Worldwide Exploration of the Microbiome Harbored by The
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Sea Anemone Exaiptasia Diaphana (Actiniaria: Aiptasiidae) Associated to Rhodoliths at Isla Del Coco National Park, Costa Rica
The sea anemone Exaiptasia diaphana (Actiniaria: Aiptasiidae) associated to rhodoliths at Isla del Coco National Park, Costa Rica Fabián H. Acuña1,2,5*, Jorge Cortés3,4, Agustín Garese1,2 & Ricardo González-Muñoz1,2 1. Instituto de Investigaciones Marinas y Costeras (IIMyC). CONICET - Facultad de Ciencias Exactas y Naturales. Universidad Nacional de Mar del Plata. Funes 3250. 7600 Mar del Plata. Argentina, [email protected], [email protected], [email protected]. 2. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). 3. Centro de Investigación en Ciencias del Mar y Limnología (CIMAR), Ciudad de la Investigación, Universidad de Costa Rica, San Pedro, 11501-2060 San José, Costa Rica. 4. Escuela de Biología, Universidad de Costa Rica, San Pedro, 11501-2060 San José, Costa Rica, [email protected] 5. Estación Científica Coiba (Coiba-AIP), Clayton, Panamá, República de Panamá. * Correspondence Received 16-VI-2018. Corrected 14-I-2019. Accepted 01-III-2019. Abstract. Introduction: The sea anemones diversity is still poorly studied in Isla del Coco National Park, Costa Rica. Objective: To report for the first time the presence of the sea anemone Exaiptasia diaphana. Methods: Some rhodoliths were examined in situ in Punta Ulloa at 14 m depth, by SCUBA during the expedition UCR- UNA-COCO-I to Isla del Coco National Park on 24th April 2010. Living anemones settled on rhodoliths were photographed and its external morphological features and measures were recorded in situ. Results: Several indi- viduals of E. diaphana were observed on rodoliths and we repeatedly observed several small individuals of this sea anemone surrounding the largest individual in an area (presumably the founder sea anemone) on rhodoliths from Punta Ulloa. -
Partitioning of Respiration in an Animal-Algal Symbiosis: Implications for Different Aerobic Capacity Between Symbiodinium Spp
ORIGINAL RESEARCH published: 18 April 2016 doi: 10.3389/fphys.2016.00128 Partitioning of Respiration in an Animal-Algal Symbiosis: Implications for Different Aerobic Capacity between Symbiodinium spp. Thomas D. Hawkins *, Julia C. G. Hagemeyer, Kenneth D. Hoadley, Adam G. Marsh and Mark E. Warner * College of Earth, Ocean and Environment, School of Marine Science and Policy, University of Delaware, Lewes, DE, USA Cnidarian-dinoflagellate symbioses are ecologically important and the subject of much investigation. However, our understanding of critical aspects of symbiosis physiology, Edited by: such as the partitioning of total respiration between the host and symbiont, remains Graziano Fiorito, Stazione Zoologica Anton Dohrn, Italy incomplete. Specifically, we know little about how the relationship between host and Reviewed by: symbiont respiration varies between different holobionts (host-symbiont combinations). Daniel Wangpraseurt, We applied molecular and biochemical techniques to investigate aerobic respiratory University of Copenhagen, Denmark capacity in naturally symbiotic Exaiptasia pallida sea anemones, alongside animals Susana Enríquez, Universidad Nacional Autónoma de infected with either homologous ITS2-type A4 Symbiodinium or a heterologous isolate of México, Mexico Symbiodinium minutum (ITS2-type B1). In naturally symbiotic anemones, host, symbiont, *Correspondence: and total holobiont mitochondrial citrate synthase (CS) enzyme activity, but not host Thomas D. Hawkins [email protected]; mitochondrial copy number, were reliable predictors of holobiont respiration. There Mark E. Warner was a positive association between symbiont density and host CS specific activity [email protected] (mg protein−1), and a negative correlation between host- and symbiont CS specific Specialty section: activities. Notably, partitioning of total CS activity between host and symbiont in this This article was submitted to natural E. -
Unlocking the Genomic Taxonomy of the Prochlorococcus Collective
