Tube Amps & Power Supplies

Total Page:16

File Type:pdf, Size:1020Kb

Tube Amps & Power Supplies Tube Amps & Power Supplies The leading amp designs feature carefully designed power supplies and ours are no different. The old computing adage of garbage in, garbage out can apply equally to power supplies so we have gone the extra mile and produced a range of purpose wound toroid transformers for use here in Australia. Firstly, Tube Sound Audio has carefully selected and tested a range of tube amplifiers and preamplifier kits and designs for you to choose from. Tube amps are not only superb to listen to, they are great to build. The circuits underlying them are relatively simple and mostly feature point to point wiring. Whether you are being supervised at Amp Camp or enjoying a finished unit custom built by us, your music will never have sounded better. So clean, undistorted power is vitally important. It is also vitally important that the relationship between the supplied power and the amp’s circuits is as close to specification as possible. In our search for suitable projects we noted that all the best offerings are based on either 110V or 230V designs. However with local supply in Australia nominally 240V the immediate impact is transformer over performance. This is not good for the transformer and certainly not good for your tubes. Tube life is shortened as well as the transformers. This is why Tube Sound Audio designs and winds its own toroid transformers here in Australia. This delivers a range of benefits to our tube amps. Firstly we resolve the problem of input voltage mismatch protecting the longevity of your precious amp. Secondly our transformers are also specifically designed for tube circuits and feature lower magnetic flux ratings. The biggest issue in a tube amp is guarding against unwanted hum which can easily be induced by the transformer. By lowering the flux density we reduce that factor and they also tend to run a little cooler. Next we use electrostatic screening as standard between the windings as a further hum reduction measure. Finally, in any amp design requiring two or more transformers we have replaced them by consolidating to a single toroid. Balanced Power – Why You Need It Specially prepared toroids for our tube amps is a major performance advantage. But we didn’t stop there. Electric power is delivered to homes in a single-ended fashion using two wires, with one carrying all the 240 alternating volts. By converting the supply to balanced power with the two wires each carrying 120 volts AC, each out of phase with other, we achieve balanced power. This has great benefits for reducing induction hum in power leads to individual units and the common earth, held at 0 volts helps insure against ground loops. The Tube Sound Audio Balanced Power Supply features a massive purpose wound 1000kVA toroid. This transformer rejects much of the common mode noise which is present on both the neutral and hot wires. Our design features carefully interleaved balanced windings to offers perhaps the most accurate balanced 240V supply available with an almost mirrored phase image for ultimate performance. A balanced power supply converts conventional unbalanced, single-phase mains power to symmetrical balanced power. As a supply for your audio system this eliminates most of the unwanted components from the domestic electricity supply, lowering the noise floor, extending frequency response and improving stereo imaging. Consider that today the emphasis on power supply is no longer quality. With any number of supply sources the task is about continuity, not necessarily quality. That part now falls to you, the consumer. Bearing in mind that in Australia our supplied voltage is often closer to 250V than 240V our Balanced Power Supply is deliberately presented as 250V capable. It offers a superior level of balanced supply for your audio equipment and certainly will not lead to over performance. If you are driving Tube Sound Audio amps with our BPS you will be achieving electrical relationships as close to specification as can be achieved. Why tubes? Vacuum Tubes: Advantages Transistors: Disadvantages 1. Superior sound quality. 1. Tendency toward higher distortion than equivalent tubed circuits. 2. Highly linear without negative feedback, 2. Complex circuits and especially small-signal types. considerable negative feedback required for low distortion. 3. Smooth clipping is widely considered more 3. Sharp clipping, in a manner musical than transistors. widely considered non- musical, due to considerable negative feedback commonly used. Does not gracefully roll-off or gently compress; instead, cuts off sharply, suddenly and abruptly with extremely hard edge. 4. Tolerant of large overloads and voltage spikes. 4. Device capacitances tend to vary wildly with applied voltages (Miller effect). 