Genome-Wide Characterization of RNA Polymerase II Behavior During Transcription Termination and Upon UV-B Stress Akos Gyenis

Total Page:16

File Type:pdf, Size:1020Kb

Genome-Wide Characterization of RNA Polymerase II Behavior During Transcription Termination and Upon UV-B Stress Akos Gyenis Genome-wide characterization of RNA polymerase II behavior during transcription termination and upon UV-B stress Akos Gyenis To cite this version: Akos Gyenis. Genome-wide characterization of RNA polymerase II behavior during transcription termination and upon UV-B stress. Genomics [q-bio.GN]. Université de Strasbourg, 2012. English. NNT : 2012STRAJ056. tel-01124075 HAL Id: tel-01124075 https://tel.archives-ouvertes.fr/tel-01124075 Submitted on 6 Mar 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITÉ DE STRASBOURG École Doctorale des Sciences de la Vie et de la Santé IGBMC - CNRS UMR 7104 - Inserm U 964 THÈSE présentée par: Akos Gyenis Soutenue le: 19 décembre 2012 Pour obtenir le grade de : Docteur de l’Université de Strasbourg Discipline/ Spécialité: Aspects moléculaires et cellulaires de la biologie Etudes génomiques de la dynamique de l’ARN polymérase II pendant l’étape de terminaison de la transcription et après un stress causé par les UV-B (Genome-wide characterization of RNA polymerase II behavior during transcription termination and upon UV-B stress) THÈSE dirigée par: Dr. Laszlo Tora Institut de génétique et de biologie moléculaire et cellulaire, Strasbourg RAPPORTEURS: Dr. Olivier Bensaude Institut de biologie de l’école normale supérieure, Paris Dr. Matthieu Gerard Institut de biologie et de technologies de Saclay Dr. Evi Soutoglou Institut de génétique et de biologie moléculaire et cellulaire, Strasbourg Contents Contents ............................................................................................................ 2 Acknowledgement............................................................................................. 5 List of abbreviations .......................................................................................... 6 Résumé de thèse ............................................................................................... 9 INTRODUCTION ............................................................................................... 20 Chapter one: RNA polymerase II regulation and pause during transcription . 21 I. The expression of genetic information................................................................................... 21 1. DNA dependent RNA polymerases ..................................................................................... 21 A. Structure of Pol II ........................................................................................................... 23 B. Carboxyl-terminal domain of Pol II ................................................................................. 24 C. Posttranslational modifications of CTD .......................................................................... 25 II. RNA polymerase II transcription cycle.................................................................................... 31 2. Transcription initiation ...................................................................................................... 31 D. Core promoter elements ............................................................................................... 31 E. General transcription factors ......................................................................................... 34 F. Sequential assembly of the PIC complex ........................................................................ 36 G. Activation dependent transcription and coactivators ..................................................... 37 a) Mediator complex...................................................................................................... 37 b) Upstream stimulatory activity (USA) .......................................................................... 38 c) Chromatin remodeling and modifications .................................................................. 38 3. Promoter escape ............................................................................................................... 40 4. Early elongation................................................................................................................. 41 5. Pol II pause ........................................................................................................................ 42 H. Factors contributing in Pol II pause establishment ......................................................... 44 I. Possible roles of Pol II pause .......................................................................................... 47 J. Promoter associated RNAs............................................................................................. 49 6. Transcription elongation .................................................................................................... 50 K. Factors to diminish Pol II pause during elongation ......................................................... 50 d) P-TEFb and DSIF ......................................................................................................... 50 e) TFIIS ........................................................................................................................... 