SCIENCE in ACTIONACTION:::: Pluto, Dwarf Planets, and the Iau

Total Page:16

File Type:pdf, Size:1020Kb

SCIENCE in ACTIONACTION:::: Pluto, Dwarf Planets, and the Iau SCIENCE IN ACTIONACTION:::: Pluto, dwarf planets, and the iau Science is always changing. Scientific theories explain what is known about nature—the world around you. However, sometimes new discoveries are made and these theories and explanations must be changed if they don’t explain the new facts. The Discovery of Pluto At the beginning of the twentieth century, only eight planets were known. Many astronomers thought there had to be another planet orbiting the Sun beyond the orbit of Neptune. This planet, nicknamed Planet X, would be similar in size to Neptune. In 1930, a new object was discovered orbiting the Sun. This object was in the region of the sky where calculations predicted Planet X would be. The new object was named Pluto and at first was thought to be Planet X. Soon, however, data showed that Pluto was much too small to be Planet X. Astronomers realized that Pluto was not the planet they were looking for. It was a coincidence that Pluto happened to be in the same region of space where Planet X was predicted to be. Is it a new planet? Although Pluto was not Planet X, astronomers decided to label Pluto the ninth planet in the solar system. One reason was that Pluto was estimated to be about the same size as the other planets—when it was first discovered, Pluto was thought to be about the same size as Earth. However, as time went on, some data showed that Pluto might be smaller than Mars but bigger than Mercury. Other astronomers estimated that Pluto had more mass than the planet Venus. Charon helps astronomers decide. In 1979, a moon was discovered orbiting Pluto. This moon was named Charon (KER un), and its motion Nix enabled astronomers to make more accurate estimates of Pluto’s size and mass. According to the Hydra new data, Pluto had a diameter of about 2,300 km. This meant that Pluto was less than half the size Charon of Mercury, which has a diameter of 4,900 km. Pluto’s mass was now estimated to be only about 0.2 percent of Earth’s mass. In fact, Pluto is Pluto smaller and has less mass than Earth’s moon. In 2005, two smaller moons, named Nix (NIKS) and Hydra (HI druh), were discovered orbiting Pluto, as shown in Figure 1.1.1. Figure 1: This photo of Pluto and its three satellites was taken by the Hubble Space Telescope . [Credit: NASA] Science in Action © Glencoe/McGraw-Hill page 1 The Kuiper belt Since 1992, many new objects have been discovered orbiting the Sun beyond the orbit of Neptune. These objects are called trans-Neptunian objects (TNOs) and are part of a region of the solar system called the Kuiper (KI puhr) belt. The Kuiper belt, shown in Figure 2, is a group of small objects made of rock and ice that orbit the Sun in a zone that extends from about the orbit of Neptune to about 50 AU from the Sun. Since 1992, over 800 objects have been discovered in the Kuiper belt. Figure 2 The Kuiper belt extends from about 30 AU to 50 AU from the Sun. Pluto orbits the Sun within the Kuiper belt. Figure 2 also shows that Pluto’s orbit is different than the orbit of the other eight planets. Pluto’s orbit is much more elongated and tilted compared to the orbits of the other planets. Instead, Pluto’s orbit is much like the orbits of TNOs. Also, like many TNOs, Pluto’s motion around the Sun is strongly affected by the gravitational pull of Neptune. This led many astronomers to wonder if Pluto should be considered a planet or a trans-Neptunian object. How should Eris be classified? In 2003, a new TNO named Eris (EE riss) was discovered. Measurements showed that Eris is slightly larger than Pluto and has a small moon astronomers called Dysnomia (diss NOH mee uh), shown in Figure 3. Some astronomers Dysnomia thought that because Eris is larger than Pluto, it should be considered the tenth planet. Other astronomers thought Eris there might be more objects in the Kuiper belt larger than Pluto. This meant that if Eris was considered a planet, then there could be many other objects in the solar system that would also be considered planets. Figure 3: This photo, taken by the Keck Observatory at Mauna Kea, Hawaii, shows Eris and its satellite, Dysnomia. [Credit: WM Keck Observatory] Science in Action © Glencoe/McGraw-Hill page 2 The sizes of Eris, Pluto, and some of the other largest known trans-Neptunian objects are shown in Figure 444.4... All these objects, except Sedna, are part of the Kuiper belt. Sedna orbits the Sun in a very elongated orbit. It is so far from the Sun that Sedna takes more than 12,000 years