Vacuum Tube & Distortion Emulation

Total Page:16

File Type:pdf, Size:1020Kb

Vacuum Tube & Distortion Emulation AdAddendum A19 Vacuum Tube & Distortion Emulation Part 2 Will Pirkle May 14, 2019 Copyright (c) 2019 Addendum A19 Designing Audio Effects Plugins in C++ Copyright © 2019 Will Pirkle Addendum Preface This addendum accompanies Will Pirkle’s Designing Audio Effects Plugins in C++, 2nd Edition. It specifically addresses material that was removed from Chapter 19 on nonlinear processing. Due to space limitations, the vacuum tube chapter had to be cut short and the projects slimmed down to simple wave shaping and filtering. I almost removed the entire chapter; however there has been demand for this kind of information. The reason I removed the material has to do with a special situation that happens with vacuum tubes in high-gain modern guitar amplifiers. In these designs, the engineers purposefully overdrive the inputs to the tube devices in order to create the modern distortion that is currently popular. In contrast, non-guitar tube-amp circuits are usually designed to stay within the proper operating conditions so that their inputs are not purposefully overdriven. When you overdrive the input to most amplifying devices like transistors or op-amps, once you’ve exceeded the operating limits, no more amplification will occur. The device simply won’t amplify the signal outside of its input range, and the signal is hard-clipped at that point. For a vacuum tube, this is true for the negative part of an over driven input signal. But when the positive portion of the input goes outside the limit, everything changes and the tube’s behavior becomes very dynamic. Cascading multiple overdriven stages together with differing amounts of gain between stages produces a very complex harmonic effect where the harmonic component amplitudes are directly linked to the signal amplitude. This situation is called grid-conduction. As I went further into the operational notes on grid-conduction it became more and more clear that in order for someone to understand how the objects emulate these tubes, they would need not only a background in analog electronics, but also some amount of tube circuit theory – at least enough to understand the fundamentals. Without this information, my objects and code would appear to be almost like magic to you and there would be no way for you to personalize them and make them your own. Once I added the tube theory, the chapter ballooned out to a ridiculous size and I was forced to remove it. So, that is why the chapter is organized the way it is, and that is why I wanted to make sure you have this addendum to accompany the book. Modeling: Simulate or Emulate? Right up front we have to make a choice as to the fundamental approach to a vacuum tube algorithm. There are two main paths to choose: simulate and emulate. In tube circuit simulation you use SPICE techniques to model the tube as an electronic circuit. In some cases this may involve iterative solutions and methods. Peavey’s Revalver ® uses this approach that allows the user to specify exact component values for resistors, capacitors, etc… with excellent results. A downside for teaching is that in order to understand it, you not only need to know audio electronics and tube circuit design, but also circuit component SPICE simulation techniques. 1 Addendum A19 Designing Audio Effects Plugins in C++ Copyright © 2019 Will Pirkle Modeling via emulation has an equivalency with the perceptual reverb modeling, where you make no attempt to solve a set of equations that describes the system and instead you analyze the reverb and model it with structures that emulate sound waves echoing of off surfaces and the like. For an interesting read concerning this kind of modeling, check out James Gleick’s book Chaos Making a New Science. There is a section about modeling the human eyeball as it moves back and forth in the eye socket. Since it is a bag full of fluid, we have fluid dynamics at work, and since there are muscles attached at various points that pull in various directions, we have a physics problem. One approach is to develop a set of differential equations that describes the system, then setup an initial condition and solve the equations simultaneously. That would be a direct or simulation approach. A second solution to the problem is to model the eyeball moving back and forth as a ball rolling down an inclined plane that you can tilt from left to right. The ‘eye’ ball will roll down and swerve from left to right as you tilt the inclined plane. The path of the ball represents the motion within the socket. This solution discards the notion of solving simultaneous differential equations and provides an elegant solution. This addendum will use the emulation-model approach for vacuum tubes. This involves first