5. Characteristics highly independent of 5. Large unit-to-unit temperature, greatly simplifying biasing. manufacturing tolerances and unreliable variations in key parameters, such as gain and threshold voltage. 6. Wider dynamic range than transistors circuits, 6. Stored-charge effects add due to higher operating voltages and overload signal delay, which tolerance. complicates high-frequency and feedback design. 7. Device capacitances vary only slightly with signal 7. Device parameters vary voltages (Miller effect). considerably with temperature, complicating biasing and increasing likelihood of thermal runaway, hotspots and unreproducible behavior. 8. Capacitive coupling can be done with small, high- 8. Cooling is less efficient quality film capacitors, due to inherently high- than with tubes, because impedances of tube ciruits. lower operating temperature is required for reliability. Tubes prefer hot; transistors do not. Massive, expensive and unwieldy heat sinks are always required for power transistors, yet they are not always effective (power output transistors still blow up; whereas, tubes fade down gracefully over time with warning and usually without catatrophic results). 9. Circuit designs tend to be simpler than 9. Power MOSFETs have transistorized equivalents, which are greatly high input capacitances that complicated by the need to linearize intrinsically vary with voltage, non-linear transistors. complicating driver circuitry. 10. Operation is usually in Class A or Class AB, 10. Class B totem-pole circuits minimizing crossover notch distortion. are common, which cause severe crossover distortion, or else necessitate huge amounts of negative feedback to correct. This “measures well” for steady- state signals, but it completely “sucks the life out of” dynamic and transient signals such as music. 11. Output transformer in power amp protects 11. Less tolerant of overloads speaker from DC voltage due to malfunction and and voltage spikes than protects tubes from shorts and blunts back-emf tubes. Except for their spikes from speaker. robust and forgiving heater filaments, it is very difficult, bordering on impossible, to blow out a tube with overvoltage; whereas, most transistors can be destroyed with as little as six volts, and every transistor can be destroyed by some voltage. Tubes are much harder to “zap.” 12. Tubes can be relatively easily replaced by user. 12. Nearly all transistor power amps have directly-coupled outputs that can damage speakers, even with active protection. 13. Capacitive coupling usually requires high-value electrolytic capacitors, which give audibly and measurably inferior performance at audio frequency extremes 14. Greater tendency to pick up radio frequency interference and self- oscillate to the point of self-destruction, due to rectification by low-voltage diode junctions or slew-rate effects 15. Maintenance more difficult; devices are not easily replaced by user. 16. Biasing more difficult, as temperature effects and device variations complicate circuitry and degrade performance 17. Older transistors and ICs often become unavailable after only 20 years, and sometimes much less, making replacement difficult or impossible. Tubes have a staying power, proven over many decades 18. Hardly scientific or objective, but whereas transistors operate on an invisibly microscopic, quantum scale, tubes exist and operate on an intuitive, human scale. You can see the heaters lit up, you can sometimes see a glowing plasma, and you can feel and hear the warmth. Everything about tubes exists in a more human realm than hard, cold transistors. Measure away, but it’s the sound that matters. Transistors vs. Tubes – excerpt from IEEE & Eric Barbour’s 1998 “Cool Sound of Tubes” article. Full article at http://www.effectrode.com/signal-tubes/vacuum-tubes-and-transistors- compared/#sthash.jIZ3usMy.dpuf Tube amps are different and ours have to be heard to be appreciated. Choosing an amp It is a truth that one hi-fi system can sound magnificent in one place, uninspiring in another. Sound and how it is perceived by the listener is subject to the surroundings in which it is produced – for example, some people like singing in the bathroom; in a room surrounded by soft furnishings they are not so pleased with the result. The singing reacts differently to the surroundings and sounds different. Clearly not all sound environments are alike. We are happy to help you with planning your system and therefore choice of amp, as at the end of the day it is what you like the sound of that is the best system for you. We offer different tube amp and speaker combinations for this very reason. Come visit us in the Blue Mountains and you can sample various combinations, plan an Amp Camp project or simply opt to have us build it for you. Call us now or send an email to [email protected] .
