M-Theory and Quantum Geometry NATO Science Series

Total Page:16

File Type:pdf, Size:1020Kb

M-Theory and Quantum Geometry NATO Science Series M-Theory and Quantum Geometry NATO Science Series A Series presenting the results of activities sponsored by the NATO Science Committee. The Series is published by lOS Press and Kluwer Academic Publishers, in conjunction with the NATO Scientific Affairs Division. A. Life Sciences lOS Press B. Physics Kluwer Academic Publishers C. Mathematical and Physical Sciences Kluwer Academic Publishers D. Behavioural and Social Sciences Kluwer Academic Publishers E. Applied Sciences Kluwer Academic Publishers F. Computer and Systems Sciences lOS Press 1. DisarmamentTechnologies Kluwer Academic Publishers 2. Environmental Security Kluwer Academic Publishers 3. High Technology Kluwer Academic Publishers 4. Science and Technology Policy lOS Press 5. Computer Networking lOS Press NATO-PCO-DATA BASE The NATO Science Series continues the series of books published formerly in the NATO ASI Series. An electronic index to the NATO ASI Series provides full bibliographical references (with keywords and/or abstracts) to more than 50000 contributions from international scientists published in all sections of the NATO ASI Series. Access to the NATO-PCO-DATA BASE is possible via CD-ROM "NATO-PCO-DATA BASE" with user-friendly retrieval software in English, French and German (WTV GmbH and DATAWARE Technologies Inc. 1989). The CD-ROM of the NATO ASI Series can be ordered from: PCO, Overijse, Belgium Series C: Mathematical and Physical Sciences - Vol. 556 M-Theory and Quantum Geometry Edited by Larus Thorlacius Seienee Institute, University of lee land and Thordur Jonsson Seienee Institute, University of leeland .... "Springer-Science+Business Media, BV. Proceedings of the NATO Advanced Study Institute on Quantum Geometry Akureyri, Iceland August 9-20, 1999 A C.I.P. Catalogue record for this book is available from the Library of Congress. ISBN 978-0-7923-6475-7 ISBN 978-94-011-4303-5 (eBook) DOI 10.1007/978-94-011-4303-5 Printed on acid-free paper All Rights Reserved © 2000 Springer Science+Business Media Dordrecht Originally published by Kluwer Academic Publishers in 2000 Softcover reprint of the hardcover 1st edition 2000 No part of the material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording or by any information storage and retrieval system, without written permission from the copyright owner. Table of Contents Preface Xl 1 D BRANES IN STRING THEORY, I P. Di Vecchia and A. Liccardo 1 Introduction............... 1 2 Perturbative String Theory . 2 3 Conformal Field Theory Formulation . 11 4 T-Duality................ 20 5 Classical Solutions Of The Low-Energy String Effective Action 28 6 Bosonic Boundary State . 30 7 Fermionic Boundary State . 39 8 Classical Solutions From Boundary State 46 9 Interaction Between a p and a p' Brane 48 2 MODULI SPACES OF CALABI-YAU COMPACTIFICATIONS J. Louis 1 Introduction. 61 2 A short story about string theory, F-theory and M-theory 61 2.1 String Theory ........ 61 2.2 Calabi-Yau compactifications 63 2.3 String Dualities. 64 2.4 F -Theory . 66 2.5 M-Theory ......... 67 2.6 Three Triplets of Dualities. 68 3 The q = 16 triplet .. 68 4 The q = 8 triplets 72 A Calabi-Yau manifolds 83 3 THE M(ATRIX) MODEL OF M-THEORY w. Taylor 1 Introduction................... 91 2 Matrix theory from the quantized supermembrane 92 2.1 Review of light-front string ........ 95 vi 2.2 The bosonic membrane theory . 96 2.3 The light-front bosonic membrane 98 2.4 Matrix regularization .... 100 2.5 The bosonic membrane in a general background 103 2.6 The supermembrane . .. 104 2.7 Covariant membrane quantization 110 3 The BFSS conjecture . 111 3.1 Membrane "instability" 112 3.2 M-theory........ 114 3.3 The BFSS conjecture 115 3.4 Matrix theory as a second quantized theory 116 3.5 Matrix theory and DLCQ M-theory 118 4 M-theory objects from matrix theory. 