bioRxiv preprint doi: https://doi.org/10.1101/2020.03.09.980698; this version posted March 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Unlocking the genomic taxonomy of the Prochlorococcus collective Diogo Tschoeke1#, Livia Vidal1#, Mariana Campeão1, Vinícius W. Salazar1, Jean Swings1,2, Fabiano Thompson1*, Cristiane Thompson1* 1Laboratory of Microbiology. SAGE-COPPE and Institute of Biology. Federal University of Rio de Janeiro. Rio de Janeiro. Brazil. Av. Carlos Chagas Fo 373, CEP 21941-902, RJ, Brazil. 2Laboratory of Microbiology, Ghent University, Gent, Belgium. *Corresponding authors: E-mail: [email protected] , [email protected] Phone no.: +5521981041035, +552139386567 #These authors contributed equally. ABSTRACT 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.03.09.980698; this version posted March 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Prochlorococcus is the most abundant photosynthetic prokaryote on our planet. The extensive ecological literature on the Prochlorococcus collective (PC) is based on the assumption that it comprises one single genus comprising the species Prochlorococcus marinus, containing itself a collective of ecotypes. Ecologists adopt the distributed genome hypothesis of an open pan-genome to explain the observed genomic diversity and evolution patterns of the ecotypes within PC. -
Diverse Deep-Sea Anglerfishes Share a Genetically Reduced Luminous
RESEARCH ARTICLE Diverse deep-sea anglerfishes share a genetically reduced luminous symbiont that is acquired from the environment Lydia J Baker1*, Lindsay L Freed2, Cole G Easson2,3, Jose V Lopez2, Dante´ Fenolio4, Tracey T Sutton2, Spencer V Nyholm5, Tory A Hendry1* 1Department of Microbiology, Cornell University, New York, United States; 2Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Fort Lauderdale, United States; 3Department of Biology, Middle Tennessee State University, Murfreesboro, United States; 4Center for Conservation and Research, San Antonio Zoo, San Antonio, United States; 5Department of Molecular and Cell Biology, University of Connecticut, Storrs, United States Abstract Deep-sea anglerfishes are relatively abundant and diverse, but their luminescent bacterial symbionts remain enigmatic. The genomes of two symbiont species have qualities common to vertically transmitted, host-dependent bacteria. However, a number of traits suggest that these symbionts may be environmentally acquired. To determine how anglerfish symbionts are transmitted, we analyzed bacteria-host codivergence across six diverse anglerfish genera. Most of the anglerfish species surveyed shared a common species of symbiont. Only one other symbiont species was found, which had a specific relationship with one anglerfish species, Cryptopsaras couesii. Host and symbiont phylogenies lacked congruence, and there was no statistical support for codivergence broadly. We also recovered symbiont-specific gene sequences from water collected near hosts, suggesting environmental persistence of symbionts. Based on these results we conclude that diverse anglerfishes share symbionts that are acquired from the environment, and *For correspondence: that these bacteria have undergone extreme genome reduction although they are not vertically [email protected] (LJB); transmitted. -
A Diverse Host Thrombospondin-Type-1
RESEARCH ARTICLE A diverse host thrombospondin-type-1 repeat protein repertoire promotes symbiont colonization during establishment of cnidarian-dinoflagellate symbiosis Emilie-Fleur Neubauer1, Angela Z Poole2,3, Philipp Neubauer4, Olivier Detournay5, Kenneth Tan3, Simon K Davy1*, Virginia M Weis3* 1School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand; 2Department of Biology, Western Oregon University, Monmouth, United States; 3Department of Integrative Biology, Oregon State University, Corvallis, United States; 4Dragonfly Data Science, Wellington, New Zealand; 5Planktovie sas, Allauch, France Abstract The mutualistic endosymbiosis between cnidarians and dinoflagellates is mediated by complex inter-partner signaling events, where the host cnidarian innate immune system plays a crucial role in recognition and regulation of symbionts. To date, little is known about the diversity of thrombospondin-type-1 repeat (TSR) domain proteins in basal metazoans or their potential role in regulation of cnidarian-dinoflagellate mutualisms. We reveal a large and diverse repertoire of TSR proteins in seven anthozoan species, and show that in the model sea anemone Aiptasia pallida the TSR domain promotes colonization of the host by the symbiotic dinoflagellate Symbiodinium minutum. Blocking TSR domains led to decreased colonization success, while adding exogenous *For correspondence: Simon. TSRs resulted in a ‘super colonization’. Furthermore, gene expression of TSR proteins was highest [email protected] (SKD); weisv@ at early time-points during symbiosis establishment. Our work characterizes the diversity of oregonstate.edu (VMW) cnidarian TSR proteins and provides evidence that these proteins play an important role in the Competing interests: The establishment of cnidarian-dinoflagellate symbiosis. authors declare that no DOI: 10.7554/eLife.24494.001 competing interests exist. -