Recommended publications
  • Tube Condenser Microphone T-47 &
    Condenser Microphones TUBE CONDENSER MICROPHONE T-47 & T-1 Vacuum Tube Condenser Microphone Professional, large-diaphragm, tube condenser microphone for unsurpassed audio quality Hand-selected 12AX7 vacuum tube for exceptional warmth and vintage sound The Ultimate Recording Mic? Classic Tube Sound Ideal as main and support microphone for studio and Since the early days of recording, The sound of tubes is undeniably live applications sound engineers have been searching rich and smooth. At the heart of for the best-sounding mics for each of these mics is a hand-selected Cardioid pickup pattern for recording acoustic instruments and 12AX7 tube, which has been specifically outstanding sound source separation the human voice. The resounding designed to give these microphones and feedback rejection choice of professional recordists their incredible sonic character. around the globe has been the tube One advantage tube condensers have Pressure-gradient transducer with condenser microphone. Why? Because over their solid-state counterparts is they shock-mounted capsule nothing compares to the sound captured are not subject to the rapid rise of odd- Perfect for vocals and by a good tube condenser microphone order harmonics, which the ear perceives acoustic instruments — so open, warm and full of character. as highly unmusical. Even when subjected to high sound pressure levels, Switchable low-frequency roll-off But tube mics can wipe out a the T-1 and T-47 mics react in much the home-recording budget faster than same way the human ear does. 20 dB input attenuation (T-1 only) you can say “phantom power supply”. That’s why we’re so very proud to present T-1 and T-47 Have a Sensitive Side External power supply with 30 ft.
    [Show full text]
  • The Tube Sound and Tube Emulators
    ERIC K. PRITCHARD The Tube Sound and Tube Emulators $0 RE TUBES MAGIC? IS THERE really a difference be- tween tubes and tran- I ea sistors? Some hear the warmthA and appreciate the full body of the tube sound, and others deride the thought. Is the magic of I. I. - the tube sound more than mere / ea nostalgia? A recording engineer, ....„1 .4,Aa. e1 00 14 •111 Russell 0. Hamm, could hear the Relative lame Level itoletive ler.a Level difference. Determined to find and Figure 1.Distortion components explain the difference, he began Figure 3.Distortion components for two-stage triode amplifier. testing microphone preamplifiers for multi-stage capacitor-coupled of various technologies. His fa- transistor amplifier. mous paper, "Tubes Versus Tran- sistors—Is There an Audible Dif- ference?" [1], shows that the 10 harmonic structures in overdrive 3 re N I 3 r• conditions for different technolo- gies are quite different, almost like 20 10 fingerprints. I. -___.......i..4_7" More recently, an electronics en- 14 ea gineer, Eric Pritchard, started Relative brat Level - 14 down the circuitous path to bring Retellv• tepee Leve1 Figure 2..Distortion components the two worlds together and to give Figure 4.Distortion components for two-stage pentode amplifier.. solid state the character of tubes. for multistage transformer- The elusive tube sound has finally coupled transistor amplifier. succumbed to an intensive re- search and development program TUBES AND THE TUBE that has produced solid-state tube SOUND emulators and tube emulator cir- In retrospect, the tube has many cuits [2]. The effort began nearly 3 re f technically superior aspects, it is seven years ago with the search for fairly linear, its operational pa- / a solid state guitar amplifier that rameters do not vary badly, at least / sounded like tubes.