123 4.1 Supergravitons 123 4.2 Membranes........... 125 4.3 5-branes . 133 4.4 Extended objects from matrices. 137 5 Interactions in matrix theory 139 5.1 Two-body interactions ..... 140 5.2 The N-body problem ...... 156 5.3 Longitudinal momentum transfer 160 6 Matrix theory in a general background . 160 6.1 T-duality .... ....... 161 6.2 Matrix theory on tori ..... 163 6.3 Matrix theory in curved backgrounds. 165 7 Outlook .. .. .. ... ...... 168 4 THE HOLOGRAPHIC PRINCIPLE D. Bigatti and L. Susskind 1 Black Hole Complementarity .... 179 1.1 The Schwarz schild Black Hole . 180 1.2 Penrose Diagrams ..... 184 1.3 Black Hole Thermodynamics 185 1.4 The Thermal Atmosphere ... 189 1.5 The Quantum Xerox Principle 190 1.6 Information Retention Time .. 192 1. 7 Quantum Xerox Censorship . 194 1.8 Baryon Violation and Black Hole Horizons 195 1.9 String Theory at High Frequency ... 197 1.10 The Space Time Uncertainty Relation 199 2 Entropy Bounds ..... 201 2.1 Maximum Entropy .......... 201 vii 2.2 Entropy on Light-Like Surfaces 203 2.3 Robertson Walker Geometry 205 2.4 Bousso's Generalization . 206 3 The AdS / CFT Correspondence and the Holographic Principle . 210 3.1 AdS Space .. .. ..... 210 3.2 Holography in AdS Space . 211 3.3 The AdS/CFT Correspondence. 212 3.4 The Infrared Ultraviolet Connection 214 3.5 Counting Degrees of Freedom 215 3.6 AdS Black Holes 216 3.7 The Horizon .... 217 4 The Flat Space Limit ... 218 4.1 The Flat Space Limit 219 4.2 High Energy Gravitons Deep in the Bulk 220 4.3 Kaluza Klein Modes . 222 5 BORN-INFELD ACTIONS AND D-BRANE PHYSICS C.G. Callan 1 D-Brane Solitons and the Born-Infeld Action . ... 227 2 Born-Infeld Dynamics of Branes in Flat Space. .. 231 3 Branes in Curved Space and the Gauge Theory Connection 234 4 Born-Infeld Analysis of the Baryon Vertex. 240 5 Applications of the AdS/CFT Correspondence 245 6 Summary ......... .. ... ... .. 252 6 LECTURESONSUPERCONFORMALQUANTUM MECHANICS AND MULTI-BLACK HOLE MODULI SPACES R. Britto-Pacumio, J. Michelson, A. Strominger, and A. Volovich 1 Introduction....... .............. 255 2 A Simple Example of Conformal Quantum Mechanics 257 3 Conformally Invariant N-Particle Quantum Mechanics 259 4 Superconformal Quantum Mechanics . 261 4.1 A Brief Diversion on Supergroups ... 261 4.2 Quantum Mechanical Supermultiplets . 263 4.3 Osp(112)- Invariant Quantum Mechanics 264 4.4 D(2, 1; a)-Invariant Quantum Mechanics 267 5 The Quantum Mechanics of a Test Particle in a R eissner- Nordstrom Background . ................... 271 V11l 6 Quantum Mechanics on the Black Hole Moduli Space 274 6.1 The black hole moduli space metric 274 6.2 The Near-Horizon Limit 276 6.3 Conformal Symmetry .. 277 7 Discussion . 278 A Differential Geometry with Torsion 279 7 LARGE-N GAUGE THEORIES Y . Makeenko 1 . Introduction ... ... .. .. 285 2 O(N) Vector Models . .. .. 286 2.1 Four-Fermi Interaction 287 2.2 Bubble graphs as zeroth order in l/N 290 2.3 Scale and Conformal Invariance of Four-Fermi Theory 292 2.4 Nonlinear sigma model .. .. .... 297 2.5 Large-N factorization in vector models . 300 3 Large-N QCD .. ... .. .. .. .. 300 3.1 Index or ribbon graphs . 301 3.2 Planar and non-planar graphs . 305 3.3 Topological expansion and quark loops . 312 3.4 Large-Nc factorization . 315 3.5 The master field .. .. .... 317 3.6 1/Nc as semiclassical expansion . 319 4 QCD in Loop Space . .... .. ... 321 4.1 Observables in terms of Wilson loops . 322 4.2 Schwinger- Dyson equations for Wilson loop 324 4.3 P ath and area derivatives .. 326 4.4 Loop equations . 330 4.5 Relation to planar diagrams . 332 4.6 Loop-space Laplacian and regularization . 333 4.7 Survey of non-perturbative solutions 337 4.8 Wilson loops in QCD2 . 338 5 Large-N Reduction .. .... ... 342 5.1 Reduction of scalar field . 