Composite Anomaly in Supergravity and String Amplitude Comparison Soumya Sasmal

Total Page:16

File Type:pdf, Size:1020Kb

Composite Anomaly in Supergravity and String Amplitude Comparison Soumya Sasmal Composite Anomaly in Supergravity and String Amplitude Comparison Soumya Sasmal To cite this version: Soumya Sasmal. Composite Anomaly in Supergravity and String Amplitude Comparison. High Energy Physics - Theory [hep-th]. Université Paris Saclay (COmUE), 2017. English. NNT : 2017SACLS198. tel-01614382v2 HAL Id: tel-01614382 https://tel.archives-ouvertes.fr/tel-01614382v2 Submitted on 11 Oct 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NNT : 2017SACLS198 THÈSE DE DOCTORAT DE L’UNIVERSITÉ PARIS-SACLAY PRÉPARÉE À L’UNIVERSITÉ PARIS-SUD AU SEIN DE L’INSTITUT DE PHYSIQUE THÉORIQUE, CEA, SACLAY Ecole doctorale n◦564 Ecole Doctorale Physique en Ile-de-France Spécialité de doctorat: Physique par M. SOUMYA SASMAL Composite Anomaly in Supergravity and String Amplitude Comparison Thèse présentée et soutenue à l’Institut de Physique Théorique, CEA, Saclay, le 06 Septembre 2017. Composition du Jury : M. ULRICH ELLWANGER Professeur (Président du jury) LPT Orsay M. CARLO ANGELANTONJ Chargé de recherche (Rapporteur) Turin University M. GUILLAUME BOSSARD Chargé de recherche (Examinateur) CPHT Ecole Polytechnique M. STEFAN HOHENEGGER Maître de conférence (Rapporteur) IPNL, Université de Lyon M. RUBEN MINASIAN Directeur de recherche (Directeur de thèse) IPHT, CEA, Saclay M. DANIEL WALDRAM Professeur (Examinateur) Imperial College London Titre : Autour de Supergravité par l’Anomalie Composée et l’Amplitude en Théorie de Cordes Keywords : QFT Anomalie, Supergravité, Amplitude en théorie de cordes Résumé : Dans ce projet de thèse, nous étudions le rôle joué par l’anomalie dû à la connexion com- posée dans les théories de supergravités dans l’espace-temps à huit dimensions. Ce genre d’anomalie est en effet engendrée par la structure quotient d’espace des champs moduli de la supergravité là où le nombre des super-charges posent des contraintes rigoureux. Notre accomplissement principal est de proposer des termes supplémentaires pour annuler cette anomalie dans la théorie de supergravité en huit dimensions avec seize supercharges. Ces termes, en outre, peuvent être considérés comme une manifestation des corrections provenant de la théorie de super-cordes et nous montrons par des calculs explicites qu’une amplitude sur une boucle dans la théorie de cordes correspondante reproduit ces ter- mes. Motivés par cette démonstration de la cohérence entre la supergravité et la théorie de cordes, nous proposons un seuil mathématique pour la compactification de ces théories dans huit dimensions vers six dimensions sur une sphère en présence des branes de co-dimension 2. Ceci est une simulation de compactification sur une surface K3 à l’aide des branes. Nous montrons que la présence d’anomalie composée ne peut être justifiée que par des branes de co-dimensions deux. Nous discutons la dualité entre la théorie Heterotic et la théorie-F sous la lumière de 7-branes et puis la compactification des su- pergravités de dix dimensions sur K3 en présence des 5-branes. Tous cela nous ouvrent nouvelles voies pour étudier des aspects non-perturbatives de la théorie de cordes. Nous concluons avec un calcul sur deux boucles dans la théorie de cordes Heterotic de dix dimensions qui n’était pas beaucoup exploré dans la littérature. Université Paris-Saclay Espace Technologique / Immeuble Discovery Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France iii Title : Composite Anomaly in Supergravity and String Amplitude Comparison Keywords : QFT Anomaly, Supergravity, String Amplitude Abstract : We examine the structure of composite anomaly in maximal and half-maximal super- gravity theories especially in eight space-time dimensions. The number of super-charges dictates the structure of the coset space of the moduli fields of the theory which in turn engenders the composite anomaly in such theories. Our main achievement lies in proposing counter-terms for such anomalies. These terms are of stringy nature and we show by explicit 1-loop amplitude calculations in correspond- ing string theories that those counter-terms are