    [Show full text]
  • Cutting Edge
    CuttingTHE Edge Electronically reprinted from December 2007 MASTERPIECE! Audio Research 610T Monoblock Power Amplifier Jonathan Valin t is a little sobering to look back to 1973 and the first pieces of Audio Research gear II heard—the SP-3 preamp and D75 amp powering Magneplanar I-Us in a stereo demo that, for me, has never been bettered or forgotten— and then to consider how consistently and naturally all the subsequent ARC gear I’ve heard, and I’ve heard a lot, has been voiced. From the start, ARC components had a sound that was uniquely, indelibly, addictively “right.” ARC’s designer and founder William Zane Johnson called this sound “high definition,” a trademark that still appears on the faceplate of each and every ARC component. And even in 1973 his creations were astonishingly high in definition; indeed, their standard-setting resolution, lifelike size, bloom, and airy brightness, and exceptionally low levels of tube-like coloration were a large part of what set them apart from the darker, thicker, blatantly euphonic sound of the tube preamps and amps that preceded them. Not that everyone preferred high definition tube sound. There were those, then, and are those, now, who thought and think that tubes should invariably make music sweet, round, and rosy, that prettifying sources is the vacuum tube’s job in life—the very thing that sets it apart from the crisp, clean, “neutral” presentation of the transistor. Johnson never bought into this model. Indeed, it was the superior accuracy and neutrality of transistor electronics—which in the late 60s and early 70s were even more in the ascendant than they are today—that inspired him to outdo solid-state at its own game.
    [Show full text]
  • Genuine Sound
    www.lewitt-audio.com EMPHASIZE THE GENUINE IN YOUR SOUND. LCT 940 LCT 940 Introduction Thank you that you have opted for a LEWITT product. In this operating manual you will learn more about your LEWITT microphone, its handling and its proper usage. With the LCT Authentica Series, LEWITT introduces a new generation of highly versatile wired condenser microphones that all aim for setting new benchmarks of technology, sound quality and user-friendliness in both professional studio recording and onstage use. The microphones of the LCT Authentica Series stand for unaltered sound and innovative features: llluminated Settings, Noiseless Push Buttons, Automatic Attenuation with Clip Detection and History all ensure error-free sonic perfection and peerless ease of use for today’s demanding recording artists and engineers. Day after day, be it for live acts, in home studios or in professional studio productions. LEWITT wishes you a lot of fun and success with this product! 02 LCT 940 The product Sound professionals naturally rely on a set of different high-end microphones in order to get the best out of their sound. But changing microphones and adjusting settings takes valuable time, the creative flow of a session is interrupted. With its new Authentica series flagship LCT 940, LEWITT now introduces a microphone that will revolutionize modern studio recording procedures and help engineers and artists to react more quickly to a desired change of style and sound. The LCT 940 combines the specific characteristics of a premium large-diaphragm FET condenser microphone and a top-notch tube microphone in one housing. Basically, users can choose between the two main settings "FET" and "Tube".
    [Show full text]
  • Something Completely Different…
    Something completely different… Jerry Whitaker, ATSC, and old radio guy 1 The Tube Sound: Fact or Fiction? 2 Scope of This Presentation The latest trend in audio is actually a very old trend Tubes > transistors > integrated circuits > digital > tubes? We will revisit the attributes of vacuum tubes for audio applications Attempt to answer the question—are vacuum tube amplifiers better or just different? What about source material, in particular vinyl records? Tubes and vinyl—the ultimate audio pairing for high-fidelity listening? 3 Observation #1 Vacuum tubes have been around for a very long time. Appreciated for their distinctive sound, amplifiers built around tubes have found a permanent home with audio enthusiasts and experimenters alike. You don’t need to be an “audiophile” to appreciate them. Tube-based systems can coexist nicely in today’s digital-based environment. 4 Preferences The differences make it interesting 5 Preferences Audio is all about preferences and real-life experiences • Certain fundamental reference points exist • Loudness, frequency response, noise, distortion, etc. Audio has another dimension as well—perception • The artist has a wide and varied pallet with which to paint • There are few absolutes when it comes to audio perception • With video, absolutes abound • Viewers know that the grass should be green and the sky should be blue and people should look like…people 6 Appointment Listening: Gone for Good? Consumer listening habits have changed dramatically in the last decade • Portable playback devices abound • Convenience is the key product motivator • Listening typically done while doing something else The heyday of appointment listening now well in the past • Circa 1965—console stereo in the family room, LPs on the turntable • Circa 1945—radio in the living room, family gathered around 7 Observation #2 Appointment listening is making a comeback and doing it with tubes and vinyl.