342 5.2 Reduction of Yang-Mills field 347 5·.3 Rd-symmetry in perturbation theory 349 5.4 Twisted reduced model .. ..... 350 8 INTRODUCTION TO RANDOM SURFACES T. Jonsson 1 Introd uction. .. .. .. 355 ix 2 Random paths ............. 356 2.1 Lattice paths . 357 2.2 Dynamically triangulated paths. 359 3 Branched polymers . 362 3.1 Extrinsic properties .. 362 3.2 Intrinsic properties ... 366 4 Dynamicaly triangulated surfaces 368 4.1 Definitions . ... 368 4.2 Basic properties 369 4.3 The string tension 370 4.4 Further results 372 5 Lattice surfaces . 373 5.1 Definitions .... 373 5.2 Critical behaviour 375 6 Conclusion ....... 378 9 LORENTZIAN AND EUCLIDEAN QUANTUM GRAVITY - ANALYTICAL AND NUMERICAL RESULTS J. Ambj0rn, J. Jurkiewicz, and R. Loll 1 Introduction.. .. ..... 382 2 Lorentzian gravity in 2d . 385 2.1 The discrete model . 385 2.2 The continuum limit 389 3 Topology changes and Euclidean quantum gravity 394 3.1 Baby universe creation .... ..... .. 394 3.2 The fractal dimension of Euclidean 2d gravity. 401 4 Euclidean quantum gravity . 403 4.1 Some generalities .... 403 4.2 Dynamical triangulations 404 4.3 The functional integral .. 407 4.4 Inclusion of matter fields 408 5 Numerical setup ... .... 410 5.1 Monte Carlo method and ergodic moves 410 5.2 Observables in 2d Euclidean gravity .. 417 5.3 Comments on the 2d results. 428 6 Dynamically triangulated quantum gravity in d > 2 . 433 6.1 Generalization to higher dimensions . 433 6.2 Numerical results in higher dimensions . 438 7 Outlook 442 INDEX . 451 PREFACE The fundamental structure of matter and spacetime at the shortest length scales remains an exciting frontier of basic research in theoretical physics. A unifying theme in this area is the quantization of geometrical objects. The majority of lectures at the Advanced Study Institute on Quantum Ge­ ometry in Akureyri was on recent advances in superstring theory, which is the leading candidate for a unified description of all known elementary par­ ticles and interactions.
Recommended publications
  • Autumn Department of Physics Newsletter Issue
    Autumn 2018, Number 13 Department of Physics Newsletter BEECROFT BUILDING OFFICIAL OPENING BEAUTIFUL HIGGS BOSON DECAYS MAGNETIC PINWHEELS EXTREME BEAM CONTROL COSMIC SHOCKS IN THE LABORATORY PEOPLE, EVENTS AND MORE www.physics.ox.ac.uk PROUD WINNERS OF: SCIENCE NEWS SCIENCE NEWS www.physics.ox.ac.uk/research www.physics.ox.ac.uk/research BEAUTIFUL HIGGS BOSON EXTREME BEAM CONTROL An Oxford team has succeeded in stabilising the arrival time of a ‘relativistic’ beam of electrons, travelling at almost the speed of light, to 50 femtoseconds. This overcomes one of the major challenges facing the proposed DECAYS Compact Linear Collider (CLIC). On 28 August 2018 the ATLAS and Higgs from the background. These Standard Model, the prevailing theory CMS collaborations announced, with results were used in the final Tevatron of particle physics. If this prediction had a seminar at CERN, the observation of combination, which reached almost turned out to be incorrect, it would have the Higgs boson decaying into pairs of three standard deviations in 2012, not shaken the foundations of the Standard beauty (b) quarks. Both experiments enough for a discovery. Model and pointed to new physics. at the Large Hadron Collider (LHC) Instead, this is an important milestone had surpassed the five standard and a beautiful confirmation of the EXPERIMENTAL CONFIRMATION deviations (sigma) mark for this process, so-called 'Yukawa couplings', which in Prof Daniela Bortoletto which is the convention in particle Goethe said: ‘Not art and science the Standard Model give masses to all Head of Particle Physics physics to claim a discovery. Five- serve alone; patience must in the quarks and leptons, the building blocks sigma corresponds to a probability of work be shown.’ It was with patience, of matter.