to complete one orbit. Figure 4 The sizes of Eris, Pluto, and some other large TNOs compared to Earth. [Credit: NASA, ESA] The IAU Debates How to classify Pluto and Eris caused a great deal of discussion among astronomers. The International Astronomical Union (IAU), established in 1919, is the organization that defines the classification of objects in our solar system. The IAU also approves the names to be used for newly discovered objects. In August 2006, the IAU held a meeting in Prague, Czech Republic. During the IAU meeting astronomers debated how to define a planet and how to classify the newly discovered objects in the Kuiper belt. As a result of these discussions, a new definition of a planet was approved. Planets Defined The IAU now defined a planet is any object in space that satisfies three conditions. The first condition is that it is in orbit around the Sun. Second, it must have enough mass for the object to have formed nearly into a sphere. Third, the object must have cleared away other objects from the neighborhood around its orbit. This last condition means that a planet must be much larger than any other object that crosses its orbit. Science in Action © Glencoe/McGraw-Hill page 3 Dwarf Planets Defined The IAU also approved the definition of a new type of object called a dwarf planet. A dwarf planet is any object in space that satisfies the following four conditions. First, it is in orbit around the Sun, and second, it has enough mass for the object to have formed nearly into a sphere. The third condition is that a dwarf planet is not a satellite of another celestial body. Finally, a dwarf planet has not cleared away other objects from the neighborhood around its orbit. This last condition means that a dwarf planet is not much larger than some of the other objects that cross its orbit. Based on these definitions, the planets of the solar system are Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, and Neptune. Pluto is no longer considered one of the planets. Instead, it is now classified as a dwarf planet. There are two other known dwarf planets in the solar system—Eris and the asteroid Ceres (SIHR eez). Ceres Ceres was discovered in 1801, in orbit between Mars and Jupiter. Ceres was the first asteroid discovered and, with a diameter of about 940 km, it is the largest asteroid. When it was first discovered, Ceres was considered a planet. However, many more objects similar to Ceres were discovered in the asteroid belt between Mars and Jupiter. As a result, by the middle of the nineteenth century, astronomers had reclassified Ceres as an asteroid rather than a planet. The location of the asteroid belt is shown in Figure 5. Figure 5 The asteroid belt is a group of objects that orbit the Sun between the orbits of Mars and Jupiter. These objects are made of rock and ice and exist in various sizes. Science in Action © Glencoe/McGraw-Hill page 4 Not everyone is excited about the change. Hundreds of astronomers and planetary scientists are unhappy with the IAU’s new planet definition. After the IAU resolution defined a planet, over 300 scientists signed a petition opposing the new definition. Only about 2,500 of the 10,000 members of the IAU attended the meeting, and of that number, only 424 voted on the planet reclassification resolution. Some also have criticized the IAU’s voting procedures, which do not allow members to vote by e-mail. However, any change to the IAU’s definition of a planet will have to wait until the next IAU General Assembly in 2009. Exploration of Pluto To learn more about Pluto and other objects in the Kuiper belt, NASA has launched a new spacecraft to Pluto and beyond. The New Horizons spacecraft, shown in Figure 666,6,,, was launched in January 2006 and is scheduled to arrive at Pluto in July 2015. New Horizons will be the first spacecraft to visit Pluto. It will take pictures and make maps of Pluto and Charon and will measure the surface properties, temperatures, and the composition of Pluto’s atmosphere. The data gathered by this mission will help astronomers better understand how the solar system was formed. Figure 6: This is an artist’s drawing of the New Horizons spacecraft as it approaches Pluto. Pluto’s moon, Charon, and the Sun are shown in the background. [Credit: Johns Hopkins University Applied Physics Laboratory / Southwest Research Institute] Science in Action In the 1800s, the discovery of many new objects in the asteroid belt caused astronomers to change the classification of Ceres. Almost 150 years later, the discovery of many new objects beyond the orbit of Neptune caused astronomers to change the classification of Pluto.