understanding how tube circuits are designed and operate. Then, we analyze what happens to the tube with an overdriven input and try solutions that model that system. I have multiple patents attached to the appendix of the document. A few of them involve analog modeling of vacuum tubes with analog circuit components. These are invaluable, as they must teach the modeling techniques that specifically address key vacuum tube functionality under different conditions. I have patents from Peavey, Scholz R&D and Yamaha in addition to an independent patent application regarding Class-B operation attached here. The emulation techniques that I am currently using are more aligned with the Yamaha techniques that we will discuss. But in my mind, I see a connection to the Peavey TransTube® patents as well, since these are also excellent emulation modelers that model the same phenomena using analog components. I worked very hard on the 2nd edition of Designing Audio Effects Plugins in C++ and I wanted to make sure that this information was also available to the book readers to provide a more complete work. All the Best, Will Pirkle 14-May-2019 2 Addendum A19 Designing Audio Effects Plugins in C++ Copyright © 2019 Will Pirkle Contents: Part I: Basic Tube Circuit Theory Part II: Fundamentals of Overdriving the Grid Part III: Digital Implementation Techniques Part IV: Filtering and Distortion Part V: C++ Objects and Projects There are two chapter plugins based on multiple chapter C++ effect objects. In order to distinguish between these new vacuum tube C++ objects and the ones in the book, I am using the more European name “valve” in the object names. In this Addendum the two main tube objects are ClassAValve and ClassBValvePair. The two plugin-projects are: 1. SuperSaturator: a distortion box emulation specifically for guitar 2. WickerAmpCombo: a complete tube guitar amp simulation, from input to speaker, with reverb; includes a 4-triode Class-A preamp and a 2-pentode Class B power amp all done with emulation modeling – a guitar amp tone stack model is included 3 Addendum A19 Designing Audio Effects Plugins in C++ Copyright © 2019 Will Pirkle A19 Addendum: Vacuum Tubes and Distortion Modeling Part I: Basic Tube Circuit Theory In this first section, I’ll go over just enough tube theory to get you up and running reading tube schematics and figuring out how the FX book code and projects fit within the realm of the basic low distortion tube amplifiers. The most important constraint for this first section, which was the same constraint placed on the book code and projects was: CONSTRAINT: The inputs to the tube devices are always kept within the legal range of values that the design dictates. In these circuits, we may generate significant harmonic distortion, but we do not overdrive the tube device inputs nor do we attempt to clip the signal waveforms. If you think about it, there are many types of audio devices and FX systems that operate within these constraints: • microphone preamp • tube-based EQs • audiophile tube power amp • compressors and limiters that include tubes • other FX • early amplifier designs The nonlinear chapter in the FX book was aimed at these systems specifically as opposed to modern high gain guitar amplifiers in which the designers purposefully overdrive and overload various tubes within the circuit. This is because high-gain guitar (and bass) amps are designed with a very different purpose than the rest of the devices that include tubes. This means that guitar and bass amps represent a niche sub-set of the tube audio circuits. The second section of this addendum will focus specifically on high-gain guitar amplifiers and pre-amplifiers. This can then be extended to bass amplifiers as well, through lowered distortion levels and changes to the frequency responses of the sub- circuits. 4 Addendum A19 Designing Audio Effects Plugins in C++ Copyright © 2019 Will Pirkle A19.1 Basic Vacuum Tube Theory Although there seems to be an argument over who invented the light bulb, we do know that Edison tried to improve the invention. When you run an electrical current through fine wire, the wire will glow, or give off light, for a short time just before it catches on fire. If you put the wire in a vacuum, it could be put in the glowing state and held there. Without oxygen, the wire (called a filament) cannot catch on fire. In the early light bulbs, the bulb would eventually expire because the vacuum was not perfect, but not before the inside of the glass bulb was covered with black soot – the “ashes” of the filament. The black soot caused the bulb to dim, and be less and less useful. The dimmed bulb was still giving off light, but it was hidden behind the layer of dark powder. Edison wanted to extend the life of the bulbs by eliminating, or at least delaying, the appearance of the soot.