    [Show full text]
  • TRAPPING a STAR in a MAGNETIC DOUGHNUT the Physics of Magnetic Confinement Fusion
    Spring 2016, Number 8 Department of Physics Newsletter TRAPPING A STAR IN A MAGNETIC DOUGHNUT The physics of magnetic confinement fusion RATTLING DARK MATTER THE CAGE: IN OUR GALAXY Making new superconductors Novel dynamics is bringing the Galaxy's and gravitational waves: using lasers dark matter into much sharper focus a personal reaction ALUMNI STORIES EVENTS PEOPLE Richard JL Senior and Elspeth Garman Remembering Dick Dalitz; Oxford Five minutes with Geoff Stanley; reflect on their experiences celebrates Nobel Prize; Physics Challenge Awards and Prizes Day and many more events www.physics.ox.ac.uk SCIENCE NEWS SCIENCE NEWS www.physics.ox.ac.uk/research www.physics.ox.ac.uk/research Prof James Binney FRS Right: Figure 2. The red arrows show the direction of the Galaxy’s gravitational field by our current DARK MATTER reckoning. The blue lines show the direction the field would have if the disc were massless. The mass © JOHN CAIRNS JOHN © IN OUR GALAXY of the disc tips the field direction In the Rudolf Peierls Centre for Theoretical Physics novel dynamics is towards the equatorial plane. A more massive disc would tip it bringing the Galaxy's dark matter into much sharper focus further. Far right: Figure 3. The orbits in In 1937 Fritz Zwicky pointed out that in clusters of clouds of hydrogen to large distances from the centre of the R plane of two stars that both galaxies like that shown in Fig. 1, galaxies move much NGC 3198. The data showed that gas clouds moved on z move past the Sun with a speed of faster than was consistent with estimates of the masses perfectly circular orbits at a speed that was essentially 72 km s−1.
    [Show full text]
  • Boundary and Defect CFT: Open Problems and Applications
    Boundary and Defect CFT: Open Problems and rspa.royalsocietypublishing.org Applications Research N. Andrei1, A. Bissi2, M. Buican3, J. Cardy4;5, P. Dorey6, N. Drukker7, Article submitted to journal J. Erdmenger8, D. Friedan1;9, D. Fursaev10, A. Konechny11;12, C. Kristjansen13, Subject Areas: Theoretical Physics, Mathematical I. Makabe7, Y. Nakayama14, A. O’Bannon15, Physics R. Parini16, B. Robinson15, S. Ryu17, Keywords: C. Schmidt-Colinet18, V. Schomerus19, Conformal Field Theory, Boundaries and Defects, Non-Perturbative C. Schweigert20, and G.M.T. Watts7 Effects, Holographic Duality, 1 Supersymmetry Dept. of Phys., Rutgers Univ., Piscataway, NJ, USA. 2Dept. of Phys. and Astro., Uppsala Univ., SE 3 Author for correspondence: CRST and SPA, Queen Mary Univ. of London, UK B. Robinson 4Dept. of Phys., Univ. of California, Berkeley, CA, USA e-mail: [email protected] 5All Souls College, Oxford, UK 6Dept. of Math. Sci., Durham Univ., UK 7Dept. of Maths, King’s College London, UK 8Julius-Maximilians-Univ. Würzburg, DE 9 Natural Science Inst., Univ. of Iceland, IS 10Dubna State Univ., Dubna, RU 11Dept. of Maths, Heriot-Watt Univ., Edinburgh, UK 12Maxwell Inst. for Math. Sci., Edinburgh, UK 13Niels Bohr Inst., Copenhagen Univ., , DK 14Dept. of Phys., Rikkyo Univ., Tokyo, JP 15STAG Research Centre, Univ. of Southampton, UK 16Department of Mathematics, University of York, UK 17J. Franck Inst. & KCTP., Univ. of Chicago, IL, USA 18Arnold Sommerfeld Center, Univ. München, DE arXiv:1810.05697v1 [hep-th] 12 Oct 2018 19DESY Theory Group, DESY Hamburg, Hamburg, DE 20Fachbereich Math., Univ. Hamburg, Hamburg, DE Proceedings of the workshop “Boundary and Defect Conformal Field Theory: Open Problems and Applications,” Chicheley Hall, Buckinghamshire, UK, 7-8 Sept.