Revival and Phylogenetic Analysis of the Luminous Bacterial Cultures of MW Beijerinck
RESEARCH ARTICLE Historical microbiology: revival and phylogenetic analysis of the luminous bacterial cultures of M. W. Beijerinck Marian J. Figge1, Lesley A. Robertson2, Jennifer C. Ast3 & Paul V. Dunlap3 1The Netherlands Culture Collection of Bacteria, CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands; 2Department of Biotechnology, Delft University of Technology, Delft, The Netherlands; and 3Department of Ecological and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA Correspondence: Paul V. Dunlap, Abstract Department of Ecology and Evolutionary Biology, University of Michigan, 830 North Luminous bacteria isolated by Martinus W. Beijerinck were sealed in glass University Ave., Ann Arbor, MI 48109-1048, ampoules in 1924 and 1925 and stored under the names Photobacterium phos- USA. Tel.: +1 734 615 9099; fax: +1 734 phoreum and ‘Photobacterium splendidum’. To determine if the stored cultures 763 0544; e-mail: [email protected] were viable and to assess their evolutionary relationship with currently recog- nized bacteria, portions of the ampoule contents were inoculated into culture Present address: Jennifer C. Ast, medium. Growth and luminescence were evident after 13 days of incubation, Evolutionary Biology Centre, Departments of Molecular Evolution and Limnology, Uppsala indicating the presence of viable cells after more than 80 years of storage. The University, Norbyva¨ gen 18C, 752 36, Beijerinck strains are apparently the oldest bacterial cultures to be revived from Uppsala, Sweden. storage. Multi-locus sequence analysis, based on the 16S rRNA, gapA, gyrB, pyrH, recA, luxA, and luxB genes, revealed that the Beijerinck strains are distant Received 3 May 2011; revised 21 July 2011; from the type strains of P. -
(COVIS) Overview
National Enteric Disease Surveillance: Cholera and Other Vibrio Illness Surveillance (COVIS) Surveillance System Overview: Cholera and Other Vibrio Illness Surveillance (COVIS) Background on infection with species from the family Vibrionaceae Infection with pathogenic species of the family Vibrionaceae can cause two distinct categories of infection: cholera and vibriosis, both of which are nationally notifiable. Cholera is, by definition, caused by infection with toxigenic Vibrio cholerae O1 or O139 and was first reported in the United States in 1832. Infection is characterized by acute, watery diarrhea. An average of 5-10 cases of cholera are reported annually in the United States; most are acquired during international travel, however, on average 1-2 per year are domestically acquired. An increase in the number of cholera cases reported in the United States has occurred when there are cholera outbreaks in the Western Hemisphere, such as Latin America in the 1990s and Haiti in 2010, with almost all attributable to exposures during international travel. CDC annually reports to the World Health Organization all confirmed cholera cases diagnosed in the United States. Vibriosis is caused by infection with any species of the family Vibrionaceae (excluding toxigenic Vibrio cholerae O1 and O139), with an estimated 80,000 cases and 300 deaths annually in the United States (1). The most common clinical manifestations are watery diarrhea, primary septicemia, wound infection, and otitis externa. Risk factors for illness include consumption of shellfish, -
Nutrient Stress Arrests Tentacle Growth in the Coral Model Aiptasia