Recommended publications
  • Demoting Pluto Presentation
    WWhhaatt HHaappppeenneedd ttoo PPlluuttoo??!!!! Scale in the Solar System, New Discoveries, and the Nature of Science Mary L. Urquhart, Ph.D. Department of Science/Mathematics Education Marc Hairston, Ph.D. William B. Hanson Center for Space Sciences FFrroomm NNiinnee ttoo EEiigghhtt?? On August 24th Pluto was reclassified by the International Astronomical Union (IAU) as a “dwarf planet”. So what happens to “My Very Educated Mother Just Served Us Nine Pizzas”? OOffifficciiaall IAIAUU DDeefifinniittiioonn A planet: (a) is in orbit around the Sun, (b) has sufficient mass for its self-gravity to overcome rigid body forces so that it assumes a hydrostatic equilibrium (nearly round) shape, and (c) has cleared the neighborhood around its orbit. A dwarf planet must satisfy only the first two criteria. WWhhaatt iiss SScciieennccee?? National Science Education Standards (National Research Council, 1996) “…science reflects its history and is an ongoing, changing enterprise.” BBeeyyoonndd MMnneemmoonniiccss Science is “ not a collection of facts but an ongoing process, with continual revisions and refinements of concepts necessary in order to arrive at the best current views of the Universe.” - American Astronomical Society AA BBiitt ooff HHiiststoorryy • How have planets been historically defined? • Has a planet ever been demoted before? Planet (from Greek “planetes” meaning wanderer) This was the first definition of “planet” planet Latin English Spanish Italian French Sun Solis Sunday domingo domenica dimanche Moon Lunae Monday lunes lunedì lundi Mars Martis
    [Show full text]
  • Modern Astronomical Optics - Observing Exoplanets 2
    Modern Astronomical Optics - Observing Exoplanets 2. Brief Introduction to Exoplanets Olivier Guyon - [email protected] – Jim Burge, Phil Hinz WEBSITE: www.naoj.org/staff/guyon → Astronomical Optics Course » → Observing Exoplanets (2012) Definitions – types of exoplanets Planet (& exoplanet) definitions are recent, as, prior to discoveries of exoplanets around other stars and dwarf planets in our solar system, there was no need to discuss lower and upper limits of planet masses. Asteroid < dwarf planet < planet < brown dwarf < star Upper limit defined by its mass: < 13 Jupiter mass 1 Jupiter mass = 317 Earth mass = 1/1000 Sun mass Mass limit corresponds to deuterium limit: a planet is not sufficiently massive to start nuclear fusion reactions, of which deuterium burning is the easiest (lowest temperature) Lower limit recently defined (now excludes Pluto) for our solar system: has cleared the neighbourhood around its orbit Distinction between giant planets (massive, large, mostly gas) and rocky planets also applies to exoplanets Habitable planet: planet on which life as we know it (bacteria, planets or animals) could be sustained = rocky + surface temperature suitable for liquid water Formation Planet and stars form (nearly) together, within first few x10 Myr of system formation Gravitational collapse of gas + dust cloud Star is formed at center of disk Planets form in the protoplanetary disk Planet embrios form first Adaptive Optics image of Beta Pic Large embrios (> few Earth mass) can Shows planet + debris disk accrete large quantity of
    [Show full text]
  • CHORUS: Let's Go Meet the Dwarf Planets There Are Five in Our Solar
    Meet the Dwarf Planet Lyrics: CHORUS: Let’s go meet the dwarf planets There are five in our solar system Let’s go meet the dwarf planets Now I’ll go ahead and list them I’ll name them again in case you missed one There’s Pluto, Ceres, Eris, Makemake and Haumea They haven’t broken free from all the space debris There’s Pluto, Ceres, Eris, Makemake and Haumea They’re smaller than Earth’s moon and they like to roam free I’m the famous Pluto – as many of you know My orbit’s on a different path in the shape of an oval I used to be planet number 9, But I break the rules; I’m one of a kind I take my time orbiting the sun It’s a long, long trip, but I’m having fun! Five moons keep me company On our epic journey Charon’s the biggest, and then there’s Nix Kerberos, Hydra and the last one’s Styx 248 years we travel out Beyond the other planet’s regular rout We hang out in the Kuiper Belt Where the ice debris will never melt CHORUS My name is Ceres, and I’m closest to the sun They found me in the Asteroid Belt in 1801 I’m the only known dwarf planet between Jupiter and Mars They thought I was an asteroid, but I’m too round and large! I’m Eris the biggest dwarf planet, and the slowest one… It takes me 557 years to travel around the sun I have one moon, Dysnomia, to orbit along with me We go way out past the Kuiper Belt, there’s so much more to see! CHORUS My name is Makemake, and everyone thought I was alone But my tiny moon, MK2, has been with me all along It takes 310 years for us to orbit ‘round the sun But out here in the Kuiper Belt… our adventures just begun Hello my name’s Haumea, I’m not round shaped like my friends I rotate fast, every 4 hours, which stretched out both my ends! Namaka and Hi’iaka are my moons, I have just 2 And we live way out past Neptune in the Kuiper Belt it’s true! CHORUS Now you’ve met the dwarf planets, there are 5 of them it’s true But the Solar System is a great big place, with more exploring left to do Keep watching the skies above us with a telescope you look through Because the next person to discover one… could be me or you… .