    [Show full text]
  • Vacuum Tube Amplifier Modeling with Dynamic Convolution
    Vacuum Tube Amplifier Modeling with Dynamic Convolution Jason Traub Department of Electrical and Computer Engineering, University of Florida Though nearly obsolete within electronics, vacuum tubes remain in high demand for musical amplification [1]; and particularly for electric guitar. This research discusses reasons for the observed preference and assesses its validity. Furthermore, amplifier electronic circuits are studied and comparisons are made between vacuum tubes and bipolar junction and metal oxide field effect transistors; the latter two have replaced vacuum tubes in nearly every application, and are responsible for the advancement of the digital computer. Undoubtedly, there exists extreme cost effectiveness in obtaining a computer processing technique to mimic the sound that is applied by a vacuum tube amplifier. Thus, many modeling techniques have been developed and used in commercially successful products. This research discusses several of these methods and ultimately attempts to mimic a vacuum tube amplifier using the dynamic convolution method, proposed by Kemp [2]. Introduction: Light Bulbs, Valves, and Transistors acuum tubes, or “valves”, as the British call them, were the first electronic component to be able to V function as an amplifier. To give a historical perspective: Thomas Edison invented and patented the light bulb in 1879 [3]; J.J. Thompson’s experiments led to the discovery of the electron in 1897 [4]; and the work of John Fleming and Lee de Forest ultimately led to the vacuum tube triode in 1906 [5]. This three terminal device allows us to amplify the current and/or voltage of an input signal. A vacuum tube triode consists of two electrodes, the plate (anode) and cathode, separated by a short distance in an Figure 1.
    [Show full text]
  • Classic Tube Sound Meets Digital Music
    C2500tube preamplifier ■ C2500 combines McIntosh’s legendary vacuum tube preamplifier circuitry with a full suite of contemporary features and technology. Six dual triode tubes ensure the finest pre-amplification of your music. ■ While maintaining the romantic sound of tubes, the C2500 can output your digital music at up to 32 bits and 192kHz for high resolution audio playback via five digital inputs. ■ Tone controls may be assigned to individual sources as needed. Up to three stereo power amplifiers may be connected at one time; two of them can be switched on and off to simplify your whole house audio distribution. ■ The beautiful polished stainless steel chassis shields the noise sensitive analog audio section from the power supply and control circuitry to provide the cleanest signal possible. Classic Tube Sound meets Digital Music www.mcintoshlabs.com C2500tube preamplifier Frequency Response: Tone Controls: +0, -0.5dB from 20Hz to 20kHz Bass and Treble, +/- 12dB +0, -3dB from 10Hz to 100kHz High Drive Headphone Amplifier: Total Harmonic Distortion: All headphones from 20 to 600 Ohms 0.08% Maximum from 20Hz to 20kHz Home Theater Pass Through: Inputs: Allows interfacing with a Six high level unbalanced Home Theater system Two high level balanced Two Phono: one Moving Coil adjustable, Overall Dimensions (W x H x D): one Moving Magnet 17-1/2” (44.45cm) x 7-5/8” (19.37cm) Five digital inputs x 18” (45.72cm) Maximum Output Voltage: Weight: Unbalanced Main and 30.5 lbs (13.8kg) net, Outputs 1 & 2: 8 Vrms 46 lbs (20.9kg) in shipping carton Balanced Main and Outputs 1 & 2: 16 Vrms Digital Section: Two Coax, Two Optical assignable and For the Consumer’s Protection: one dedicated USB Audio In order to ensure the highest level of customer satisfaction, “new” McIntosh products may only be purchased McIntosh Digital Engine is 32 bit 192kHz, over-the-counter or delivered and installed by an Authorized McIntosh Dealer.