Symbiosis https://doi.org/10.1007/s13199-019-00603-9 Nutrient stress arrests tentacle growth in the coral model Aiptasia Nils Rädecker1 & Jit Ern Chen1 & Claudia Pogoreutz1 & Marcela Herrera1 & Manuel Aranda1 & Christian R. Voolstra1 Received: 3 July 2018 /Accepted: 21 January 2019 # The Author(s) 2019 Abstract The symbiosis between cnidarians and dinoflagellate algae of the family Symbiodiniaceae builds the foundation of coral reef ecosystems. The sea anemone Aiptasia is an emerging model organism promising to advance our functional understanding of this symbiotic association. Here, we report the observation of a novel phenotype of symbiotic Aiptasia likely induced by severe nutrient starvation. Under these conditions, developing Aiptasia no longer grow any tentacles. At the same time, fully developed Aiptasia do not lose their tentacles, yet produce asexual offspring lacking tentacles. This phenotype, termed ‘Wurst’ Aiptasia, can be easily induced and reverted by nutrient starvation and addition, respectively. Thereby, this observation may offer a new experimental framework to study mechanisms underlying phenotypic plasticity as well as nutrient cycling within the Cnidaria – Symbiodiniaceae symbiosis. Keywords Exaiptasia pallida . Model organism . Nutrient starvation . Stoichiometry . Stress phenotype 1 Introduction foundation of entire ecosystems, i.e. coral reefs (Muscatine and Porter 1977). Yet, despite their ecological success over evolution- Coral reefs are hot spots of biodiversity surrounded by oligotro- ary time frames, corals are in rapid decline. Local and global phic oceans (Reaka-Kudla 1997). The key to understanding the anthropogenic disturbances are undermining the integrity of the vast diversity and productivity of coral reefs despite these coral - algal symbiosis and lead to the degradation of the entire nutrient-limited conditions lies in the ecosystem engineers of reef ecosystem (Hughes et al. -
Transcriptional Characterisation of the Exaiptasia Pallida Pedal Disc Peter A
Davey et al. BMC Genomics (2019) 20:581 https://doi.org/10.1186/s12864-019-5917-5 RESEARCH ARTICLE Open Access Transcriptional characterisation of the Exaiptasia pallida pedal disc Peter A. Davey1* , Marcelo Rodrigues1,2, Jessica L. Clarke1 and Nick Aldred1 Abstract Background: Biological adhesion (bioadhesion), enables organisms to attach to surfaces as well as to a range of other targets. Bioadhesion evolved numerous times independently and is ubiquitous throughout the kingdoms of life. To date, investigations have focussed on various taxa of animals, plants and bacteria, but the fundamental processes underlying bioadhesion and the degree of conservation in different biological systems remain poorly understood. This study had two aims: 1) To characterise tissue-specific gene regulation in the pedal disc of the model cnidarian Exaiptasia pallida, and 2) to elucidate putative genes involved in pedal disc adhesion. Results: Five hundred and forty-seven genes were differentially expressed in the pedal disc compared to the rest of the animal. Four hundred and twenty-seven genes were significantly upregulated and 120 genes were significantly downregulated. Forty-one condensed gene ontology terms and 19 protein superfamily classifications were enriched in the pedal disc. Eight condensed gene ontology terms and 11 protein superfamily classifications were depleted. Enriched superfamilies were consistent with classifications identified previously as important for the bioadhesion of unrelated marine invertebrates. A host of genes involved in regulation of extracellular matrix generation and degradation were identified, as well as others related to development and immunity. Ab initio prediction identified 173 upregulated genes that putatively code for extracellularly secreted proteins. Conclusion: The analytical workflow facilitated identification of genes putatively involved in adhesion, immunity, defence and development of the E. -
Cylista Elegans (Dalyell, 1848)
Cylista elegans (Dalyell, 1848) AphiaID: 1471945 . Animalia (Reino) > Cnidaria (Filo) > Anthozoa (Classe) > Hexacorallia (Subclasse) > Actiniaria (Ordem) > Enthemonae (Subordem) > Metridioidea (Superfamilia) > Sagartiidae (Familia) Sinónimos Actinia elegans Dalyell, 1848 Actinia miniata Gosse, 1853 Actinia nivea Gosse, 1853 Actinia ornata Wright, 1856 Actinia pulcherrima Jordan, 1855 Actinia rosea Gosse, 1853 Actinia venusta Gosse, 1854 Adamsia elegans Bunodes miniata Cereus aurora Cereus venusta Heliactis (Sagartia) miniata Gosse Heliactis (Sagartia) venusta Gosse Sagartia (Heliactis) miniata Gosse Sagartia (Heliactis) venusta Gosse Sagartia aurora (Gosse, 1854) Sagartia elegans var. venusta (Gosse) Sagartia gossei Verrill, 1869 Sagartia nivea (Gosse) Sagartia rosea (Gosse, 1853) Sargartia aurora Referências additional source Hayward, P.J.; Ryland, J.S. (Ed.). (1990). The marine fauna of the British Isles and North-West Europe: 1. Introduction and protozoans to arthropods. Clarendon Press: Oxford, UK. ISBN 0-19-857356-1. 