew can enjoy such and both noteworthy subtle-pink, and a chocolate- F an interesting and champion trees. Nearby, with brown Forrest collection aesthetically pleasing view a vertical bole, fissured trunk (Forr 15381) (figs 3 & 4). A from their office window as and mop-headed crown, fine shrubby birch,B. calcicola I do: from Jermyn’s house at Pinus engelmanii (figs 1 & 2) (fig. 5), deserves closer the Sir Harold Hillier Gardens, is a personal favourite; from inspection. It has an upright I have an aerial view of the Mexico, its evergreen, rough, habit, stout twigs and pointed Magnolia Avenue surrounded needle-like foliage is almost leaves with sixteen or more by woody plants established 25cm long. It twists and turns pairs of closely spaced here more than 50 years ago during windy weather and in impressed veins. Collected from around the world. winter, when the rest of the by plantsman Roy Lancaster, To my right are two fine garden is laid bare, it is majestic! it was found growing in examples of narrow-columned The area includes different limestone crevices in the Jade Dawyck beech trees, one forms of the Himalayan birch, Dragon Mountains of north purple and the other golden, Betula utilis, in shades of white, western Yunnan. To the left a dome of pale foliage rises above the avenue to reveal the Katsura tree from Japan, ©Matt Pringle ©Matt Pringle Cercidyphyllum japonicum; in autumn its foliage turns yellow to smokey pink and the candy-floss scent carries well on the lightest breeze. -
Identification of Cuscuta Campestris Yuncker In
Identification of Cuscuta campestris Yuncker in UAE: study of bar code loci - rbcL, matK and trnH - psbA in the UAE and Egyptian cultivars and in the respective host plants basil and jute Abdallah Alsaadi, Mohammed Saif, Mahmoud Yasser , Suruchika Gaur, Houssam El - wakil, Lina Maloukh & T.V.R. Lakshmi College of Biotechnology University of Modern Sciences Dubai , United Arab Emirates Abstract — Cuscuta campestris is a stem holoparasite. We observed throw challenge to taxonomists for correct identification of the Cuscuta parasite on basil host plant Ocimum basilicum, in Al species. Correct identification of the parasite is mandatory as Mohadub Umm Al Quwain, UAE. The parasite was pale green in different species of Cuscuta ca use gross losses in the crop color, twined around the host in anti - clock wise direction, with yields that range from 86 - 18% for di fferent crops that they white flowers that had green ovaries at maturity. Based on the infect (Mishra et al., 2007) . Besides, dodders are difficult to morphol ogy and floral structures, we identified the parasite as C. campestris Yuncker. To authenticate the species, three “Bar - code eradicate as they are known for easy spread through their seed loci” viz, rbcL, matK and inter - spacer region trnH - psbA were which survive for many years in soil. Ea rly detection and studied. A portion of rbcL locus and the trnH - psbA non - coding correct identification of the species is a prerequisite for its spacer r egion seem to be intact, revealed by PCR amplification and eradication of the parasite which is attempted in the present sequencing, while three sets of primers failed to amplify the study. -