    [Show full text]
  • Dansk Matematisk Forening Mat-Nyt Calendar
    DANSK MATEMATISK FORENING MAT-NYT CALENDAR This document is a hard copy of all entries in the electronic Mat-Nyt calendar of the Danish Mathematical Society covering the period 2004-1-1 – 2004-2-1. Produced Thu Jan 5, 2006 1 MAT-NYT The Danish National Research Foundation Network in Mathematical Physics and Stochastics Mathematical Physics Seminar A Hamiltonian model for linear friction Stephan de Bievre, Villeneuve d’Ascq, France Mon Jan 19 2004, 14:15 - 15:15 Abstract I will present a Hamiltonian model of a particle coupled to a suitable wave field, describing the particle’s environment, in which a simple version of Ohm’s law is valid. When an external force is applied, the particle reaches asymptotically a constant speed proportional to the applied field. I will review the related literature, compare this phenomenon to the one of radiative dissipation, and indicate some of the many open problems Organized by MPS Editor 2004-01-16 13:44:36 ( [email protected] / [email protected] ) 2 MAT-NYT INSTITUT FOR MATEMATISKE FAG MATEMATISK AFDELING KØBENHAVNS UNIVERSITET ALGEBRA SEMINAR The Inverse problem in Gr¨obner basis theory Amelia Taylor, Assistant Professor, St. Olaf College USA Mon Jan 19 2004, 15:15 Abstract Given an ideal in a polynomial ring its initial ideal is easy to compute and is well studied using Gr¨obner basis theory. However, given a monomial ideal what can we say about the types of ideals it is the initial ideal for, that is do we know anything about the inverse problem for Gr¨obner basis theory? This question as stated is currently considered to be too broad, however progress has been made in determining when a monomial ideal is the initial ideal of a prime ideal and in most of the known cases we can we construct the prime ideal.
    [Show full text]
  • Oxfordcolleges
    Oxford colleges Oxford University is made up of different colleges. Colleges are academic communities. They are where students usually have their tutorials. Each one has its own dining hall, bar, common room and library, and lots of college groups and societies. If you study here you will be a member of a college, and probably have your tutorials in that college. You will also be a member of the wider University, with access to University and department facilities like laboratories and libraries, as well as hundreds of University groups and societies. You would usually have your lectures and any lab work in your department, with other students from across the University. There is something to be said for an academic atmosphere wherein everyone you meet is both passionate about what they are studying and phenomenally clever to boot. Ziad 144| Does it matter which college I go to? What is a JCR? No. Colleges have a lot more in common than Junior Common Room, or JCR, means two they have differences. Whichever college you go different things. Firstly, it is a room in college: to, you will be studying for the same degree at the a lively, sociable place where you can take time end of your course. out, eat, watch television, play pool or table football, and catch up with friends. The term Can I choose my college? JCR also refers to all the undergraduates in a college. The JCR elects a committee which Yes, you can express a preference. When you organises parties, video evenings and other apply through UCAS (see ‘how to apply’ on p 6) events, and also concerns itself with the serious you can choose a college, or you can make an side of student welfare, including academic ‘open application’.