    [Show full text]
  • V33-212 Tube Guitar Amplifier with Reverb Owner's Manual
    V33-212 Tube Guitar Amplifier with Reverb Owner’s Manual V33-212 Tube Guitar Amplifier with Reverb TABLE OF CONTENTS Introduction ..........................................................................3 The Front Panel ....................................................................4 The Rear Panel .....................................................................5 Important Information About Tubes and Tube Products ............6 A Brief History of Tubes ..................................................6 Tube Types and Usage ....................................................6 The Nature of Tubes: Why (and When) to Replace Them ....7 The Importance of Proper Biasing ....................................8 Survival Tips for Tube Amplifiers ......................................9 Some Suggested Settings ...................................................10 System Block Diagram ........................................................11 Technical Specifications .......................................................12 Service Information .............................................................12 CAUTION PRECAUCION ATTENTION RISK OF ELECTRIC SHOCK RIESGO DE CORRIENTAZO RISQUE D'ELECTROCUTION DO NOT OPEN NO ABRA NE PAS OUVRIR WARNING: TO REDUCE THE RISK OF FIRE OR ELECTRIC PRECAUCION: PARA REDUCIR EL RIESGO DE INCENDIOS O DESCARGAS ATTENTION: PROTÉGEZ CET APPAREIL DE LA PLUIE ET DE L'HUMIDITÉ SHOCK, DO NOT EXPOSE THIS APPARATUS TO RAIN OR ELECTRICAS, NO PERMITA QUE ESTE APARATO QUEDE EXPUESTO A LA AFIN D'ÉVITER TOUT RISQUE D'INCENDIE
    [Show full text]
  • Vacuum Tubes Vs. Transistors
    Vacuum Tubes Vs. Transistors Is There An Audible Difference? Russell O. Hamm Journal of The Audio Engineering Society Presented September 14, 1972, at the 43rd Convention of the Audio Engineering Society, New York Abstract Engineers and musicians have long debated the question of tube sound versus transistor sound. Previous attempts to measure this difference have always assumed linear operation of the test amplifier. This conventional method of frequency response, distortion and noise measurement has shown that no significant difference exists. This paper, however, points out that amplifiers are often severely overloaded by signal transients (THD 30%). Under this condition there is a major difference in the harmonic distortion components of the amplified signal, with tubes, transistors, and operational amplifiers separating into distinct groups. Introduction As recording engineers we became directly involved with the tube sound versus transistor sound controversy as it related to pop recording. The difference became markedly noticeable as more solid-state consoles made their appearance. Of course there are so many sound problems related to studio acoustics that electronic problems are generally considered the least of one's worries. After acoustically rebuilding several studios, however, we began to question just how much of a role acoustics played. During one session in a studio notorious for bad sound we plugged the microphones into Ampex portable mixers instead of the regular console. The change in sound quality was nothing short of incredible. All the acoustic changes we had made in that studio never had brought about the vast improvement in the sound that a single change in electronics had.
    [Show full text]
  • Microphones En
    EXCELLENCE IN SOUND PLEASE REFER TO WWW.NEUMANN.COM FOR ADDITIONAL PRODUCT INFORMATION. MICROPHONES NEUMANN MICROPHONES NEUMANN Directional characteristics: Features: Welcome to your NEUMANN.BERLIN Partner: Omnidirectional Figure-8 High-pass lter Omni, free- eld equalized Cardioid with high-pass Switchable high-pass lter Wide-angle cardioid Hyper/Supercardioid Low-pass lter Cardioid Shotgun Remote control All measurements were made with the Human Ear Attenuation cardioid setting. Digital (AES 42 output) Georg Neumann GmbH • Leipziger Str. 112 • 10117 Berlin • Germany • Errors excepted, subject to changes • Printed in Germany • Publ. / /A EN www.neumann.com EN STUDIO MICROPHONES TLM 49 Set ......................................... 4 TLM 67 ............................................... 6 TLM 102 ............................................. 8 TLM 103 (D)...................................... 10 TLM 107 ............................................12 TLM 170 R ........................................ 14 TLM 193 ............................................16 U 47 fet .............................................18 U 67 Set ........................................... 20 U 87 Ai..............................................22 U 89 i .............................................. 24 USM 69 i ......................................... 26 M 147 Tube ...................................... 28 M 149 Tube ...................................... 30 M 150 Tube .......................................32 D 01 ...............................................