52 f) TFIIF ........................................................................................................................... 53 g) Elongin complex ......................................................................................................... 53 h) The ELL family ............................................................................................................ 54 i) CSB ............................................................................................................................ 55 L. Elongation factors with chromatin remodeling ability .................................................... 55 j) SWI/SNF .................................................................................................................... 55 k) Chd1 .......................................................................................................................... 56 l) FACT and Spt6 ............................................................................................................ 56 M. Elongation factors which maintain histone modifications ........................................... 57 7. Transcription termination and 3’ end processing ............................................................... 57 N. 3’ end processing of pre-mRNA ...................................................................................... 58 O. Different 3’ end processing and termination pathway on short, none-polyadenylated transcripts ............................................................................................................................. 59 P. Transcription termination I: Torpedo model .................................................................. 60 Q. Transcription termination II: Allosteric/anti-terminator model....................................... 61 R. Chromatin remodeling factors at the 3’ end of genes..................................................... 62 8. Pol II pause downstream from 3’-end of genes .................................................................. 63 RESULTS I. ........................................................................................................ 65 III. Genome-wide characterization of Pol II pause downstream from 3’ end of genes.............. 65 IV. Publication I....................................................................................................................... 66 V. Publication II. ........................................................................................................................ 67 VI. DISCUSSION I. .................................................................................................................... 68 Chapter two: The fate of RNA polymerase II transcription upon UVB irradiation ........................................................................................................ 73 VII. Transcription is blocked by alterations in the DNA structure .............................................. 73 9. Ultraviolet light.................................................................................................................. 74 S. UV-induced DNA damage .............................................................................................. 75 T. DNA double strand breaks ............................................................................................. 77 10. Persistent blocks initiate transcription coupled repair processes.................................... 78 U. Nucleotide excision repair (NER) .................................................................................... 78 m) CSB is a key element of TCR / damage recognition ................................................. 79 n) TCR factor recruitment / damage verification............................................................. 80 o) Role of TFIIH complex in TCR ...................................................................................... 81 p) Late steps of TCR
Recommended publications
  • Human Prion-Like Proteins and Their Relevance in Disease
    ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en Universitat Autònoma de Barcelona Departament de Bioquímica i Biologia Molecular Institut de Biotecnologia i Biomedicina HUMAN PRION-LIKE PROTEINS AND THEIR RELEVANCE IN DISEASE Doctoral thesis presented by Cristina Batlle Carreras for the degree of PhD in Biochemistry, Molecular Biology and Biomedicine from the Universitat Autònoma de Barcelona. The work described herein has been performed in the Department of Biochemistry and Molecular Biology and in the Institute of Biotechnology and Biomedicine, supervised by Prof. Salvador Ventura i Zamora. Cristina Batlle Carreras Prof. Salvador Ventura i Zamora Bellaterra, 2020 Protein Folding and Conformational Diseases Lab. This work was financed with the fellowship “Formación de Profesorado Universitario” by “Ministerio de Ciencia, Innovación y Universidades”. This work is licensed under a Creative Commons Attributions-NonCommercial-ShareAlike 4.0 (CC BY-NC- SA 4.0) International License. The extent of this license does not apply to the copyrighted publications and images reproduced with permission. (CC BY-NC-SA 4.0) Batlle, Cristina: Human prion-like proteins and their relevance in disease. Doctoral Thesis, Universitat Autònoma de Barcelona (2020) English summary ENGLISH SUMMARY Prion-like proteins have attracted significant attention in the last years.