627 pp. [details] additional source Fautin, Daphne G. (2013). Hexacorallians of the World., available online at 1 http://hercules.kgs.ku.edu/Hexacoral/Anemone2/ [details] basis of record van der Land, J.; den Hartog, J.H. (2001). Actiniaria, in: Costello, M.J. et al. (Ed.) (2001). European register of marine species: a check-list of the marine species in Europe and a bibliography of guides to their identification. Collection Patrimoines Naturels, 50: pp. 106-109 [details] additional source Muller, Y. (2004). Faune et flore du littoral du Nord, du Pas-de-Calais et de la Belgique: inventaire. [Coastal fauna and flora of the Nord, Pas-de-Calais and Belgium: inventory]. Commission Régionale de Biologie Région Nord Pas-de-Calais: France. 307 pp., available online at http://www.vliz.be/imisdocs/publications/145561.pdf [details] additional source Dyntaxa. -
Final Report
Developing Molecular Methods to Identify and Quantify Ballast Water Organisms: A Test Case with Cnidarians SERDP Project # CP-1251 Performing Organization: Brian R. Kreiser Department of Biological Sciences 118 College Drive #5018 University of Southern Mississippi Hattiesburg, MS 39406 601-266-6556 [email protected] Date: 4/15/04 Revision #: ?? Table of Contents Table of Contents i List of Acronyms ii List of Figures iv List of Tables vi Acknowledgements 1 Executive Summary 2 Background 2 Methods 2 Results 3 Conclusions 5 Transition Plan 5 Recommendations 6 Objective 7 Background 8 The Problem and Approach 8 Why cnidarians? 9 Indicators of ballast water exchange 9 Materials and Methods 11 Phase I. Specimens 11 DNA Isolation 11 Marker Identification 11 Taxa identifications 13 Phase II. Detection ability 13 Detection limits 14 Testing mixed samples 14 Phase III. 14 Results and Accomplishments 16 Phase I. Specimens 16 DNA Isolation 16 Marker Identification 16 Taxa identifications 17 i RFLPs of 16S rRNA 17 Phase II. Detection ability 18 Detection limits 19 Testing mixed samples 19 Phase III. DNA extractions 19 PCR results 20 Conclusions 21 Summary, utility and follow-on efforts 21 Economic feasibility 22 Transition plan 23 Recommendations 23 Literature Cited 24 Appendices A - Supporting Data 27 B - List of Technical Publications 50 ii List of Acronyms DGGE - denaturing gradient gel electrophoresis DMSO - dimethyl sulfoxide DNA - deoxyribonucleic acid ITS - internal transcribed spacer mtDNA - mitochondrial DNA PCR - polymerase chain reaction rRNA - ribosomal RNA - ribonucleic acid RFLPs - restriction fragment length polymorphisms SSCP - single strand conformation polymorphisms iii List of Figures Figure 1. Figure 1. -
Characterization of Bacterial Communities of Cold-Smoked Salmon During Storage
foods Article Characterization of Bacterial Communities of Cold-Smoked Salmon during Storage Aurélien Maillet 1,2,* , Pauline Denojean 2, Agnès Bouju-Albert 2 , Erwann Scaon 1 ,Sébastien Leuillet 1, Xavier Dousset 2, Emmanuel Jaffrès 2,Jérôme Combrisson 1 and Hervé Prévost 2 1 Biofortis Mérieux NutriSciences, 3 route de la Chatterie, 44800 Saint-Herblain, France; [email protected] (E.S.); [email protected] (S.L.); [email protected] (J.C.) 2 INRAE, UMR Secalim, Oniris, Route de Gachet, CS 44307 Nantes, France; [email protected] (P.D.); [email protected] (A.B.-A.); [email protected] (X.D.); [email protected] (E.J.); [email protected] (H.P.) * Correspondence: [email protected] Abstract: Cold-smoked salmon is a widely consumed ready-to-eat seafood product that is a fragile commodity with a long shelf-life. The microbial ecology of cold-smoked salmon during its shelf-life is well known. However, to our knowledge, no study on the microbial ecology of cold-smoked salmon using next-generation sequencing has yet been undertaken. In this study, cold-smoked salmon microbiotas were investigated using a polyphasic approach composed of cultivable methods, V3—V4 16S rRNA gene metabarcoding and chemical analyses. Forty-five cold-smoked salmon products processed in three different factories were analyzed. The metabarcoding approach highlighted 12 dominant genera previously reported as fish spoilers: Firmicutes Staphylococcus, Carnobacterium, Lactobacillus, β-Proteobacteria Photobacterium, Vibrio, Aliivibrio, Salinivibrio, Enterobacteriaceae Serratia, Citation: Maillet, A.; Denojean, P.; Pantoea γ Psychrobacter, Shewanella Pseudomonas Bouju-Albert, A.; Scaon, E.; Leuillet, , -Proteobacteria and .