consistently provided by string amplitude. In the light of non-perturbative higher dimensional theories like F-theory, the anomaly cancelling counter-terms are seen to be related to co-dimension two branes e.g. 7-branes. We then use these results of 8-dimensional theories to provide for supergravity theories in six-dimensions by compactifying on a sphere in the pres- ence of 5-branes. This is in fact a simulation of K3 compactification and our knowledge of composite connection provide us with threshold conditions to achieve such compactifications. All these analysis provide for greater insight into the non-perturbative regime of string theory. We then conclude with a calculation of 2-loop Heterotic string amplitude which has been very less explored in the literature. Université Paris-Saclay Espace Technologique / Immeuble Discovery Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France v Hello World Acknowledgements The obvious premier acknowledgement goes to Ruben Minasian for his support, sci- entific insights and his patience. Next comes Raffaelle Savelli for his collaboration and immense input in course of my thesis. I then like to thank the whole group of string theory of IPHT, especially Mariana Grana, Iosif Bena, Pierre Vanhove and all the post-docs who came during my office at Saclay and enriched my experience. I learned a lot from Pierre from our discussions and his insights are reflected in many places of this thesis. In the same line I would like to thank Guillaume Bossard, Jonathan Heckman, Boris Pioline, Piotr Tourquin for helpful discussions. My grati- tude to the members of the jury for agreeing to assist my defence and for their flexi- bility of precious time for the changed schedule of defence. Lastly, I cannot but thank the interns and other graduate students for the cordiality which held us together in all thin and thick during the course of this long work. vii Contents Acknowledgements vii Résumé en Français1 1 Introduction5 1.1 Quantization of gravity and quest for unification.............5 1.2 What this thesis stands for?.........................7 1.3 Outline of the thesis..............................8 2 Supersymmetry and Supergravity9 2.1 Supersymmetry................................9 2.2 Supersymetry algebra in various dimensions............... 10 2.3 Supergravity.................................. 12 2.4 Composite connection in supergravity................... 16 2.5 Anomaly in supergravity........................... 18 3 Perturbative and non-perturbative aspects of string theory 23 3.1 Worldsheet perspective of (super)string.................. 24 3.2 String theories in 10D............................. 27 3.3 String interactions and effective actions.................. 29 3.3.1 Scattering amplitudes in string theory............... 30 3.3.2 String coupling to background fields and low energy effective action.................................. 34 0 3.3.3 String loop expansion in gs and α ................. 35 3.4 Branes in string theory............................ 37 3.5 Compactification in string theory...................... 40 3.5.1 Circle compactification........................ 41 3.5.2 Toroidal compactification...................... 42 3.5.3 Calabi-Yau compactification..................... 42 3.6 Duality in string theory............................ 45 3.6.1 T-duality................................ 45 3.6.2 S-duality................................ 47 3.6.3 S duality of type IIB string theory................. 47 3.6.4 U-duality............................... 49 3.7 M-theory: relation with type IIA and Heterotic theory.......... 49 3.7.1 Heterotic theory from M-theory: Horava-Witten mechanism.. 50 3.8 F-theory: relation with type IIB and Heterotic theory........... 53 4 Discrete anomaly in maximal supergravity 59 4.1 The Green-Gaberdiel counterterm..................... 60 4.1.1 F theory on K3 and 7-brane coupling................ 62 4.2 Discrete anomaly in D=8, N=2 supergravity................ 65 4.2.1 Comparison with 5-point String amplitude and M-theory... 67 ix 4.2.2 Five point string amplitude for type II strings on T 2 : a com- plemntary review........................... 68 5 Discrete anomalies in half-maximal Supergravity and string amplitude 73 5.1 The Green-Schwarz term in D=10, N=1 supergravity effective action. 