Poor Pluto Demoted Again Taylor Hours Alcohol Shrinks the Brain

Total Page:16

File Type:pdf, Size:1020Kb

Poor Pluto Demoted Again Taylor Hours Alcohol Shrinks the Brain September 2017 Taylor Hours The Edition September By: E. Kirk Monday to Thursday: InfoDesk: 9:00-5:00 In honour of the 10th anniversary, we’re reprinting news pieces 8:00-11:00 from 2007. 8:00 - 9:00 InfoDesk: 9:00 -5:00 Fridays: Saturdays: 10::30—9:00 InfoDesk: closed Poor Pluto demoted again Academic study hall Poor Pluto. Not only has it been demoted from the status of with self-service availa- ble planet to “dwarf planet”, it has recently been discovered that it is not even the biggest of the dwarf planets. Eris, another dwarf Sundays: 10:30 - 9:00 InfoDesk: 10:30-5:00 planet in the solar system, has a mass of approximately a third more than Pluto’s and is about half the size of the moon. Brown Research Help Desk Research Help: Staffed: and Schaller (2007) were able to deduce Eris’ mass through Monday to Friday: [email protected] the orbit of Eris’ moon, Dysnomia. They also calculated Eris’ 11:30-3:30 density, putting it around the same density as Pluto. Now that other dwarf planets are being discovered, it is unlikely that Pluto will ever regain planet status, but it will always have a Alcohol shrinks the special place in our solar system and our hearts. brain While it should not come as a surprise that drink- ing excessive amounts of alcohol isn’t good for your brain, a new study presented at the Ameri- can Academy of Neurology's 59th Annual Meeting, suggests that there is a negative correla- tion between alcohol consumption and brain vol- ume. Overall, the study found that participants who had more than 14 drinks per week had an average 1.6 percent reduction in brain volume compared to participants who didn't drink. While the participants were aged 34 to 88, there is nothing to suggest that these findings cannot be generalized to drinkers of other age groups such as university students, for instance. References Brown, M. and Schaller, E. (2007). The mass of dwarf planet Eris. Science 316, 1585. Paul, et al. (2007, May). The Effect of Alcohol Consumption on Total Brain Volume: The Framingham Heart Study. Poster session presented at the annual meeting of the American Academy of Neurology, Boston, MA. www.lib.uwo.ca/taylor @westernulibsTAY www.facebook.com/taylib .
Recommended publications
  • Demoting Pluto Presentation
    WWhhaatt HHaappppeenneedd ttoo PPlluuttoo??!!!! Scale in the Solar System, New Discoveries, and the Nature of Science Mary L. Urquhart, Ph.D. Department of Science/Mathematics Education Marc Hairston, Ph.D. William B. Hanson Center for Space Sciences FFrroomm NNiinnee ttoo EEiigghhtt?? On August 24th Pluto was reclassified by the International Astronomical Union (IAU) as a “dwarf planet”. So what happens to “My Very Educated Mother Just Served Us Nine Pizzas”? OOffifficciiaall IAIAUU DDeefifinniittiioonn A planet: (a) is in orbit around the Sun, (b) has sufficient mass for its self-gravity to overcome rigid body forces so that it assumes a hydrostatic equilibrium (nearly round) shape, and (c) has cleared the neighborhood around its orbit. A dwarf planet must satisfy only the first two criteria. WWhhaatt iiss SScciieennccee?? National Science Education Standards (National Research Council, 1996) “…science reflects its history and is an ongoing, changing enterprise.” BBeeyyoonndd MMnneemmoonniiccss Science is “ not a collection of facts but an ongoing process, with continual revisions and refinements of concepts necessary in order to arrive at the best current views of the Universe.” - American Astronomical Society AA BBiitt ooff HHiiststoorryy • How have planets been historically defined? • Has a planet ever been demoted before? Planet (from Greek “planetes” meaning wanderer) This was the first definition of “planet” planet Latin English Spanish Italian French Sun Solis Sunday domingo domenica dimanche Moon Lunae Monday lunes lunedì lundi Mars Martis