    [Show full text]
  • The Solar System Cause Impact Craters
    ASTRONOMY 161 Introduction to Solar System Astronomy Class 12 Solar System Survey Monday, February 5 Key Concepts (1) The terrestrial planets are made primarily of rock and metal. (2) The Jovian planets are made primarily of hydrogen and helium. (3) Moons (a.k.a. satellites) orbit the planets; some moons are large. (4) Asteroids, meteoroids, comets, and Kuiper Belt objects orbit the Sun. (5) Collision between objects in the Solar System cause impact craters. Family portrait of the Solar System: Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, (Eris, Ceres, Pluto): My Very Excellent Mother Just Served Us Nine (Extra Cheese Pizzas). The Solar System: List of Ingredients Ingredient Percent of total mass Sun 99.8% Jupiter 0.1% other planets 0.05% everything else 0.05% The Sun dominates the Solar System Jupiter dominates the planets Object Mass Object Mass 1) Sun 330,000 2) Jupiter 320 10) Ganymede 0.025 3) Saturn 95 11) Titan 0.023 4) Neptune 17 12) Callisto 0.018 5) Uranus 15 13) Io 0.015 6) Earth 1.0 14) Moon 0.012 7) Venus 0.82 15) Europa 0.008 8) Mars 0.11 16) Triton 0.004 9) Mercury 0.055 17) Pluto 0.002 A few words about the Sun. The Sun is a large sphere of gas (mostly H, He – hydrogen and helium). The Sun shines because it is hot (T = 5,800 K). The Sun remains hot because it is powered by fusion of hydrogen to helium (H-bomb). (1) The terrestrial planets are made primarily of rock and metal.
    [Show full text]
  • Precision Astrometry for Fundamental Physics – Gaia
    Gravitation astrometric tests in the external Solar System: the QVADIS collaboration goals M. Gai, A. Vecchiato Istituto Nazionale di Astrofisica [INAF] Osservatorio Astrofisico di Torino [OATo] WAG 2015 M. Gai - INAF-OATo - QVADIS 1 High precision astrometry as a tool for Fundamental Physics Micro-arcsec astrometry: Current precision goals of astrometric infrastructures: a few 10 µas, down to a few µas 1 arcsec (1) 5 µrad 1 micro-arcsec (1 µas) 5 prad Reference cases: • Gaia – space – visible range • VLTI – ground – near infrared range • VLBI – ground – radio range WAG 2015 M. Gai - INAF-OATo - QVADIS 2 ESA mission – launched Dec. 19th, 2013 Expected precision on individual bright stars: 1030 µas WAG 2015 M. Gai - INAF-OATo - QVADIS 3 Spacetime curvature around massive objects 1.5 G: Newton’s 1".74 at Solar limb 8.4 rad gravitational constant GM 1 cos d: distance Sun- 1 1 observer c2d 1 cos M: solar mass 0.5 c: speed of light Deflection [arcsec] angle : angular distance of the source to the Sun 0 0 1 2 3 4 5 6 Distance from Sun centre [degs] Light deflection Apparent variation of star position, related to the gravitational field of the Sun ASTROMETRY WAG 2015 M. Gai - INAF-OATo - QVADIS 4 Precision astrometry for Fundamental Physics – Gaia WAG 2015 M. Gai - INAF-OATo - QVADIS 5 Precision astrometry for Fundamental Physics – AGP Talk A = Apparent star position measurement AGP: G = Testing gravitation in the solar system Astrometric 1) Light deflection close to the Sun Gravitation 2) High precision dynamics in Solar System Probe P = Medium size space mission - ESA M4 (2014) Design driver: light bending around the Sun @ μas fraction WAG 2015 M.