Recommended publications
  • Tube Condenser Microphone T-47 &
    Condenser Microphones TUBE CONDENSER MICROPHONE T-47 & T-1 Vacuum Tube Condenser Microphone Professional, large-diaphragm, tube condenser microphone for unsurpassed audio quality Hand-selected 12AX7 vacuum tube for exceptional warmth and vintage sound The Ultimate Recording Mic? Classic Tube Sound Ideal as main and support microphone for studio and Since the early days of recording, The sound of tubes is undeniably live applications sound engineers have been searching rich and smooth. At the heart of for the best-sounding mics for each of these mics is a hand-selected Cardioid pickup pattern for recording acoustic instruments and 12AX7 tube, which has been specifically outstanding sound source separation the human voice. The resounding designed to give these microphones and feedback rejection choice of professional recordists their incredible sonic character. around the globe has been the tube One advantage tube condensers have Pressure-gradient transducer with condenser microphone. Why? Because over their solid-state counterparts is they shock-mounted capsule nothing compares to the sound captured are not subject to the rapid rise of odd- Perfect for vocals and by a good tube condenser microphone order harmonics, which the ear perceives acoustic instruments — so open, warm and full of character. as highly unmusical. Even when subjected to high sound pressure levels, Switchable low-frequency roll-off But tube mics can wipe out a the T-1 and T-47 mics react in much the home-recording budget faster than same way the human ear does. 20 dB input attenuation (T-1 only) you can say “phantom power supply”. That’s why we’re so very proud to present T-1 and T-47 Have a Sensitive Side External power supply with 30 ft.
    [Show full text]
  • The Tube Sound and Tube Emulators
    ERIC K. PRITCHARD The Tube Sound and Tube Emulators $0 RE TUBES MAGIC? IS THERE really a difference be- tween tubes and tran- I ea sistors? Some hear the warmthA and appreciate the full body of the tube sound, and others deride the thought. Is the magic of I. I. - the tube sound more than mere / ea nostalgia? A recording engineer, ....„1 .4,Aa. e1 00 14 •111 Russell 0. Hamm, could hear the Relative lame Level itoletive ler.a Level difference. Determined to find and Figure 1.Distortion components explain the difference, he began Figure 3.Distortion components for two-stage triode amplifier. testing microphone preamplifiers for multi-stage capacitor-coupled of various technologies. His fa- transistor amplifier. mous paper, "Tubes Versus Tran- sistors—Is There an Audible Dif- ference?" [1], shows that the 10 harmonic structures in overdrive 3 re N I 3 r• conditions for different technolo- gies are quite different, almost like 20 10 fingerprints. I. -___.......i..4_7" More recently, an electronics en- 14 ea gineer, Eric Pritchard, started Relative brat Level - 14 down the circuitous path to bring Retellv• tepee Leve1 Figure 2..Distortion components the two worlds together and to give Figure 4.Distortion components for two-stage pentode amplifier.. solid state the character of tubes. for multistage transformer- The elusive tube sound has finally coupled transistor amplifier. succumbed to an intensive re- search and development program TUBES AND THE TUBE that has produced solid-state tube SOUND emulators and tube emulator cir- In retrospect, the tube has many cuits [2]. The effort began nearly 3 re f technically superior aspects, it is seven years ago with the search for fairly linear, its operational pa- / a solid state guitar amplifier that rameters do not vary badly, at least / sounded like tubes.