    [Show full text]
  • Composite Anomaly in Supergravity and String Amplitude Comparison Soumya Sasmal
    Composite Anomaly in Supergravity and String Amplitude Comparison Soumya Sasmal To cite this version: Soumya Sasmal. Composite Anomaly in Supergravity and String Amplitude Comparison. High Energy Physics - Theory [hep-th]. Université Paris Saclay (COmUE), 2017. English. NNT : 2017SACLS198. tel-01614382v2 HAL Id: tel-01614382 https://tel.archives-ouvertes.fr/tel-01614382v2 Submitted on 11 Oct 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NNT : 2017SACLS198 THÈSE DE DOCTORAT DE L’UNIVERSITÉ PARIS-SACLAY PRÉPARÉE À L’UNIVERSITÉ PARIS-SUD AU SEIN DE L’INSTITUT DE PHYSIQUE THÉORIQUE, CEA, SACLAY Ecole doctorale n◦564 Ecole Doctorale Physique en Ile-de-France Spécialité de doctorat: Physique par M. SOUMYA SASMAL Composite Anomaly in Supergravity and String Amplitude Comparison Thèse présentée et soutenue à l’Institut de Physique Théorique, CEA, Saclay, le 06 Septembre 2017. Composition du Jury : M. ULRICH ELLWANGER Professeur (Président du jury) LPT Orsay M. CARLO ANGELANTONJ Chargé de recherche (Rapporteur) Turin University M. GUILLAUME BOSSARD Chargé de recherche (Examinateur) CPHT Ecole Polytechnique M. STEFAN HOHENEGGER Maître de conférence (Rapporteur) IPNL, Université de Lyon M. RUBEN MINASIAN Directeur de recherche (Directeur de thèse) IPHT, CEA, Saclay M.
    [Show full text]
  • RSE Fellows Ordered by Area of Expertise As at 11/10/2016
    RSE Fellows ordered by Area of Expertise as at 11/10/2016 HRH Prince Charles The Prince of Wales KG KT GCB Hon FRSE HRH The Duke of Edinburgh KG KT OM, GBE Hon FRSE HRH The Princess Royal KG KT GCVO, HonFRSE A1 Biomedical and Cognitive Sciences 2014 Professor Judith Elizabeth Allen FRSE, FMedSci, Professor of Immunobiology, University of Manchester. 1998 Dr Ferenc Andras Antoni FRSE, Honorary Fellow, Centre for Integrative Physiology, University of Edinburgh. 1993 Sir John Peebles Arbuthnott MRIA, PPRSE, FMedSci, Former Principal and Vice-Chancellor, University of Strathclyde. Member, Food Standards Agency, Scotland; Chair, NHS Greater Glasgow and Clyde. 2010 Professor Andrew Howard Baker FRSE, FMedSci, BHF Professor of Translational Cardiovascular Sciences, University of Glasgow. 1986 Professor Joseph Cyril Barbenel FRSE, Former Professor, Department of Electronic and Electrical Engineering, University of Strathclyde. 2013 Professor Michael Peter Barrett FRSE, Professor of Biochemical Parasitology, University of Glasgow. 2005 Professor Dame Sue Black DBE, FRSE, Director, Centre for Anatomy and Human Identification, University of Dundee. ; Director, Centre for Anatomy and Human Identification, University of Dundee. 2007 Professor Nuala Ann Booth FRSE, Former Emeritus Professor of Molecular Haemostasis and Thrombosis, University of Aberdeen. 2001 Professor Peter Boyle CorrFRSE, FMedSci, Former Director, International Agency for Research on Cancer, Lyon. 1991 Professor Sir Alasdair Muir Breckenridge CBE KB FRSE, FMedSci, Emeritus Professor of Clinical Pharmacology, University of Liverpool. 2007 Professor Peter James Brophy FRSE, FMedSci, Professor of Anatomy, University of Edinburgh. Director, Centre for Neuroregeneration, University of Edinburgh. 2013 Professor Gordon Douglas Brown FRSE, FMedSci, Professor of Immunology, University of Aberdeen. 2012 Professor Verity Joy Brown FRSE, Provost of St Leonard's College, University of St Andrews.