    [Show full text]
  • CHORUS: Let's Go Meet the Dwarf Planets There Are Five in Our Solar
    Meet the Dwarf Planet Lyrics: CHORUS: Let’s go meet the dwarf planets There are five in our solar system Let’s go meet the dwarf planets Now I’ll go ahead and list them I’ll name them again in case you missed one There’s Pluto, Ceres, Eris, Makemake and Haumea They haven’t broken free from all the space debris There’s Pluto, Ceres, Eris, Makemake and Haumea They’re smaller than Earth’s moon and they like to roam free I’m the famous Pluto – as many of you know My orbit’s on a different path in the shape of an oval I used to be planet number 9, But I break the rules; I’m one of a kind I take my time orbiting the sun It’s a long, long trip, but I’m having fun! Five moons keep me company On our epic journey Charon’s the biggest, and then there’s Nix Kerberos, Hydra and the last one’s Styx 248 years we travel out Beyond the other planet’s regular rout We hang out in the Kuiper Belt Where the ice debris will never melt CHORUS My name is Ceres, and I’m closest to the sun They found me in the Asteroid Belt in 1801 I’m the only known dwarf planet between Jupiter and Mars They thought I was an asteroid, but I’m too round and large! I’m Eris the biggest dwarf planet, and the slowest one… It takes me 557 years to travel around the sun I have one moon, Dysnomia, to orbit along with me We go way out past the Kuiper Belt, there’s so much more to see! CHORUS My name is Makemake, and everyone thought I was alone But my tiny moon, MK2, has been with me all along It takes 310 years for us to orbit ‘round the sun But out here in the Kuiper Belt… our adventures just begun Hello my name’s Haumea, I’m not round shaped like my friends I rotate fast, every 4 hours, which stretched out both my ends! Namaka and Hi’iaka are my moons, I have just 2 And we live way out past Neptune in the Kuiper Belt it’s true! CHORUS Now you’ve met the dwarf planets, there are 5 of them it’s true But the Solar System is a great big place, with more exploring left to do Keep watching the skies above us with a telescope you look through Because the next person to discover one… could be me or you… .
    [Show full text]
  • Dwarf Planet Ceres
    Dwarf Planet Ceres drishtiias.com/printpdf/dwarf-planet-ceres Why in News As per the data collected by NASA’s Dawn spacecraft, dwarf planet Ceres reportedly has salty water underground. Dawn (2007-18) was a mission to the two most massive bodies in the main asteroid belt - Vesta and Ceres. Key Points 1/3 Latest Findings: The scientists have given Ceres the status of an “ocean world” as it has a big reservoir of salty water underneath its frigid surface. This has led to an increased interest of scientists that the dwarf planet was maybe habitable or has the potential to be. Ocean Worlds is a term for ‘Water in the Solar System and Beyond’. The salty water originated in a brine reservoir spread hundreds of miles and about 40 km beneath the surface of the Ceres. Further, there is an evidence that Ceres remains geologically active with cryovolcanism - volcanoes oozing icy material. Instead of molten rock, cryovolcanoes or salty-mud volcanoes release frigid, salty water sometimes mixed with mud. Subsurface Oceans on other Celestial Bodies: Jupiter’s moon Europa, Saturn’s moon Enceladus, Neptune’s moon Triton, and the dwarf planet Pluto. This provides scientists a means to understand the history of the solar system. Ceres: It is the largest object in the asteroid belt between Mars and Jupiter. It was the first member of the asteroid belt to be discovered when Giuseppe Piazzi spotted it in 1801. It is the only dwarf planet located in the inner solar system (includes planets Mercury, Venus, Earth and Mars). Scientists classified it as a dwarf planet in 2006.