    [Show full text]
  • BRCA1-Dependent Transcriptional Regulation: Implication in Tissue-Specific Tumor Suppression
    cancers Review BRCA1-Dependent Transcriptional Regulation: Implication in Tissue-Specific Tumor Suppression Xiaowen Zhang * and Rong Li * Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, DC 20037, USA * Correspondence: [email protected] (X.Z.); [email protected] (R.L.) Received: 14 October 2018; Accepted: 11 December 2018; Published: 14 December 2018 Abstract: Germ-line mutations in breast cancer susceptibility gene 1 (BRCA1) predominantly predispose women to breast and ovarian cancers. BRCA1 is best known for its functions in maintenance of genomic integrity including repairing DNA double-strand breaks through homologous recombination and suppressing DNA replication stress. However, whether these universally important BRCA1 functions in maintenance of genomic stability are sufficient to account for its tissue-specific tumor-suppressing function remains unclear. Accumulating evidence indicates that there are previously underappreciated roles of BRCA1 in transcriptional regulation and chromatin remodeling. In this review, we discuss the functional significance of interactions between BRCA1 and various transcription factors, its role in epigenetic regulation and chromatin dynamics, and BRCA1-dependent crosstalk between the machineries of transcription and genome integrity. Furthermore, we propose a model of how transcriptional regulation could contribute to tissue-dependent tumor-suppressing function of BRCA1. Keywords: BRCA1; transcriptional regulation; epigenetic regulation; chromatin organization 1. Introduction Approximately 0.2% to 0.3% of the general population in the United States carries germ-line mutations in the tumor suppressor gene BRCA1 (BRCA1mut/+)[1,2]. Unlike tumor suppressors such as p53 that are implicated in a broad spectrum of cancers, BRCA1 functions in a gender- and tissue-specific manner.
    [Show full text]
  • The Title of the Article
    Mechanism-Anchored Profiling Derived from Epigenetic Networks Predicts Outcome in Acute Lymphoblastic Leukemia Xinan Yang, PhD1, Yong Huang, MD1, James L Chen, MD1, Jianming Xie, MSc2, Xiao Sun, PhD2, Yves A Lussier, MD1,3,4§ 1Center for Biomedical Informatics and Section of Genetic Medicine, Department of Medicine, The University of Chicago, Chicago, IL 60637 USA 2State Key Laboratory of Bioelectronics, Southeast University, 210096 Nanjing, P.R.China 3The University of Chicago Cancer Research Center, and The Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL 60637 USA 4The Institute for Genomics and Systems Biology, and the Computational Institute, The University of Chicago, Chicago, IL 60637 USA §Corresponding author Email addresses: XY: [email protected] YH: [email protected] JC: [email protected] JX: [email protected] XS: [email protected] YL: [email protected] - 1 - Abstract Background Current outcome predictors based on “molecular profiling” rely on gene lists selected without consideration for their molecular mechanisms. This study was designed to demonstrate that we could learn about genes related to a specific mechanism and further use this knowledge to predict outcome in patients – a paradigm shift towards accurate “mechanism-anchored profiling”. We propose a novel algorithm, PGnet, which predicts a tripartite mechanism-anchored network associated to epigenetic regulation consisting of phenotypes, genes and mechanisms. Genes termed as GEMs in this network meet all of the following criteria: (i) they are co-expressed with genes known to be involved in the biological mechanism of interest, (ii) they are also differentially expressed between distinct phenotypes relevant to the study, and (iii) as a biomodule, genes correlate with both the mechanism and the phenotype.
    [Show full text]
  • Global-Scale Analysis of the Dynamic Transcriptional Adaptations Within Skeletal Muscle During Hypertrophic Growth
    University of Kentucky UKnowledge Theses and Dissertations--Physiology Physiology 2015 GLOBAL-SCALE ANALYSIS OF THE DYNAMIC TRANSCRIPTIONAL ADAPTATIONS WITHIN SKELETAL MUSCLE DURING HYPERTROPHIC GROWTH Tyler Kirby University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Kirby, Tyler, "GLOBAL-SCALE ANALYSIS OF THE DYNAMIC TRANSCRIPTIONAL ADAPTATIONS WITHIN SKELETAL MUSCLE DURING HYPERTROPHIC GROWTH" (2015). Theses and Dissertations--Physiology. 22. https://uknowledge.uky.edu/physiology_etds/22 This Doctoral Dissertation is brought to you for free and open access by the Physiology at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Physiology by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known. I agree that the document mentioned above may be made available immediately for worldwide access unless an embargo applies.