73 5.2 Green-Schwarz term from string 1-loop amplitude: Elliptic genus... 76 5.3 Discrete anomaly in D=8, N=1 supergravity and string amplitude com- parison..................................... 86 5.3.1 Case 1: G= SO(32) and E8 E8 .................. 93 × The anomaly counterterm...................... 93 Comparison with 5-point String amplitude............ 94 5.3.2 Case 2: G= SO(16) SO(16) .................... 99 × The anomaly counter-term and group traces........... 99 Comparison with 5-point String amplitude............ 100 5.3.3 Case 3: G= SO(8)4 .......................... 105 Anomaly cancelling term and group trace............. 105 String amplitude with G= SO(8)4 ................. 106 Calculating string amplitude with Hecke
Recommended publications
  • Particles-Versus-Strings.Pdf
    Particles vs. strings http://insti.physics.sunysb.edu/~siegel/vs.html In light of the huge amount of propaganda and confusion regarding string theory, it might be useful to consider the relative merits of the descriptions of the fundamental constituents of matter as particles or strings. (More-skeptical reviews can be found in my physics parodies.A more technical analysis can be found at "Warren Siegel's research".) Predictability The main problem in high energy theoretical physics today is predictions, especially for quantum gravity and confinement. An important part of predictability is calculability. There are various levels of calculations possible: 1. Existence: proofs of theorems, answers to yes/no questions 2. Qualitative: "hand-waving" results, answers to multiple choice questions 3. Order of magnitude: dimensional analysis arguments, 10? (but beware hidden numbers, like powers of 4π) 4. Constants: generally low-energy results, like ground-state energies 5. Functions: complete results, like scattering probabilities in terms of energy and angle Any but the last level eventually leads to rejection of the theory, although previous levels are acceptable at early stages, as long as progress is encouraging. It is easy to write down the most general theory consistent with special (and for gravity, general) relativity, quantum mechanics, and field theory, but it is too general: The spectrum of particles must be specified, and more coupling constants and varieties of interaction become available as energy increases. The solutions to this problem go by various names -- "unification", "renormalizability", "finiteness", "universality", etc. -- but they are all just different ways to realize the same goal of predictability.
    [Show full text]
  • Prospects from Strings and Branes
    Prospects from strings and branes Alexander Sevrin Vrije Universiteit Brussel and The International Solvay Institutes for Physics and Chemistry http://tena4.vub.ac.be/ Moriond 2004 Strings and branes… Moriond, March 24, 2004 1 References Not-too-technical review paper, including numerous references: Strings, Gravity and Particle Physics by Augusto Sagnotti and AS In the proceedings of 37th Rencontres de Moriond on Electroweak Interactions and Unified Theories, 2002. e-Print Archive: hep-ex/0209011 Strings and branes… Moriond, March 24, 2004 2 Contents • Dirichlet-branes • D-branes and gauge theories - Worldvolume point of view -AdS/CFT • D-branes and black holes •Cosmology • Some conclusions Strings and branes… Moriond, March 24, 2004 3 Branes Solitons: solutions of the equations of motion with a finite energy(-density) and a mass inversely proportional to the coupling constant. E.g. Scalar field in d = 1 + 1: kink. 12m3 mass = λ Other example in d = 3 + 1: magnetic monopole: 1 mass ∝ 2 gYM Strings and branes… Moriond, March 24, 2004 4 Solitons in string theory: Dirichlet branes Besides the “conventional” fields, such as e.g., gµν (x)=gνµ(x): metric = graviton Φ(x): dilaton, one has RR- potentials as well. E.g. vector potential, A µ : Fµν = ∂µAν − ∂ν Aµ, Aµ → Aµ − ∂µf, Fµν → Fµν . Couples to particles: µ S = q dτ x˙ (τ)Aµ(x(τ)). Z Strings and branes… Moriond, March 24, 2004 5 E.g. 2-form potential, A µ ν = − A ν µ : Fµνρ = ∂µAνρ + ∂ν Aρµ + ∂ρAµν , Aµν → Aµν − ∂µfν + ∂ν fµ,Fµνρ → Fµνρ. Couples to strings: µ ν S = q dτdσ x˙(τ, σ) x0(τ, σ) Aµν (x(τ, σ)).