    [Show full text]
  • The Solar System Cause Impact Craters
    ASTRONOMY 161 Introduction to Solar System Astronomy Class 12 Solar System Survey Monday, February 5 Key Concepts (1) The terrestrial planets are made primarily of rock and metal. (2) The Jovian planets are made primarily of hydrogen and helium. (3) Moons (a.k.a. satellites) orbit the planets; some moons are large. (4) Asteroids, meteoroids, comets, and Kuiper Belt objects orbit the Sun. (5) Collision between objects in the Solar System cause impact craters. Family portrait of the Solar System: Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, (Eris, Ceres, Pluto): My Very Excellent Mother Just Served Us Nine (Extra Cheese Pizzas). The Solar System: List of Ingredients Ingredient Percent of total mass Sun 99.8% Jupiter 0.1% other planets 0.05% everything else 0.05% The Sun dominates the Solar System Jupiter dominates the planets Object Mass Object Mass 1) Sun 330,000 2) Jupiter 320 10) Ganymede 0.025 3) Saturn 95 11) Titan 0.023 4) Neptune 17 12) Callisto 0.018 5) Uranus 15 13) Io 0.015 6) Earth 1.0 14) Moon 0.012 7) Venus 0.82 15) Europa 0.008 8) Mars 0.11 16) Triton 0.004 9) Mercury 0.055 17) Pluto 0.002 A few words about the Sun. The Sun is a large sphere of gas (mostly H, He – hydrogen and helium). The Sun shines because it is hot (T = 5,800 K). The Sun remains hot because it is powered by fusion of hydrogen to helium (H-bomb). (1) The terrestrial planets are made primarily of rock and metal.
    [Show full text]
  • 2020 Highlights & Overview
    2020 HIGHLIGHTS & OVERVIEW Continuing and expanding long-term trends (from slow planets through certain signs) Big changes in systems, governments, rules, economics, power structure due to Pluto in Capricorn 2008 - 2024, strengthened by Saturn in Capricorn (sign ruler) 12/19/17 - 12/16/20. Biggest push is when Jupiter joins them in 2020 (beginning 12/2/19) and the trio is square Eris (see below) and then shoved by Mars or other planets. Uranus in Taurus: shake-up in money system, climate change, general volatility, especially when exacerbated by New Moons (10/27/19, 1/24, 4/22) & Full Moons (8/3, 10/31) Neptune in Pisces (in its sign of rulership) 2012 - 2025: refugees, strong storms, rising seas Major Sign Changes Saturn into Aquarius 3/21/20, back into Capricorn 7/1 - 12/17, then in Aquarius until 2023 - what’s seen as “normal” changes, we don’t know what to expect or how to plan; amplified by Jupiter into Aquarius 12/19/20 - 5/13/21 (returning 7/28 - 12/28/21). North / South Nodes go from Cancer / Capricorn to Gemini / Sagittarius on 6/4 and so sign pairs of eclipses shift likewise. After 2020, there are none in Cancer / Capricorn for 7 years. Most important Aspects The trio of key planets in Capricorn take turns square Eris (planet of chaos & discord) in Aries: Pluto square Eris 2020’s toughest connection: 1/26, 6/14, 12/10 (twice in 2021) - death of law & order?, disruption in economies, power struggle-women rise up to take their equal place Saturn conjunct Pluto once 1/12 Saturn square Eris just once 1/16 Jupiter square Eris 3/26, 6/26, 11/17 Jupiter conjunct Pluto 4/4, 6/30, 11/12 Jupiter conjunct Saturn once 12/21/20 at the winter solstice Mars interacts with the square to Eris from the Capricorn trio many times! Joins the trio near spring equinox 3/20 - 3/31, then spends a long time in Aries (the sign it rules): 6/27 - 1/6/21.
    [Show full text]
  • Precision Astrometry for Fundamental Physics – Gaia
    Gravitation astrometric tests in the external Solar System: the QVADIS collaboration goals M. Gai, A. Vecchiato Istituto Nazionale di Astrofisica [INAF] Osservatorio Astrofisico di Torino [OATo] WAG 2015 M. Gai - INAF-OATo - QVADIS 1 High precision astrometry as a tool for Fundamental Physics Micro-arcsec astrometry: Current precision goals of astrometric infrastructures: a few 10 µas, down to a few µas 1 arcsec (1) 5 µrad 1 micro-arcsec (1 µas) 5 prad Reference cases: • Gaia – space – visible range • VLTI – ground – near infrared range • VLBI – ground – radio range WAG 2015 M. Gai - INAF-OATo - QVADIS 2 ESA mission – launched Dec. 19th, 2013 Expected precision on individual bright stars: 1030 µas WAG 2015 M. Gai - INAF-OATo - QVADIS 3 Spacetime curvature around massive objects 1.5 G: Newton’s 1".74 at Solar limb 8.4 rad gravitational constant GM 1 cos d: distance Sun- 1 1 observer c2d 1 cos M: solar mass 0.5 c: speed of light Deflection [arcsec] angle : angular distance of the source to the Sun 0 0 1 2 3 4 5 6 Distance from Sun centre [degs] Light deflection Apparent variation of star position, related to the gravitational field of the Sun ASTROMETRY WAG 2015 M. Gai - INAF-OATo - QVADIS 4 Precision astrometry for Fundamental Physics – Gaia WAG 2015 M. Gai - INAF-OATo - QVADIS 5 Precision astrometry for Fundamental Physics – AGP Talk A = Apparent star position measurement AGP: G = Testing gravitation in the solar system Astrometric 1) Light deflection close to the Sun Gravitation 2) High precision dynamics in Solar System Probe P = Medium size space mission - ESA M4 (2014) Design driver: light bending around the Sun @ μas fraction WAG 2015 M.