    [Show full text]
  • Dynamic Molecular Linkers of the Genome: the First Decade of SMC Proteins
    Downloaded from genesdev.cshlp.org on October 8, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW Dynamic molecular linkers of the genome: the first decade of SMC proteins Ana Losada1 and Tatsuya Hirano2,3 1Spanish National Cancer Center (CNIO), Madrid E-28029, Spain; 2Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA Structural maintenance of chromosomes (SMC) proteins in eukaryotes. The proposed actions of cohesin and con- are chromosomal ATPases, highly conserved from bac- densins offer a plausible, if not complete, explanation for teria to humans, that play fundamental roles in many the sudden appearance of thread-like “substances” (the aspects of higher-order chromosome organization and chromosomes) and their longitudinal splitting during dynamics. In eukaryotes, SMC1 and SMC3 act as the mitosis, first described by Walther Flemming (1882). core of the cohesin complexes that mediate sister chro- Remarkably, SMC proteins are conserved among the matid cohesion, whereas SMC2 and SMC4 function as three phyla of life, indicating that the basic strategy of the core of the condensin complexes that are essential chromosome organization may be evolutionarily con- for chromosome assembly and segregation. Another served from bacteria to humans. An emerging theme is complex containing SMC5 and SMC6 is implicated in that SMC proteins are dynamic molecular linkers of the DNA repair and checkpoint responses. The SMC com- genome that actively fold, tether, and manipulate DNA plexes form unique ring- or V-shaped structures with strands. Their diverse functions range far beyond chro- long coiled-coil arms, and function as ATP-modulated, mosome segregation, and involve nearly all aspects of dynamic molecular linkers of the genome.
    [Show full text]
  • Supplementary Information Integrative Analyses of Splicing in the Aging Brain: Role in Susceptibility to Alzheimer’S Disease
    Supplementary Information Integrative analyses of splicing in the aging brain: role in susceptibility to Alzheimer’s Disease Contents 1. Supplementary Notes 1.1. Religious Orders Study and Memory and Aging Project 1.2. Mount Sinai Brain Bank Alzheimer’s Disease 1.3. CommonMind Consortium 1.4. Data Availability 2. Supplementary Tables 3. Supplementary Figures Note: Supplementary Tables are provided as separate Excel files. 1. Supplementary Notes 1.1. Religious Orders Study and Memory and Aging Project Gene expression data1. Gene expression data were generated using RNA- sequencing from Dorsolateral Prefrontal Cortex (DLPFC) of 540 individuals, at an average sequence depth of 90M reads. Detailed description of data generation and processing was previously described2 (Mostafavi, Gaiteri et al., under review). Samples were submitted to the Broad Institute’s Genomics Platform for transcriptome analysis following the dUTP protocol with Poly(A) selection developed by Levin and colleagues3. All samples were chosen to pass two initial quality filters: RNA integrity (RIN) score >5 and quantity threshold of 5 ug (and were selected from a larger set of 724 samples). Sequencing was performed on the Illumina HiSeq with 101bp paired-end reads and achieved coverage of 150M reads of the first 12 samples. These 12 samples will serve as a deep coverage reference and included 2 males and 2 females of nonimpaired, mild cognitive impaired, and Alzheimer's cases. The remaining samples were sequenced with target coverage of 50M reads; the mean coverage for the samples passing QC is 95 million reads (median 90 million reads). The libraries were constructed and pooled according to the RIN scores such that similar RIN scores would be pooled together.