    [Show full text]
  • The Emergence of Platonism in Modern Physics
    TRANSCENDENTAL MINDS AND MYTHICAL STRINGS: THE EMERGENCE OF PLATONISM IN MODERN PHYSICS. by Daniel Bernard Gopman A Thesis Submitted to the Faculty of The Wilkes Honors College in Partial Fulfillment of the Requirements for the Degree of Bachelor of Arts in Liberal Arts and Sciences with a Concentration in History Wilkes Honors College of Florida Atlantic University Jupiter, Florida May 2008 ii TRANSCENDENTAL MINDS AND MYTHICAL STRINGS: THE EMERGENCE OF PLATONISM IN MODERN PHYSICS by Daniel Bernard Gopman This thesis was prepared under the direction of the candidate’s thesis advisor, Dr. Christopher D. Ely, and has been approved by the members of his supervisory committee. It was submitted to the faculty of The Honors College and was accepted in partial fulfillment of the requirements for the degree of Bachelor of Arts in Liberal Arts and Sciences. THESIS ADVISORY COMMITTEE: _____________________________ Dr. Christopher D. Ely _____________________________ Dr. Daniel R. White _____________________________ Dean, Wilkes Honors College ____________ Date iii Acknowledgments I am deeply grateful for the guidance of my advisor, Dr. Christopher Ely, who kept me focused on a vastly broad, speculative subject. I would also like to express my gratitude to my second advisor, Dr. Daniel White, who introduced me to the great philosophical works on science of the 20th Century. Finally, I want to thank my father, Miles, for the seemingly endless conversations that helped to inspire many of my ideas. iv ABSTRACT Author: Daniel Bernard Gopman Title: Transcendental minds and mythical strings: the emergence of Platonism in modern physics. Institution: Wilkes Honors College of Florida Atlantic University Thesis Advisor: Dr.
    [Show full text]
  • Fellowships: Round Two Sift Panel Membership*
    Fellowships: Round Two Sift Panel Membership* Panel Chairs Gordon Harold, University of Sussex Angela Hatton, National Oceanography Centre Susan Hunston, University of Birmingham Jonathan Legh-Smith, BT Group PLC Barbara Mable, University of Glasgow Julie Yeomans, University of Surrey Panel Members John Challiss, University of Leicester Sophia Ananiadou, The University of Jonathan Chubb, University College London Manchester Alison Condliffe, University of Sheffield Erika Andersson, Heriot-Watt University Paul Connolly, Queens University Belfast Jane Armitage, University of Oxford Jenny Cooper, CooperWalsh Ltd Marco Bacic, Rolls-Royce & Oxford John Couves, BP University Elaine Crooks, Swansea University Liz Baggs, University of Edinburgh James Davenport, University of Bath Susan Banducci, University of Exeter Simin Davoudi, Newcastle University Wendy Barclay, Imperial College Ineke De Moortel, University of St Andrews London John Barrett, University of David Demeritt, Kings College London Leeds Joe Devine, University of Bath Daniela Barilla, University of York Peter Diggle, Lancaster Steven Bell, Queens University Belfast University/Health Data Research UK Malcolm Bennett, University of Declan Diver, University of Glasgow Nottingham Nick Dun, Lancaster University Steve Benford, University of Alastair Edge, Durham University Nottingham Jonathan Elliot, University of London Lisa Belyea, Queen Mary University of Georgina Endfield, University of Liverpool London Alison Fell, University of Leeds Matthew Bennett, Bournemouth Teresa Fernandes,
    [Show full text]
  • Mentions of Oxford and Oxbridge in Parliament Date: January 17
    Mentions of Oxford and Oxbridge in Parliament Date: January 17 • Commons debate Immigration: Research mention • Commons debate on NHS Funding: Mention Dr Jebb • Commons debate on DWP Policies: Mention research • Commons Second Reading EU Bill: Mention Euratom • Commons topical question: Antisemitism • Lords Higher Education and Research Bill, Committee stage, multiple mentions • Lords debate EU withdrawal: Mention of Oxford EU student and staff meeting Commons Research MPs debate Immigration Rules: Spouses and Partners Tue, 31 January 2017 | Debate - Adjournment and General Gavin Newlands (SNP) ...First, the minimum salary requirement has to be reduced so that it more accurately reflects the wages of all UK citizens, not just the richest. Research conducted by the Migration Observatory at the University of Oxford shows that the financial requirement disproportionately affects women, ethnic minorities and those outside London. It is estimated that 41% of people in Scotland would be ineligible to sponsor a non-... ... when we consider that as many as 45% of people in the UK earn less than the required threshold, particularly in areas outside London and the south-east. Secondly, research conducted by the University of Oxford confirms that the policy disproportionately affects particular groups. It found that the minimum income requirement has “important indirect effects across gender, ethnicity, education, age... MPs debate NHS and Social Care Funding Wed, 11 January 2017 | Debate - Adjournment and General Andrew Selous (South West Bedfordshire) (Con) ...although we have a national health service, we do not do enough to keep our fellow citizens healthy. I would like to see more emphasis placed on the excellent work of Dr Susan Jebb, an academic at the University of Oxford.