    [Show full text]
  • Boundary and Defect CFT: Open Problems and Applications
    Boundary and Defect CFT: Open Problems and rspa.royalsocietypublishing.org Applications Research N. Andrei1, A. Bissi2, M. Buican3, J. Cardy4;5, P. Dorey6, N. Drukker7, Article submitted to journal J. Erdmenger8, D. Friedan1;9, D. Fursaev10, A. Konechny11;12, C. Kristjansen13, Subject Areas: Theoretical Physics, Mathematical I. Makabe7, Y. Nakayama14, A. O’Bannon15, Physics R. Parini16, B. Robinson15, S. Ryu17, Keywords: C. Schmidt-Colinet18, V. Schomerus19, Conformal Field Theory, Boundaries and Defects, Non-Perturbative C. Schweigert20, and G.M.T. Watts7 Effects, Holographic Duality, 1 Supersymmetry Dept. of Phys., Rutgers Univ., Piscataway, NJ, USA. 2Dept. of Phys. and Astro., Uppsala Univ., SE 3 Author for correspondence: CRST and SPA, Queen Mary Univ. of London, UK B. Robinson 4Dept. of Phys., Univ. of California, Berkeley, CA, USA e-mail: [email protected] 5All Souls College, Oxford, UK 6Dept. of Math. Sci., Durham Univ., UK 7Dept. of Maths, King’s College London, UK 8Julius-Maximilians-Univ. Würzburg, DE 9 Natural Science Inst., Univ. of Iceland, IS 10Dubna State Univ., Dubna, RU 11Dept. of Maths, Heriot-Watt Univ., Edinburgh, UK 12Maxwell Inst. for Math. Sci., Edinburgh, UK 13Niels Bohr Inst., Copenhagen Univ., , DK 14Dept. of Phys., Rikkyo Univ., Tokyo, JP 15STAG Research Centre, Univ. of Southampton, UK 16Department of Mathematics, University of York, UK 17J. Franck Inst. & KCTP., Univ. of Chicago, IL, USA 18Arnold Sommerfeld Center, Univ. München, DE arXiv:1810.05697v1 [hep-th] 12 Oct 2018 19DESY Theory Group, DESY Hamburg, Hamburg, DE 20Fachbereich Math., Univ. Hamburg, Hamburg, DE Proceedings of the workshop “Boundary and Defect Conformal Field Theory: Open Problems and Applications,” Chicheley Hall, Buckinghamshire, UK, 7-8 Sept.
    [Show full text]
  • Thesis in Amsterdam
    UvA-DARE (Digital Academic Repository) The physics and mathematics of microstates in string theory: And a monstrous Farey tail de Lange, P. Publication date 2016 Document Version Final published version Link to publication Citation for published version (APA): de Lange, P. (2016). The physics and mathematics of microstates in string theory: And a monstrous Farey tail. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:10 Oct 2021 P a u A dissertation that delves l The Physics & d into physical and e L mathematical aspects of a Microstates Mathematics of n g string theory. In the first e part ot this book, Microstates in T microscopic porperties of h Moonshine e string theoretic black String Theory P h holes are investigated.
    [Show full text]
  • The Birth of String Theory
    The Birth of String Theory Edited by Andrea Cappelli INFN, Florence Elena Castellani Department of Philosophy, University of Florence Filippo Colomo INFN, Florence Paolo Di Vecchia The Niels Bohr Institute, Copenhagen and Nordita, Stockholm Contents Contributors page vii Preface xi Contents of Editors' Chapters xiv Abbreviations and acronyms xviii Photographs of contributors xxi Part I Overview 1 1 Introduction and synopsis 3 2 Rise and fall of the hadronic string Gabriele Veneziano 19 3 Gravity, unification, and the superstring John H. Schwarz 41 4 Early string theory as a challenging case study for philo- sophers Elena Castellani 71 EARLY STRING THEORY 91 Part II The prehistory: the analytic S-matrix 93 5 Introduction to Part II 95 6 Particle theory in the Sixties: from current algebra to the Veneziano amplitude Marco Ademollo 115 7 The path to the Veneziano model Hector R. Rubinstein 134 iii iv Contents 8 Two-component duality and strings Peter G.O. Freund 141 9 Note on the prehistory of string theory Murray Gell-Mann 148 Part III The Dual Resonance Model 151 10 Introduction to Part III 153 11 From the S-matrix to string theory Paolo Di Vecchia 178 12 Reminiscence on the birth of string theory Joel A. Shapiro 204 13 Personal recollections Daniele Amati 219 14 Early string theory at Fermilab and Rutgers Louis Clavelli 221 15 Dual amplitudes in higher dimensions: a personal view Claud Lovelace 227 16 Personal recollections on dual models Renato Musto 232 17 Remembering the `supergroup' collaboration Francesco Nicodemi 239 18 The `3-Reggeon vertex' Stefano Sciuto 246 Part IV The string 251 19 Introduction to Part IV 253 20 From dual models to relativistic strings Peter Goddard 270 21 The first string theory: personal recollections Leonard Susskind 301 22 The string picture of the Veneziano model Holger B.