    [Show full text]
  • Cutting Edge
    CuttingTHE Edge Electronically reprinted from December 2007 MASTERPIECE! Audio Research 610T Monoblock Power Amplifier Jonathan Valin t is a little sobering to look back to 1973 and the first pieces of Audio Research gear II heard—the SP-3 preamp and D75 amp powering Magneplanar I-Us in a stereo demo that, for me, has never been bettered or forgotten— and then to consider how consistently and naturally all the subsequent ARC gear I’ve heard, and I’ve heard a lot, has been voiced. From the start, ARC components had a sound that was uniquely, indelibly, addictively “right.” ARC’s designer and founder William Zane Johnson called this sound “high definition,” a trademark that still appears on the faceplate of each and every ARC component. And even in 1973 his creations were astonishingly high in definition; indeed, their standard-setting resolution, lifelike size, bloom, and airy brightness, and exceptionally low levels of tube-like coloration were a large part of what set them apart from the darker, thicker, blatantly euphonic sound of the tube preamps and amps that preceded them. Not that everyone preferred high definition tube sound. There were those, then, and are those, now, who thought and think that tubes should invariably make music sweet, round, and rosy, that prettifying sources is the vacuum tube’s job in life—the very thing that sets it apart from the crisp, clean, “neutral” presentation of the transistor. Johnson never bought into this model. Indeed, it was the superior accuracy and neutrality of transistor electronics—which in the late 60s and early 70s were even more in the ascendant than they are today—that inspired him to outdo solid-state at its own game.
    [Show full text]
  • Genuine Sound
    www.lewitt-audio.com EMPHASIZE THE GENUINE IN YOUR SOUND. LCT 940 LCT 940 Introduction Thank you that you have opted for a LEWITT product. In this operating manual you will learn more about your LEWITT microphone, its handling and its proper usage. With the LCT Authentica Series, LEWITT introduces a new generation of highly versatile wired condenser microphones that all aim for setting new benchmarks of technology, sound quality and user-friendliness in both professional studio recording and onstage use. The microphones of the LCT Authentica Series stand for unaltered sound and innovative features: llluminated Settings, Noiseless Push Buttons, Automatic Attenuation with Clip Detection and History all ensure error-free sonic perfection and peerless ease of use for today’s demanding recording artists and engineers. Day after day, be it for live acts, in home studios or in professional studio productions. LEWITT wishes you a lot of fun and success with this product! 02 LCT 940 The product Sound professionals naturally rely on a set of different high-end microphones in order to get the best out of their sound. But changing microphones and adjusting settings takes valuable time, the creative flow of a session is interrupted. With its new Authentica series flagship LCT 940, LEWITT now introduces a microphone that will revolutionize modern studio recording procedures and help engineers and artists to react more quickly to a desired change of style and sound. The LCT 940 combines the specific characteristics of a premium large-diaphragm FET condenser microphone and a top-notch tube microphone in one housing. Basically, users can choose between the two main settings "FET" and "Tube".
    [Show full text]
  • Something Completely Different…
    Something completely different… Jerry Whitaker, ATSC, and old radio guy 1 The Tube Sound: Fact or Fiction? 2 Scope of This Presentation The latest trend in audio is actually a very old trend Tubes > transistors > integrated circuits > digital > tubes? We will revisit the attributes of vacuum tubes for audio applications Attempt to answer the question—are vacuum tube amplifiers better or just different? What about source material, in particular vinyl records? Tubes and vinyl—the ultimate audio pairing for high-fidelity listening? 3 Observation #1 Vacuum tubes have been around for a very long time. Appreciated for their distinctive sound, amplifiers built around tubes have found a permanent home with audio enthusiasts and experimenters alike. You don’t need to be an “audiophile” to appreciate them. Tube-based systems can coexist nicely in today’s digital-based environment. 4 Preferences The differences make it interesting 5 Preferences Audio is all about preferences and real-life experiences • Certain fundamental reference points exist • Loudness, frequency response, noise, distortion, etc. Audio has another dimension as well—perception • The artist has a wide and varied pallet with which to paint • There are few absolutes when it comes to audio perception • With video, absolutes abound • Viewers know that the grass should be green and the sky should be blue and people should look like…people 6 Appointment Listening: Gone for Good? Consumer listening habits have changed dramatically in the last decade • Portable playback devices abound • Convenience is the key product motivator • Listening typically done while doing something else The heyday of appointment listening now well in the past • Circa 1965—console stereo in the family room, LPs on the turntable • Circa 1945—radio in the living room, family gathered around 7 Observation #2 Appointment listening is making a comeback and doing it with tubes and vinyl.