    [Show full text]
  • Relevance of Tidal Heating on Large Tnos
    Relevance of Tidal Heating on Large TNOs a, b a,c d a Prabal Saxena ∗, Joe Renaud , Wade G. Henning , Martin Jutzi , Terry Hurford aNASA/Goddard Space Flight Center, 8800 Greenbelt Rd, Greenbelt, MD 20771, USA bDepartment of Physics & Astronomy, George Mason University 4400 University Drive, Fairfax, VA 22030, USA cDepartment of Astronomy, University of Maryland Physical Sciences Complex, College Park, MD 20742 dPhysics Institute: Space Research & Planetary Sciences, University of Bern Sidlerstrasse 5, 3012 Bern, Switzerland Abstract We examine the relevance of tidal heating for large Trans-Neptunian Objects, with a focus on its potential to melt and maintain layers of subsurface liquid water. Depending on their past orbital evolution, tidal heating may be an important part of the heat budget for a number of discovered and hypothetical TNO systems and may enable formation of, and increased access to, subsurface liquid water. Tidal heating induced by the process of despinning is found to be particularly able to compete with heating due to radionuclide decay in a number of different scenarios. In cases where radiogenic heating alone may establish subsurface conditions for liquid water, we focus on the extent by which tidal activity lifts the depth of such conditions closer to the surface. While it is common for strong tidal heating and long lived tides to be mutually exclusive, we find this is not always the case, and highlight when these two traits occur together. Keywords: TNO, Tidal Heating, Pluto, Subsurface Water, Cryovolcanism 1. Introduction arXiv:1706.04682v1 [astro-ph.EP] 14 Jun 2017 It appears highly likely that numerous bodies outside the Earth possess global subsurface oceans - these include Europa, Ganymede, Callisto, Enceladus (Pappalardo et al., 1999; Khu- rana et al., 1998; Thomas et al., 2016; Saur et al., 2015), and now Pluto (Nimmo et al., 2016).
    [Show full text]
  • CLARK PLANETARIUM SOLAR SYSTEM FACT SHEET Data Provided by NASA/JPL and Other Official Sources
    CLARK PLANETARIUM SOLAR SYSTEM FACT SHEET Data provided by NASA/JPL and other official sources. This handout ©July 2013 by Clark Planetarium (www.clarkplanetarium.org). May be freely copied by professional educators for classroom use only. The known satellites of the Solar System shown here next to their planets with their sizes (mean diameter in km) in parenthesis. The planets and satellites (with diameters above 1,000 km) are depicted in relative size (with Earth = 0.500 inches) and are arranged in order by their distance from the planet, with the closest at the top. Distances from moon to planet are not listed. Mercury Jupiter Saturn Uranus Neptune Pluto • 1- Metis (44) • 26- Hermippe (4) • 54- Hegemone (3) • 1- S/2009 S1 (1) • 33- Erriapo (10) • 1- Cordelia (40.2) (Dwarf Planet) (no natural satellites) • 2- Adrastea (16) • 27- Praxidike (6.8) • 55- Aoede (4) • 2- Pan (26) • 34- Siarnaq (40) • 2- Ophelia (42.8) • Charon (1186) • 3- Bianca (51.4) Venus • 3- Amalthea (168) • 28- Thelxinoe (2) • 56- Kallichore (2) • 3- Daphnis (7) • 35- Skoll (6) • Nix (60?) • 4- Thebe (98) • 29- Helike (4) • 57- S/2003 J 23 (2) • 4- Atlas (32) • 36- Tarvos (15) • 4- Cressida (79.6) • Hydra (50?) • 5- Desdemona (64) • 30- Iocaste (5.2) • 58- S/2003 J 5 (4) • 5- Prometheus (100.2) • 37- Tarqeq (7) • Kerberos (13-34?) • 5- Io (3,643.2) • 6- Pandora (83.8) • 38- Greip (6) • 6- Juliet (93.6) • 1- Naiad (58) • 31- Ananke (28) • 59- Callirrhoe (7) • Styx (??) • 7- Epimetheus (119) • 39- Hyrrokkin (8) • 7- Portia (135.2) • 2- Thalassa (80) • 6- Europa (3,121.6)
    [Show full text]
  • Oil, Earth Mass and Gravitational Force
    A peer reviewed version is published at: https://doi.org/10.1016/j.scitotenv.2016.01.127 Oil, Earth mass and gravitational force Khaled Moustafa Editor of the Arabic Science Archive (ArabiXiv) E-mail: [email protected] Highlights Large amounts of fossil fuels are extracted annually worldwide. Would the extracted amounts represent any significant percentage of the Earth mass? What would be the consequence on Earth structure and its gravitational force? Modeling the potential loss of Earth mass might be required. Efforts for alternative renewable energy sources should be enhanced. Abstract Fossil fuels are intensively extracted from around the world faster than they are renewed. Regardless of direct and indirect effects of such extractions on climate change and biosphere, another issue