    [Show full text]
  • Relevance of Tidal Heating on Large Tnos
    Relevance of Tidal Heating on Large TNOs a, b a,c d a Prabal Saxena ∗, Joe Renaud , Wade G. Henning , Martin Jutzi , Terry Hurford aNASA/Goddard Space Flight Center, 8800 Greenbelt Rd, Greenbelt, MD 20771, USA bDepartment of Physics & Astronomy, George Mason University 4400 University Drive, Fairfax, VA 22030, USA cDepartment of Astronomy, University of Maryland Physical Sciences Complex, College Park, MD 20742 dPhysics Institute: Space Research & Planetary Sciences, University of Bern Sidlerstrasse 5, 3012 Bern, Switzerland Abstract We examine the relevance of tidal heating for large Trans-Neptunian Objects, with a focus on its potential to melt and maintain layers of subsurface liquid water. Depending on their past orbital evolution, tidal heating may be an important part of the heat budget for a number of discovered and hypothetical TNO systems and may enable formation of, and increased access to, subsurface liquid water. Tidal heating induced by the process of despinning is found to be particularly able to compete with heating due to radionuclide decay in a number of different scenarios. In cases where radiogenic heating alone may establish subsurface conditions for liquid water, we focus on the extent by which tidal activity lifts the depth of such conditions closer to the surface. While it is common for strong tidal heating and long lived tides to be mutually exclusive, we find this is not always the case, and highlight when these two traits occur together. Keywords: TNO, Tidal Heating, Pluto, Subsurface Water, Cryovolcanism 1. Introduction arXiv:1706.04682v1 [astro-ph.EP] 14 Jun 2017 It appears highly likely that numerous bodies outside the Earth possess global subsurface oceans - these include Europa, Ganymede, Callisto, Enceladus (Pappalardo et al., 1999; Khu- rana et al., 1998; Thomas et al., 2016; Saur et al., 2015), and now Pluto (Nimmo et al., 2016).
    [Show full text]
  • CLARK PLANETARIUM SOLAR SYSTEM FACT SHEET Data Provided by NASA/JPL and Other Official Sources
    CLARK PLANETARIUM SOLAR SYSTEM FACT SHEET Data provided by NASA/JPL and other official sources. This handout ©July 2013 by Clark Planetarium (www.clarkplanetarium.org). May be freely copied by professional educators for classroom use only. The known satellites of the Solar System shown here next to their planets with their sizes (mean diameter in km) in parenthesis. The planets and satellites (with diameters above 1,000 km) are depicted in relative size (with Earth = 0.500 inches) and are arranged in order by their distance from the planet, with the closest at the top. Distances from moon to planet are not listed. Mercury Jupiter Saturn Uranus Neptune Pluto • 1- Metis (44) • 26- Hermippe (4) • 54- Hegemone (3) • 1- S/2009 S1 (1) • 33- Erriapo (10) • 1- Cordelia (40.2) (Dwarf Planet) (no natural satellites) • 2- Adrastea (16) • 27- Praxidike (6.8) • 55- Aoede (4) • 2- Pan (26) • 34- Siarnaq (40) • 2- Ophelia (42.8) • Charon (1186) • 3- Bianca (51.4) Venus • 3- Amalthea (168) • 28- Thelxinoe (2) • 56- Kallichore (2) • 3- Daphnis (7) • 35- Skoll (6) • Nix (60?) • 4- Thebe (98) • 29- Helike (4) • 57- S/2003 J 23 (2) • 4- Atlas (32) • 36- Tarvos (15) • 4- Cressida (79.6) • Hydra (50?) • 5- Desdemona (64) • 30- Iocaste (5.2) • 58- S/2003 J 5 (4) • 5- Prometheus (100.2) • 37- Tarqeq (7) • Kerberos (13-34?) • 5- Io (3,643.2) • 6- Pandora (83.8) • 38- Greip (6) • 6- Juliet (93.6) • 1- Naiad (58) • 31- Ananke (28) • 59- Callirrhoe (7) • Styx (??) • 7- Epimetheus (119) • 39- Hyrrokkin (8) • 7- Portia (135.2) • 2- Thalassa (80) • 6- Europa (3,121.6)