    [Show full text]
  • Vacuum Tube Amplifier Modeling with Dynamic Convolution
    Vacuum Tube Amplifier Modeling with Dynamic Convolution Jason Traub Department of Electrical and Computer Engineering, University of Florida Though nearly obsolete within electronics, vacuum tubes remain in high demand for musical amplification [1]; and particularly for electric guitar. This research discusses reasons for the observed preference and assesses its validity. Furthermore, amplifier electronic circuits are studied and comparisons are made between vacuum tubes and bipolar junction and metal oxide field effect transistors; the latter two have replaced vacuum tubes in nearly every application, and are responsible for the advancement of the digital computer. Undoubtedly, there exists extreme cost effectiveness in obtaining a computer processing technique to mimic the sound that is applied by a vacuum tube amplifier. Thus, many modeling techniques have been developed and used in commercially successful products. This research discusses several of these methods and ultimately attempts to mimic a vacuum tube amplifier using the dynamic convolution method, proposed by Kemp [2]. Introduction: Light Bulbs, Valves, and Transistors acuum tubes, or “valves”, as the British call them, were the first electronic component to be able to V function as an amplifier. To give a historical perspective: Thomas Edison invented and patented the light bulb in 1879 [3]; J.J. Thompson’s experiments led to the discovery of the electron in 1897 [4]; and the work of John Fleming and Lee de Forest ultimately led to the vacuum tube triode in 1906 [5]. This three terminal device allows us to amplify the current and/or voltage of an input signal. A vacuum tube triode consists of two electrodes, the plate (anode) and cathode, separated by a short distance in an Figure 1.
    [Show full text]
  • RF Measurement Concepts
    Published by CERN in the Proceedings of the CAS-CERN Accelerator School: Advanced Accelerator Physics, Trondheim, Norway, 19–29 August 2013, edited by W. Herr, CERN-2014-009 (CERN, Geneva, 2014) RF Measurement Concepts F. Caspers1 and P. Kowina2 1CERN, Geneva, Switzerland 2GSI, Darmstadt, Germany Abstract For the characterization of components, systems and signals in the radiofre- quency (RF) and microwave ranges, several dedicated instruments are in use. In this article the fundamentals of the RF signal techniques are discussed. The key element in these front ends is the Schottky diode which can be used either as a RF mixer or as a single sampler. The spectrum analyser has become an absolutely indispensable tool for RF signal analysis. Here the front end is the RF mixer as the RF section of modern spectrum analyses has a rather complex architecture. The reasons for this complexity and certain working principles as well as limitations are discussed. In addition, an overview of the develop- ment of scalar and vector signal analysers is given. For the determination of the noise temperature of a one-port and the noise figure of a two-port, basic concepts and relations are shown as well as a brief discussion of commonly used noise-measurement techniques. In a further part of this article the oper- ating principles of network analysers are shown. A distinction can be made between scalar and vector network analysers and their methods of measuring the transmission or reflection coefficients are explained. As digital signal pro- cessing has become cheap and easily available over the last 30 years, these instruments have become extremely versatile and powerful.