relating to Earth’s internal structure and Earth mass should receive at least some interest. According to the Energy Information Administration (EIA), about 34 billion barrels of oil (~4.7 billion metric tons) and 9 billion tons of coal have been extracted in 2014 worldwide. Converting the amounts of oil and coal extracted over the last 3 decades and their respective reserves, intended to be extracted in the future, into mass values suggests that about 355 billion tons, or ~ 5.86*10−9 (~ 0.0000000058) % of the Earth mass, would be ‘lost’. Although this is a tiny percentage, modeling the potential loss of Earth mass may help figuring out a critical threshold of mass loss that should not be exceeded. Here, I briefly discuss whether such loss would have any potential consequences on the Earth’s internal structure and on its gravitational force based on the Newton's law of gravitation that links the attraction force between planets to their respective masses and the distances that separate them.
    [Show full text]
  • Poor Pluto Demoted Again Taylor Hours Alcohol Shrinks the Brain
    September 2017 Taylor Hours The Edition September By: E. Kirk Monday to Thursday: InfoDesk: 9:00-5:00 In honour of the 10th anniversary, we’re reprinting news pieces 8:00-11:00 from 2007. 8:00 - 9:00 InfoDesk: 9:00 -5:00 Fridays: Saturdays: 10::30—9:00 InfoDesk: closed Poor Pluto demoted again Academic study hall Poor Pluto. Not only has it been demoted from the status of with self-service availa- ble planet to “dwarf planet”, it has recently been discovered that it is not even the biggest of the dwarf planets. Eris, another dwarf Sundays: 10:30 - 9:00 InfoDesk: 10:30-5:00 planet in the solar system, has a mass of approximately a third more than Pluto’s and is about half the size of the moon. Brown Research Help Desk Research Help: Staffed: and Schaller (2007) were able to deduce Eris’ mass through Monday to Friday: [email protected] the orbit of Eris’ moon, Dysnomia. They also calculated Eris’ 11:30-3:30 density, putting it around the same density as Pluto. Now that other dwarf planets are being discovered, it is unlikely that Pluto will ever regain planet status, but it will always have a Alcohol shrinks the special place in our solar system and our hearts. brain While it should not come as a surprise that drink- ing excessive amounts of alcohol isn’t good for your brain, a new study presented at the Ameri- can Academy of Neurology's 59th Annual Meeting, suggests that there is a negative correla- tion between alcohol consumption and brain vol- ume.
    [Show full text]
  • Prospects for Future Exploration of the Trans-Neptunian Region
    Prospects for Future Exploration of the Trans-Neptunian Region Primary Authors: Bryan J. Holler (STScI), Michele T. Bannister (U. Canterbury), Kelsi N. Singer (SwRI), S. Alan Stern (SwRI) Co-Authors: Susan D. Benecchi (PSI), Cristina M. Dalle Ore (NASA Ames), Leigh N. Fletcher (U. of Leicester), Aurélie Guilbert-Lepoutre (U. de Lyon), Csaba Kiss (Konkoly Obs.), Pedro Lacerda (Queen’s U. Belfast), Kathleen E. Mandt (JHU/APL), Michaël Marsset (MIT), Alex H. Parker (SwRI), Noemí Pinilla-Alonso (FSI/UCF), Darin Ragozzine (BYU), Mark B. Tapley (SwRI), Chadwick A. Trujillo (NAU), Orkan M. Umurhan (SETI, NASA Ames), Hajime Yano (JAXA ISAS), Leslie A. Young (SwRI) Co-Signers: Richard Cartwright (SETI), Dale P. Cruikshank (NASA Ames), Estela Fernández-Valenzuela (FSI/UCF), Candy Hansen (PSI), Dean Hines (STScI), Jason D. Hofgartner (NASA/JPL), Timothy Holt (U. Southern Queensland), Carly Howett (SwRI), Katherine Murray (STScI), Cathy B. Olkin (SwRI), Nuno Peixinho (U. Coimbra), Alena Probst (JPL), Kirby D. Runyon (JHU/APL), Scott S. Sheppard (Carnegie Inst.), Anne Verbiscer (UVA), Maya D. Yanez (USC) Executive Summary: A strong case can be made for a flyby mission through the outer solar system in the coming decades. The census of the larger worlds of the trans-Neptunian region has shown that they display incredible diversity. Surface geology and composition, shapes, and binarity are far more varied in these distant populations than in many other regions of the solar system. Fully understanding these keystone worlds requires in situ observation. As demonstrated by New Horizons, the first trans-Neptunian flyby mission, close-up investigation can determine surface geology, atmospheric processes, space weather environment, interior-surface and surface- atmosphere interactions, and provide constraints on a body's interior [1-3].