    [Show full text]
  • Distant Ekos
    Issue No. 51 March 2007 s DISTANT EKO di The Kuiper Belt Electronic Newsletter r Edited by: Joel Wm. Parker [email protected] www.boulder.swri.edu/ekonews CONTENTS News & Announcements ................................. 2 Abstracts of 6 Accepted Papers ......................... 3 Titles of 2 Submitted Papers ........................... 6 Title of 1 Other Paper of Interest ....................... 7 Title of 1 Conference Contribution ..................... 7 Abstracts of 3 Book Chapters ........................... 8 Newsletter Information .............................. 10 1 NEWS & ANNOUNCEMENTS More binaries...lots more... In IAUC 8811, 8814, 8815, and 8816, Noll et al. report satellites of five TNOs from HST observations: • (123509) 2000 WK183, separation = 0.080 arcsec, magnitude difference = 0.4 mag • 2002 WC19, separation = 0.090 arcsec, magnitude difference = 2.5 mag • 2002 GZ31, separation = 0.070 arcsec, magnitude difference = 1.0 mag • 2004 PB108, separation = 0.172 arcsec, magnitude difference = 1.2 mag • (60621) 2000 FE8, separation = 0.044 arcsec, magnitude difference = 0.6 mag In IAUC 8812, Brown and Suer report satellites of four TNOs from HST observations: • (50000) Quaoar, separation = 0.35 arcsec, magnitude difference = 5.6 mag • (55637) 2002 UX25, separation = 0.164 arcsec, magnitude difference = 2.5 mag • (90482) Orcus, separation = 0.25 arcsec, magnitude difference = 2.7 mag • 2003 AZ84, separation = 0.22 arcsec, magnitude difference = 5.0 mag ................................................... ................................................
    [Show full text]
  • Taxonomy of Trans-Neptunian Objects and Centaurs As Seen from Spectroscopy? F
    A&A 604, A86 (2017) Astronomy DOI: 10.1051/0004-6361/201730933 & c ESO 2017 Astrophysics Taxonomy of trans-Neptunian objects and Centaurs as seen from spectroscopy? F. Merlin1, T. Hromakina2, D. Perna1, M. J. Hong1, and A. Alvarez-Candal3 1 LESIA – Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, Univ. Paris Diderot, Sorbonne Paris Cité, 5 place Jules Janssen, 92195 Meudon, France e-mail: [email protected] 2 Institute of Astronomy, Kharkiv V. N. Karin National University, Sumska Str. 35, 61022 Kharkiv, Ukraine 3 Observatorio Nacional, R. Gal. Jose Cristino 77, 20921-400 Rio de Janeiro, Brazil Received 4 April 2017 / Accepted 19 May 2017 ABSTRACT Context. Taxonomy of trans-Neptunian objects (TNOs) and Centaurs has been made in previous works using broadband filters in the visible and near infrared ranges. This initial investigation led to the establishment of four groups with the aim to provide the mean colors of the different classes with possible links with any physical or chemical properties. However, this taxonomy was only made with the Johnson-Cousins filter system and the ESO J, H, Ks filters combination, and any association with other filter system is not yet available. Aims. We aim to edit complete visible to near infrared taxonomy and extend this work to any possible filters system. To do this, we generate mean spectra for each individual group, from a data set of 43 spectra. This work also presents new spectra of the TNO (38628) Huya, on which aqueous alteration has been suspected, and the Centaur 2007 VH305.