    [Show full text]
  • Identification and Characterization of TPRKB Dependency in TP53 Deficient Cancers
    Identification and Characterization of TPRKB Dependency in TP53 Deficient Cancers. by Kelly Kennaley A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Molecular and Cellular Pathology) in the University of Michigan 2019 Doctoral Committee: Associate Professor Zaneta Nikolovska-Coleska, Co-Chair Adjunct Associate Professor Scott A. Tomlins, Co-Chair Associate Professor Eric R. Fearon Associate Professor Alexey I. Nesvizhskii Kelly R. Kennaley [email protected] ORCID iD: 0000-0003-2439-9020 © Kelly R. Kennaley 2019 Acknowledgements I have immeasurable gratitude for the unwavering support and guidance I received throughout my dissertation. First and foremost, I would like to thank my thesis advisor and mentor Dr. Scott Tomlins for entrusting me with a challenging, interesting, and impactful project. He taught me how to drive a project forward through set-backs, ask the important questions, and always consider the impact of my work. I’m truly appreciative for his commitment to ensuring that I would get the most from my graduate education. I am also grateful to the many members of the Tomlins lab that made it the supportive, collaborative, and educational environment that it was. I would like to give special thanks to those I’ve worked closely with on this project, particularly Dr. Moloy Goswami for his mentorship, Lei Lucy Wang, Dr. Sumin Han, and undergraduate students Bhavneet Singh, Travis Weiss, and Myles Barlow. I am also grateful for the support of my thesis committee, Dr. Eric Fearon, Dr. Alexey Nesvizhskii, and my co-mentor Dr. Zaneta Nikolovska-Coleska, who have offered guidance and critical evaluation since project inception.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • 4-6 Weeks Old Female C57BL/6 Mice Obtained from Jackson Labs Were Used for Cell Isolation
    Methods Mice: 4-6 weeks old female C57BL/6 mice obtained from Jackson labs were used for cell isolation. Female Foxp3-IRES-GFP reporter mice (1), backcrossed to B6/C57 background for 10 generations, were used for the isolation of naïve CD4 and naïve CD8 cells for the RNAseq experiments. The mice were housed in pathogen-free animal facility in the La Jolla Institute for Allergy and Immunology and were used according to protocols approved by the Institutional Animal Care and use Committee. Preparation of cells: Subsets of thymocytes were isolated by cell sorting as previously described (2), after cell surface staining using CD4 (GK1.5), CD8 (53-6.7), CD3ε (145- 2C11), CD24 (M1/69) (all from Biolegend). DP cells: CD4+CD8 int/hi; CD4 SP cells: CD4CD3 hi, CD24 int/lo; CD8 SP cells: CD8 int/hi CD4 CD3 hi, CD24 int/lo (Fig S2). Peripheral subsets were isolated after pooling spleen and lymph nodes. T cells were enriched by negative isolation using Dynabeads (Dynabeads untouched mouse T cells, 11413D, Invitrogen). After surface staining for CD4 (GK1.5), CD8 (53-6.7), CD62L (MEL-14), CD25 (PC61) and CD44 (IM7), naïve CD4+CD62L hiCD25-CD44lo and naïve CD8+CD62L hiCD25-CD44lo were obtained by sorting (BD FACS Aria). Additionally, for the RNAseq experiments, CD4 and CD8 naïve cells were isolated by sorting T cells from the Foxp3- IRES-GFP mice: CD4+CD62LhiCD25–CD44lo GFP(FOXP3)– and CD8+CD62LhiCD25– CD44lo GFP(FOXP3)– (antibodies were from Biolegend). In some cases, naïve CD4 cells were cultured in vitro under Th1 or Th2 polarizing conditions (3, 4).