    [Show full text]
  • The Tube Sound: Fact Or Fiction?
    Something completely different… Jerry Whitaker, ATSC, and old radio guy 2 The Tube Sound: Fact or Fiction? 3 Scope of This Presentation The latest trend in audio is actually a very old trend Tubes > transistors > integrated circuits > digital > tubes? We will revisit the attributes of vacuum tubes for audio applications Attempt to answer the question—are vacuum tube amplifiers better or just different? What about source material, in particular vinyl records? Tubes and vinyl—the ultimate audio pairing for high-fidelity listening? 4 Observation #1 Vacuum tubes have been around for a very long time. Appreciated for their distinctive sound, amplifiers built around tubes have found a permanent home with audio enthusiasts and experimenters alike. You don’t need to be an “audiophile” to appreciate them. Tube-based systems can coexist nicely in today’s digital-based environment. 5 Preferences The differences make it interesting 6 Preferences Audio is all about preferences and real-life experiences • Certain fundamental reference points exist • Loudness, frequency response, noise, distortion, etc. Audio has another dimension as well—perception • The artist has a wide and varied pallet with which to paint • There are few absolutes when it comes to audio perception • With video, absolutes abound • Viewers know that the grass should be green and the sky should be blue and people should look like…people 7 Appointment Listening: Gone for Good? Consumer listening habits have changed dramatically in the last decade • Portable playback devices abound • Convenience is the key product motivator • Listening typically done while doing something else The heyday of appointment listening now well in the past • Circa 1965—console stereo in the family room, LPs on the turntable • Circa 1945—radio in the living room, family gathered around 8 Observation #2 Appointment listening is making a comeback and doing it with tubes and vinyl.
    [Show full text]
  • Review of Digital Emulation of Vacuum-Tube Audio Amplifiers And
    Review of digital emulation of vacuum-tube audio amplifiers and recent advances in related virtual analog models THOMAZ CHAVES DE A. OLIVEIRA1 GILMAR BARRETO1 ALEXANDER MATTIOLI PASQUAL2 1Universidade Estadual de Campinas, FEEC - Faculdade de Engenharia Elétrica e de Computação Departmento de Semicondutores, Fotônica e Instrumentatação - CAMPINAS (SP) Brazil 2Universidade Federal de Minas Gerais Departamento de Engenharia Mecânica - Belo Horizonte (MG) Brazil [email protected] [email protected] [email protected] Abstract. Although semiconductor devices have progressively replaced vacuum tubes in nearly all ap- plications, vacuum-tube amplifiers are still in use by professional musicians due to their tonal character- istics. Over the years, many different techniques have been proposed with the goal of reproducing the timbral characteristics of these circuits. This paper presents a review on the methodologies that have been used to emulate tube circuits over the last 30 years for musical applications. The first part of the paper introduces the basic principles of tube circuits, with a common cathode triode example. The remainder of the paper reviews the tube sound simulation devices. The first of these emulations used analog opera- tional amplifier circuits with the negative feedback designed to reproduce tube transfer. As DSP became more popular over the last decades for audio applications, efforts towards digital tube circuit simulation algorithms were initiated. Simulation of these devices are basically divided into linear models with dig- ital filters that correspond to IIR analog filters and nonlinear digital models that corresponds to the tube circuit itself. The simulation of the first is straightforward, normally accomplished by the use of FIR digital filters.
    [Show full text]