    [Show full text]
  • Classic Tube Sound Meets Digital Music
    C2500tube preamplifier ■ C2500 combines McIntosh’s legendary vacuum tube preamplifier circuitry with a full suite of contemporary features and technology. Six dual triode tubes ensure the finest pre-amplification of your music. ■ While maintaining the romantic sound of tubes, the C2500 can output your digital music at up to 32 bits and 192kHz for high resolution audio playback via five digital inputs. ■ Tone controls may be assigned to individual sources as needed. Up to three stereo power amplifiers may be connected at one time; two of them can be switched on and off to simplify your whole house audio distribution. ■ The beautiful polished stainless steel chassis shields the noise sensitive analog audio section from the power supply and control circuitry to provide the cleanest signal possible. Classic Tube Sound meets Digital Music www.mcintoshlabs.com C2500tube preamplifier Frequency Response: Tone Controls: +0, -0.5dB from 20Hz to 20kHz Bass and Treble, +/- 12dB +0, -3dB from 10Hz to 100kHz High Drive Headphone Amplifier: Total Harmonic Distortion: All headphones from 20 to 600 Ohms 0.08% Maximum from 20Hz to 20kHz Home Theater Pass Through: Inputs: Allows interfacing with a Six high level unbalanced Home Theater system Two high level balanced Two Phono: one Moving Coil adjustable, Overall Dimensions (W x H x D): one Moving Magnet 17-1/2” (44.45cm) x 7-5/8” (19.37cm) Five digital inputs x 18” (45.72cm) Maximum Output Voltage: Weight: Unbalanced Main and 30.5 lbs (13.8kg) net, Outputs 1 & 2: 8 Vrms 46 lbs (20.9kg) in shipping carton Balanced Main and Outputs 1 & 2: 16 Vrms Digital Section: Two Coax, Two Optical assignable and For the Consumer’s Protection: one dedicated USB Audio In order to ensure the highest level of customer satisfaction, “new” McIntosh products may only be purchased McIntosh Digital Engine is 32 bit 192kHz, over-the-counter or delivered and installed by an Authorized McIntosh Dealer.
    [Show full text]
  • V33-212 Tube Guitar Amplifier with Reverb Owner's Manual
    V33-212 Tube Guitar Amplifier with Reverb Owner’s Manual V33-212 Tube Guitar Amplifier with Reverb TABLE OF CONTENTS Introduction ..........................................................................3 The Front Panel ....................................................................4 The Rear Panel .....................................................................5 Important Information About Tubes and Tube Products ............6 A Brief History of Tubes ..................................................6 Tube Types and Usage ....................................................6 The Nature of Tubes: Why (and When) to Replace Them ....7 The Importance of Proper Biasing ....................................8 Survival Tips for Tube Amplifiers ......................................9 Some Suggested Settings ...................................................10 System Block Diagram ........................................................11 Technical Specifications .......................................................12 Service Information .............................................................12 CAUTION PRECAUCION ATTENTION RISK OF ELECTRIC SHOCK RIESGO DE CORRIENTAZO RISQUE D'ELECTROCUTION DO NOT OPEN NO ABRA NE PAS OUVRIR WARNING: TO REDUCE THE RISK OF FIRE OR ELECTRIC PRECAUCION: PARA REDUCIR EL RIESGO DE INCENDIOS O DESCARGAS ATTENTION: PROTÉGEZ CET APPAREIL DE LA PLUIE ET DE L'HUMIDITÉ SHOCK, DO NOT EXPOSE THIS APPARATUS TO RAIN OR ELECTRICAS, NO PERMITA QUE ESTE APARATO QUEDE EXPUESTO A LA AFIN D'ÉVITER TOUT RISQUE D'INCENDIE
    [Show full text]
  • Vacuum Tubes Vs. Transistors
    Vacuum Tubes Vs. Transistors Is There An Audible Difference? Russell O. Hamm Journal of The Audio Engineering Society Presented September 14, 1972, at the 43rd Convention of the Audio Engineering Society, New York Abstract Engineers and musicians have long debated the question of tube sound versus transistor sound. Previous attempts to measure this difference have always assumed linear operation of the test amplifier. This conventional method of frequency response, distortion and noise measurement has shown that no significant difference exists. This paper, however, points out that amplifiers are often severely overloaded by signal transients (THD 30%). Under this condition there is a major difference in the harmonic distortion components of the amplified signal, with tubes, transistors, and operational amplifiers separating into distinct groups. Introduction As recording engineers we became directly involved with the tube sound versus transistor sound controversy as it related to pop recording. The difference became markedly noticeable as more solid-state consoles made their appearance. Of course there are so many sound problems related to studio acoustics that electronic problems are generally considered the least of one's worries. After acoustically rebuilding several studios, however, we began to question just how much of a role acoustics played. During one session in a studio notorious for bad sound we plugged the microphones into Ampex portable mixers instead of the regular console. The change in sound quality was nothing short of incredible. All the acoustic changes we had made in that studio never had brought about the vast improvement in the sound that a single change in electronics had.