    [Show full text]
  • Gravity, Gauge Theory and Strings
    Les Houches - Ecole d'Ete de Physique Theorique 76 Unity from Duality: Gravity, Gauge Theory and Strings Les Houches Session LXXVI, July 30 - August 31, 2001 Bearbeitet von Constantin P. Bachas, Adel Bilal, Michael R. Douglas, Nikita A. Nekrasov, Francois David 1. Auflage 2003. Buch. xxxiv, 664 S. Hardcover ISBN 978 3 540 00276 5 Format (B x L): 15,5 x 23,5 cm Gewicht: 1220 g Weitere Fachgebiete > Technik > Verfahrenstechnik, Chemieingenieurwesen, Lebensmitteltechnik Zu Inhaltsverzeichnis schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte. Preface The 76th session of the Les Houches Summer School in Theoretical Physics was devoted to recent developments in string theory, gauge theories and quantum gravity. As frequently stated, Superstring Theory is the leading candidate for a unified theory of all fundamental physical forces and elementary parti- cles. This claim, and the wish to reconcile general relativity and quantum mechanics, have provided the main impetus for the development of the the- ory over the past two decades. More recently the discovery of dualities, and of important new tools such as D-branes, has greatly reinforced this point of view. On the one hand there is now good reason to believe that the underlying theory is unique. On the other hand, we have for the first time working (though unrealistic) microscopic models of black hole mechan- ics.
    [Show full text]
  • Anomaly-Free Supergravities in Six Dimensions
    Anomaly-Free Supergravities in Six Dimensions Ph.D. Thesis arXiv:hep-th/0611133v1 12 Nov 2006 Spyros D. Avramis National Technical University of Athens School of Applied Mathematics and Natural Sciences Department of Physics Spyros D. Avramis Anomaly-Free Supergravities in Six Dimensions Dissertation submitted to the Department of Physics of the National Technical University of Athens in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Physics. Thesis Advisor: Alex Kehagias Thesis Committee: Alex Kehagias Elias Kiritsis George Zoupanos K. Anagnostopoulos A.B. Lahanas E. Papantonopoulos N.D. Tracas Athens, February 2006 Abstract This thesis reviews minimal N = 2 chiral supergravities coupled to matter in six dimensions with emphasis on anomaly cancellation. In general, six-dimensional chiral supergravities suffer from gravitational, gauge and mixed anomalies which, being associated with the breakdown of local gauge symmetries, render the theories inconsistent at the quantum level. Consistency of the theory is restored if the anomalies of the theory cancel via the Green-Schwarz mechanism or generalizations thereof, in a similar manner as in the case of ten-dimensional N = 1 supergravi- ties. The anomaly cancellation conditions translate into a certain set of constraints for the gauge group of the theory as well as on its matter content. For the case of ungauged theories these constraints admit numerous solutions but, in the case of gauged theories, the allowed solutions are remarkably few. In this thesis, we examine these anomaly cancellation conditions in detail and we present all solutions to these conditions under certain restrictions on the allowed gauge groups and representations, imposed for practical reasons.