    [Show full text]
  • Prospects for Future Exploration of the Trans-Neptunian Region
    Prospects for Future Exploration of the Trans-Neptunian Region Primary Authors: Bryan J. Holler (STScI), Michele T. Bannister (U. Canterbury), Kelsi N. Singer (SwRI), S. Alan Stern (SwRI) Co-Authors: Susan D. Benecchi (PSI), Cristina M. Dalle Ore (NASA Ames), Leigh N. Fletcher (U. of Leicester), Aurélie Guilbert-Lepoutre (U. de Lyon), Csaba Kiss (Konkoly Obs.), Pedro Lacerda (Queen’s U. Belfast), Kathleen E. Mandt (JHU/APL), Michaël Marsset (MIT), Alex H. Parker (SwRI), Noemí Pinilla-Alonso (FSI/UCF), Darin Ragozzine (BYU), Mark B. Tapley (SwRI), Chadwick A. Trujillo (NAU), Orkan M. Umurhan (SETI, NASA Ames), Hajime Yano (JAXA ISAS), Leslie A. Young (SwRI) Co-Signers: Richard Cartwright (SETI), Dale P. Cruikshank (NASA Ames), Estela Fernández-Valenzuela (FSI/UCF), Candy Hansen (PSI), Dean Hines (STScI), Jason D. Hofgartner (NASA/JPL), Timothy Holt (U. Southern Queensland), Carly Howett (SwRI), Katherine Murray (STScI), Cathy B. Olkin (SwRI), Nuno Peixinho (U. Coimbra), Alena Probst (JPL), Kirby D. Runyon (JHU/APL), Scott S. Sheppard (Carnegie Inst.), Anne Verbiscer (UVA), Maya D. Yanez (USC) Executive Summary: A strong case can be made for a flyby mission through the outer solar system in the coming decades. The census of the larger worlds of the trans-Neptunian region has shown that they display incredible diversity. Surface geology and composition, shapes, and binarity are far more varied in these distant populations than in many other regions of the solar system. Fully understanding these keystone worlds requires in situ observation. As demonstrated by New Horizons, the first trans-Neptunian flyby mission, close-up investigation can determine surface geology, atmospheric processes, space weather environment, interior-surface and surface- atmosphere interactions, and provide constraints on a body's interior [1-3].
    [Show full text]
  • Colours of Minor Bodies in the Outer Solar System II - a Statistical Analysis, Revisited
    Astronomy & Astrophysics manuscript no. MBOSS2 c ESO 2012 April 26, 2012 Colours of Minor Bodies in the Outer Solar System II - A Statistical Analysis, Revisited O. R. Hainaut1, H. Boehnhardt2, and S. Protopapa3 1 European Southern Observatory (ESO), Karl Schwarzschild Straße, 85 748 Garching bei M¨unchen, Germany e-mail: [email protected] 2 Max-Planck-Institut f¨ur Sonnensystemforschung, Max-Planck Straße 2, 37 191 Katlenburg- Lindau, Germany 3 Department of Astronomy, University of Maryland, College Park, MD 20 742-2421, USA Received —; accepted — ABSTRACT We present an update of the visible and near-infrared colour database of Minor Bodies in the outer Solar System (MBOSSes), now including over 2000 measurement epochs of 555 objects, extracted from 100 articles. The list is fairly complete as of December 2011. The database is now large enough that dataset with a high dispersion can be safely identified and rejected from the analysis. The method used is safe for individual outliers. Most of the rejected papers were from the early days of MBOSS photometry. The individual measurements were combined so not to include possible rotational artefacts. The spectral gradient over the visible range is derived from the colours, as well as the R absolute magnitude M(1, 1). The average colours, absolute magnitude, spectral gradient are listed for each object, as well as their physico-dynamical classes using a classification adapted from Gladman et al., 2008. Colour-colour diagrams, histograms and various other plots are presented to illustrate and in- vestigate class characteristics and trends with other parameters, whose significance are evaluated using standard statistical tests.
    [Show full text]