    [Show full text]
  • 2020 Program Book
    PROGRAM BOOK Note that TAGC was cancelled and held online with a different schedule and program. This document serves as a record of the original program designed for the in-person meeting. April 22–26, 2020 Gaylord National Resort & Convention Center Metro Washington, DC TABLE OF CONTENTS About the GSA ........................................................................................................................................................ 3 Conference Organizers ...........................................................................................................................................4 General Information ...............................................................................................................................................7 Mobile App ....................................................................................................................................................7 Registration, Badges, and Pre-ordered T-shirts .............................................................................................7 Oral Presenters: Speaker Ready Room - Camellia 4.......................................................................................7 Poster Sessions and Exhibits - Prince George’s Exhibition Hall ......................................................................7 GSA Central - Booth 520 ................................................................................................................................8 Internet Access ..............................................................................................................................................8
    [Show full text]
  • Proteogenomic Analysis of Inhibitor of Differentiation 4 (ID4) in Basal-Like Breast Cancer Laura A
    Baker et al. Breast Cancer Research (2020) 22:63 https://doi.org/10.1186/s13058-020-01306-6 RESEARCH ARTICLE Open Access Proteogenomic analysis of Inhibitor of Differentiation 4 (ID4) in basal-like breast cancer Laura A. Baker1,2, Holly Holliday1,2†, Daniel Roden1,2†, Christoph Krisp3,4†, Sunny Z. Wu1,2, Simon Junankar1,2, Aurelien A. Serandour5, Hisham Mohammed5, Radhika Nair6, Geetha Sankaranarayanan5, Andrew M. K. Law1,2, Andrea McFarland1, Peter T. Simpson7, Sunil Lakhani7,8, Eoin Dodson1,2, Christina Selinger9, Lyndal Anderson9,10, Goli Samimi11, Neville F. Hacker12, Elgene Lim1,2, Christopher J. Ormandy1,2, Matthew J. Naylor13, Kaylene Simpson14,15, Iva Nikolic14, Sandra O’Toole1,2,9,10, Warren Kaplan1, Mark J. Cowley1,2, Jason S. Carroll5, Mark Molloy3 and Alexander Swarbrick1,2* Abstract Background: Basal-like breast cancer (BLBC) is a poorly characterised, heterogeneous disease. Patients are diagnosed with aggressive, high-grade tumours and often relapse with chemotherapy resistance. Detailed understanding of the molecular underpinnings of this disease is essential to the development of personalised therapeutic strategies. Inhibitor of differentiation 4 (ID4) is a helix-loop-helix transcriptional regulator required for mammary gland development. ID4 is overexpressed in a subset of BLBC patients, associating with a stem-like poor prognosis phenotype, and is necessary for the growth of cell line models of BLBC through unknown mechanisms. Methods: Here, we have defined unique molecular insights into the function of ID4 in BLBC and the related disease high-grade serous ovarian cancer (HGSOC), by combining RIME proteomic analysis, ChIP-seq mapping of genomic binding sites and RNA-seq.
    [Show full text]
  • Cofactor of BRCA1: a New Genetic Marker for Common Malignant Liver Cancer
    RESEARCH HIGHLIGHTS doi: 10.18282/amor.v2.i4.157 Cofactor of BRCA1: A new genetic marker for common malignant liver cancer new study has identified a vital gene in the pathogenesis and progression of liver cancer hepatocellular carcinoma (HCC), according to a A team of researchers at The American University in Cairo, Egypt, in a paper published in this issue of AMOR. The study on human gene ‘cofactor of BRCA1’ (dubbed COBRA1) and its potential role as a reliable cancer predictor for HCC is especially important owing to the disease’s grim outlook. HCC is “ranked as the second most common cause of cancer-related deaths in the world in 2012,” the authors said. “Thus, it is considered as a highly aggressive cancer with poor prognosis,” they added. The behavior of COBRA1 in the development and pro- gression of several cancers has previously been studied and established. Youssef observed, “For example, cell lines and tissues isolated from late-stage metastatic breast cancer tumors showed low expression levels of the COBRA1 protein, which is known to display tumor suppressor activ- ity.” In contrast, “another study reported that COBRA1 was overexpressed in upper gastrointestinal carcinoma (UGC) tissue samples,” they added. Yet, COBRA1’s involvement in HCC tumor formation and growth has been subjected to minimal studies. “To date, the molecular mechanisms underlying HCC patho- genesis have not been fully identified, thus resulting in a lack of reliable prognostic markers for HCC,” said the re- According to data from the Surveillance Epidemiology searchers. and End Results (SEER) program, hepatocellular carcino- ma accounts for 90% of all liver cancers worldwide.
    [Show full text]