    [Show full text]
  • Quantum Gravity Renormalization Group
    Quantum Gravity Renormalization Group by Vasudev Shyam A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Doctor of Philosophy in Physics Waterloo, Ontario, Canada, 2020 c Vasudev Shyam 2020 Examining Committee Membership The following served on the Examining Committee for this thesis. The decision of the Examining Committee is by majority vote. External Examiner: Herman Verlinde Professor, Dept. of Physics, Princeton University Supervisor: Lee Smolin Professor, Perimeter Institute for Theoeretical Physics, Dept. of Physics and Astronomy, University of Waterloo Internal Member: James Forrest Professor, Dept. of Physics and Astronomy, University of Waterloo Internal-External Member: Florian Girelli Associate Professor, Dept. of Applied Mathematics, University of Waterloo Other Member(s): Laurent Freidel Professor, Dept. of Physics and Astronomy, University of Waterloo Sung-Sik Lee Professor, Dept. of Physics, McMaster University ii Author's Declaration I hereby declare that this thesis consists of material that I am either the sole author or co-author. See Statement of Contributions for details. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. iii Statement of Contributions This thesis is largely a compilation of articles [139], [140], [141], [49], [142], [26], [48] and [112]. [70] is also referred to in some of the chapters. In particular, chapter2 is based on articles [140] and [141], which are single author papers and results from [70] that was co written with Henrique Gomes also features. Chapter3 is based on [139], [142] which were also single author and [26] which was co-written with Pawel Caputa and Shouvik Datta.
    [Show full text]
  • Composite Anomaly in Supergravity and String Amplitude Comparison Soumya Sasmal
    Composite Anomaly in Supergravity and String Amplitude Comparison Soumya Sasmal To cite this version: Soumya Sasmal. Composite Anomaly in Supergravity and String Amplitude Comparison. High Energy Physics - Theory [hep-th]. Université Paris-Saclay, 2017. English. <NNT : 2017SACLS198>. <tel-01614382v2> HAL Id: tel-01614382 https://tel.archives-ouvertes.fr/tel-01614382v2 Submitted on 11 Oct 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NNT : 2017SACLS198 THÈSE DE DOCTORAT DE L’UNIVERSITÉ PARIS-SACLAY PRÉPARÉE À L’UNIVERSITÉ PARIS-SUD AU SEIN DE L’INSTITUT DE PHYSIQUE THÉORIQUE, CEA, SACLAY Ecole doctorale n◦564 Ecole Doctorale Physique en Ile-de-France Spécialité de doctorat: Physique par M. SOUMYA SASMAL Composite Anomaly in Supergravity and String Amplitude Comparison Thèse présentée et soutenue à l’Institut de Physique Théorique, CEA, Saclay, le 06 Septembre 2017. Composition du Jury : M. ULRICH ELLWANGER Professeur (Président du jury) LPT Orsay M. CARLO ANGELANTONJ Chargé de recherche (Rapporteur) Turin University M. GUILLAUME BOSSARD Chargé de recherche (Examinateur) CPHT Ecole Polytechnique M. STEFAN HOHENEGGER Maître de conférence (Rapporteur) IPNL, Université de Lyon M. RUBEN MINASIAN Directeur de recherche (Directeur de thèse) IPHT, CEA, Saclay M.
    [Show full text]