    [Show full text]
  • Microphones En
    EXCELLENCE IN SOUND PLEASE REFER TO WWW.NEUMANN.COM FOR ADDITIONAL PRODUCT INFORMATION. MICROPHONES NEUMANN MICROPHONES NEUMANN Directional characteristics: Features: Welcome to your NEUMANN.BERLIN Partner: Omnidirectional Figure-8 High-pass lter Omni, free- eld equalized Cardioid with high-pass Switchable high-pass lter Wide-angle cardioid Hyper/Supercardioid Low-pass lter Cardioid Shotgun Remote control All measurements were made with the Human Ear Attenuation cardioid setting. Digital (AES 42 output) Georg Neumann GmbH • Leipziger Str. 112 • 10117 Berlin • Germany • Errors excepted, subject to changes • Printed in Germany • Publ. / /A EN www.neumann.com EN STUDIO MICROPHONES TLM 49 Set ......................................... 4 TLM 67 ............................................... 6 TLM 102 ............................................. 8 TLM 103 (D)...................................... 10 TLM 107 ............................................12 TLM 170 R ........................................ 14 TLM 193 ............................................16 U 47 fet .............................................18 U 67 Set ........................................... 20 U 87 Ai..............................................22 U 89 i .............................................. 24 USM 69 i ......................................... 26 M 147 Tube ...................................... 28 M 149 Tube ...................................... 30 M 150 Tube .......................................32 D 01 ...............................................
    [Show full text]
  • The Tube Sound: Fact Or Fiction?
    Something completely different… Jerry Whitaker, ATSC, and old radio guy 2 The Tube Sound: Fact or Fiction? 3 Scope of This Presentation The latest trend in audio is actually a very old trend Tubes > transistors > integrated circuits > digital > tubes? We will revisit the attributes of vacuum tubes for audio applications Attempt to answer the question—are vacuum tube amplifiers better or just different? What about source material, in particular vinyl records? Tubes and vinyl—the ultimate audio pairing for high-fidelity listening? 4 Observation #1 Vacuum tubes have been around for a very long time. Appreciated for their distinctive sound, amplifiers built around tubes have found a permanent home with audio enthusiasts and experimenters alike. You don’t need to be an “audiophile” to appreciate them. Tube-based systems can coexist nicely in today’s digital-based environment. 5 Preferences The differences make it interesting 6 Preferences Audio is all about preferences and real-life experiences • Certain fundamental reference points exist • Loudness, frequency response, noise, distortion, etc. Audio has another dimension as well—perception • The artist has a wide and varied pallet with which to paint • There are few absolutes when it comes to audio perception • With video, absolutes abound • Viewers know that the grass should be green and the sky should be blue and people should look like…people 7 Appointment Listening: Gone for Good? Consumer listening habits have changed dramatically in the last decade • Portable playback devices abound • Convenience is the key product motivator • Listening typically done while doing something else The heyday of appointment listening now well in the past • Circa 1965—console stereo in the family room, LPs on the turntable • Circa 1945—radio in the living room, family gathered around 8 Observation #2 Appointment listening is making a comeback and doing it with tubes and vinyl.
    [Show full text]