    [Show full text]
  • Physics 100: Homework 5 Solutions 1) Somewhere Between the Earth
    Physics 100: Homework 5 Solutions 1) Somewhere between the Earth and the moon, the gravitational force on a space shuttle would cancel. Is this location closer to the moon or to the Earth? Explain your answer. The gravitational force on the shuttle due to the moon is proportional to the shuttle’s mass, the moon’s mass, and inversely proportional to the square of the shuttle-moon distance. That due to the Earth is proportional to the shuttle’s mass, the Earth’s mass, and inversely proportional to the square of the shuttle-Earth distance. Since Earth mass >> moon mass, the shuttle must be much closer to the moon in order for the two attractions to cancel. 2) Which is greater, the gravitational pull of the moon on the Earth or that of the sun on the Earth? Which has a greater effect on our ocean tides, the sun or the moon? Explain your answers. The gravitational pull of the Sun on the Earth is greater than the gravitational pull of the Moon, about 180 times as large due its much greater mass, as explained in class. The tides, however, are caused by the differences in gravitational forces by the Moon on opposite sides of the Earth. The difference in gravitational forces by the Moon on opposite sides of the Earth is greater than the corresponding 2 difference in forces by the stronger pulling but much more distant Sun. The difference, 1/(d+Dearth) – 2 1/d , where Dearth is the diameter of Earth, is greater for the moon (smaller d) than it is for the sun (larger d), which is the math-way of saying what we said in class about the inverse-law flattening out… 3 a) A particular atom contains 47 electrons, 61 neutrons, and 47 protons.
    [Show full text]
  • On the Irrelevance of Being a PLUTO! Size Scale of Stars and Planets
    On the irrelevance of being a PLUTO! Mayank Vahia DAA, TIFR Irrelevance of being Pluto 1 Size Scale of Stars and Planets Irrelevance of being Pluto 2 1 1 AU 700 Dsun Irrelevance of being Pluto 3 16 Dsun Irrelevance of being Pluto 4 2 Solar System 109 DEarth Irrelevance of being Pluto 5 11 DEarth Venus Irrelevance of being Pluto 6 3 Irrelevance of being Pluto 7 Solar System visible to unaided eye Irrelevance of being Pluto 8 4 Solar System at the beginning of 20 th Century Irrelevance of being Pluto 9 Solar System of my text book (30 years ago) Irrelevance of being Pluto 10 5 Asteroid Belt (Discovered in 1977) Irrelevance of being Pluto 11 The ‘Planet’ Pluto • Pluto is a 14 th magnitude object. • It is NOT visible to naked eye (neither are Uranus and Neptune). • It was discovered by American astronomer Clyde Tombaugh in 1930. Irrelevance of being Pluto 12 6 Prediction of Pluto • Percival Lowell and William H. Pickering are credited with the theoretical work on Pluto’s orbit done in 1909 based on data of Neptune’s orbital changes. • Venkatesh Ketakar had predicted it in May 1911 issue of Bulletin of the Astronomical Society of France. • He modelled his computations after those of Pierre-Simon Laplace who had analysed the motions of the satellites of Jupiter. • His location was within 1 o of its correct location. • He had predicted ts orbital period was 242.28 (248) years and a distance of 38.95 (39.53) A.U. • He had also predicted another planet at 59.573 A.U.
    [Show full text]