    [Show full text]
  • Vanishing Perturbative Vacuum Energy in Non-Supersymmetric
    hep-th/0403107 HU-EP-04-13 IFUM-786-FT Vanishing Perturbative Vacuum Energy in Non-Supersymmetric Orientifolds Carlo Angelantonj† and Matteo Cardella‡ † Institut f¨ur Physik, Humboldt-Universit¨at zu Berlin Newtonstr. 15, D-12489 Berlin ‡ Dipartimento di Fisica dell’Universit`adi Milano INFN sezione di Milano, via Celoria 16, I-20133 Milano Abstract We present a novel source for supersymmetry breaking in orientifold models, and show arXiv:hep-th/0403107v2 15 Jun 2004 that it gives a vanishing contribution to the vacuum energy at genus zero and three-half. We also argue that all the corresponding perturbative contributions to the vacuum energy from higher-genus Riemann surfaces vanish identically. March, 2004 1. Introduction One of the outstanding problems in String Theory is to understand why the cosmo- logical constant is extremely small and possibly zero after supersymmetry is broken. Type II string models with vanishing perturbative contributions to the cosmological constant were studied in refs [1,2]. Their main feature is a Fermi-Bose degenerate spectrum, that guarantees an automatic vanishing of the one-loop vacuum energy. Aside from the ques- tion of higher-loop corrections [3], their main defect, however, was that the non-Abelian gauge sector appearing on appropriate D-brane collections was also supersymmetric [4,5]. It is thus questionable whether such constructions can accommodate D-brane spectra with large supersymmetry-breaking mass splittings. Alternatively, in [6] an extended class of non-supersymmetric orientifold models was presented, where the leading contribution to the one-loop cosmological constant vanishes in the large radius limit as 1/R4, but whose non-supersymmetric D-brane spectra exhibit Fermi-Bose degeneracy at the massless level, with mass splittings of the order of the string scale.
    [Show full text]
  • Tadpole Resummations in String Theory Arxiv:0801.1702V1 [Hep-Th
    Tadpole Resummations in String Theory Noriaki Kitazawa Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan e-mail: [email protected] Abstract While R-R tadpoles should be canceled for consistency, string models with bro- ken supersymmetry generally have uncanceled NS-NS tadpoles. Their presence signals that the background does not solve the field equations, so that these models are in \wrong" vacua. In this letter we investigate, with reference to some pro- totype examples, whether the true values of physical quantities can be recovered resumming the NS-NS tadpoles, hence by an approach that is related to the analy- sis based on String Field Theory by open-closed duality. We show that, indeed, the positive classical vacuum energy of a Dp-brane of the bosonic string is exactly can- celed by the negative contribution arising from tree-level tadpole resummation, in complete agreement with Sen's conjecture on open-string tachyon condensation and with the consequent analysis based on String Field Theory. We also show that the vanishing classical vacuum energy of the SO(8192) unoriented bosonic open-string theory does not receive any tree-level corrections from the tadpole resummation. This result is consistent with the fact that this (unstable) configuration is free from tadpoles of massless closed-string modes, although there is a tadpole of the closed string tachyon. The application of this method to superstring models with broken arXiv:0801.1702v1 [hep-th] 11 Jan 2008 supersymmetry is also discussed. 1 Introduction String models with tension in the TeV region [1] are an exciting possibility for physics beyond the Standard Model (for a review, see refs.
    [Show full text]
  • The Emergence of Platonism in Modern Physics
    TRANSCENDENTAL MINDS AND MYTHICAL STRINGS: THE EMERGENCE OF PLATONISM IN MODERN PHYSICS. by Daniel Bernard Gopman A Thesis Submitted to the Faculty of The Wilkes Honors College in Partial Fulfillment of the Requirements for the Degree of Bachelor of Arts in Liberal Arts and Sciences with a Concentration in History Wilkes Honors College of Florida Atlantic University Jupiter, Florida May 2008 ii TRANSCENDENTAL MINDS AND MYTHICAL STRINGS: THE EMERGENCE OF PLATONISM IN MODERN PHYSICS by Daniel Bernard Gopman This thesis was prepared under the direction of the candidate’s thesis advisor, Dr. Christopher D. Ely, and has been approved by the members of his supervisory committee. It was submitted to the faculty of The Honors College and was accepted in partial fulfillment of the requirements for the degree of Bachelor of Arts in Liberal Arts and Sciences. THESIS ADVISORY COMMITTEE: _____________________________ Dr. Christopher D. Ely _____________________________ Dr. Daniel R. White _____________________________ Dean, Wilkes Honors College ____________ Date iii Acknowledgments I am deeply grateful for the guidance of my advisor, Dr. Christopher Ely, who kept me focused on a vastly broad, speculative subject. I would also like to express my gratitude to my second advisor, Dr. Daniel White, who introduced me to the great philosophical works on science of the 20th Century. Finally, I want to thank my father, Miles, for the seemingly endless conversations that helped to inspire many of my ideas. iv ABSTRACT Author: Daniel Bernard Gopman Title: Transcendental minds and mythical strings: the emergence of Platonism in modern physics. Institution: Wilkes Honors College of Florida Atlantic University Thesis Advisor: Dr.
    [Show full text]
  • UCLA TEP Seminar Archives TEP Seminars
    UCLA TEP Seminar Archives TEP Seminars Winter 2021 Tuesday, March 23rd N/A N/A Tuesday, March 16th N/A N/A Tuesday, March 9th Per Kraus (UCLA) "Quantizing 3d gravity in a finite box" "Symmetries and Threshold States in Tuesday, March 2nd Igor Klebanov (Princeton) 2d Models for QCD" "Towards all loop supergravity Tuesday, February 23rd Agnese Bissi (Uppsala University) amplitudes" "The IR structure of QCD in the near Tuesday, February 16th Ira Rothstein (Carnegie Mellon) forward limit. A fresh look at an old problem” "The statistical mechanics of near- Tuesday, February 9th Luca Iliesiu (Princeton) extremal and near-BPS black holes" Leonardo Rastelli (Stony Brook Tuesday, February 2nd "A CFT distance conjecture" University) "Supersymmetric Flux Vacua and Tuesday, January 26th Richard Nally (Stanford) Calabi-Yau Modularity" Mukund Rangamani (Institute for Tuesday, January 19th "Real-time gravitational replicas" Advanced Study) "Derivation of AdS/CFT for Vector Tuesday, January 12th Shai Chester (Weizmann) Models" Kantaro Ohmori (Stony Brook Tuesday, January 5th "WZW model revisited" University) No Internal TEP Seminars for Winter 2021 Fall 2020 “Wormholes in AdS3 gravity, random Kristan Jensen (San Francisco Tuesday, December 15th matrix theory, and constrained State University) instantons” Tuesday, December 8th Tim Cohen (University of Oregon) "Is SMEFT Enough?" "(The two sides of) the S-matrix Tuesday, December 1st Pedro Vieira (Perimeter Institute) Bootstrap" "2-Group Global Symmetries in Six Tuesday, November 24th Thomas Dumitrescu (UCLA) Dimensions" "Binary Black Holes and Scattering Tuesday, November 17th Mikhail Solon (UCLA) Amplitudes" Jonathan Heckman (University of Tuesday, November 10th "6D SCFTs and Spin Chains" Pennsylvania) “Extremal Black Holes and the Weak Callum Jones (UCLA) and Enrico Tuesday, November 3rd Gravity Conjecture” by C.
    [Show full text]
  • Quantum Gravity Renormalization Group
    Quantum Gravity Renormalization Group by Vasudev Shyam A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Doctor of Philosophy in Physics Waterloo, Ontario, Canada, 2020 c Vasudev Shyam 2020 Examining Committee Membership The following served on the Examining Committee for this thesis. The decision of the Examining Committee is by majority vote. External Examiner: Herman Verlinde Professor, Dept. of Physics, Princeton University Supervisor: Lee Smolin Professor, Perimeter Institute for Theoeretical Physics, Dept. of Physics and Astronomy, University of Waterloo Internal Member: James Forrest Professor, Dept. of Physics and Astronomy, University of Waterloo Internal-External Member: Florian Girelli Associate Professor, Dept. of Applied Mathematics, University of Waterloo Other Member(s): Laurent Freidel Professor, Dept. of Physics and Astronomy, University of Waterloo Sung-Sik Lee Professor, Dept. of Physics, McMaster University ii Author's Declaration I hereby declare that this thesis consists of material that I am either the sole author or co-author. See Statement of Contributions for details. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. iii Statement of Contributions This thesis is largely a compilation of articles [139], [140], [141], [49], [142], [26], [48] and [112]. [70] is also referred to in some of the chapters. In particular, chapter2 is based on articles [140] and [141], which are single author papers and results from [70] that was co written with Henrique Gomes also features. Chapter3 is based on [139], [142] which were also single author and [26] which was co-written with Pawel Caputa and Shouvik Datta.
    [Show full text]