Lichen Biodiversity and Conservation Status in the Copeland Forest Resources Management Area: a Lichen-Rich Second-Growth Forest in Southern Ontario

Total Page:16

File Type:pdf, Size:1020Kb

Lichen Biodiversity and Conservation Status in the Copeland Forest Resources Management Area: a Lichen-Rich Second-Growth Forest in Southern Ontario Lichen Biodiversity and Conservation Status in the Copeland Forest Resources Management Area: A Lichen-Rich Second-Growth Forest in Southern Ontario R. T ROy MCMuLLin 1, * and JAMeS C. L endeMeR 2 1Biodiversity institute of Ontario Herbarium, department of integrative Biology, university of Guelph, Guelph, Ontario n1G 2W1 Canada 2institute of Systematic Botany, new york Botanical Garden, Bronx, new york 10458-5126 uSA *Corresponding author; email: [email protected] McMullin, R. Troy, and James C. Lendemer . 2013. Lichen biodiversity and conservation status in the Copeland Forest Resources Management Area: a lichen-rich second-growth forest in southern Ontario. Canadian Field-naturalist 127(3): 240– 254. Southern Ontario is the most densely populated region in Canada. As a result, ubanization, industrialization, and agriculture are extensive. Few ecosystems in the region have been unaltered, and second-growth forests now dominate the remaining natural landscape. To better understand the lichen diversity in these second-growth forests, we inventoried 24 distinct vegetation communites in the Copeland Forest Resources Management Area (1780 ha) located between Barrie and Orillia in September and October 2011, recording 154 species in 79 genera. One species, Lecidea sarcogynoides , was collected for the first time in Canada and is reported for the first time in north America; one additional species, Micarea micrococca, was collected for the first time in Ontario and is reported for the first time in Canada; three species that have previously been collected in Ontario— Bellemerea cinereorufescens , Phlyctis speirea, and Xanthoparmelia angustiphylla —are reported for the first time in the province; and Candelariella lutella was collected and is reported for the second time in Ontario and the third time in Canada. in addition, six species with a provincial status rank of S1 (critically imperilled) or S2 (imperilled) were located: Arthonia byssacea , Arthonia ruana, Chaenothecopsis pusiola , Cresponea chloroconia , Pachyphiale fagicola , and Placynthiella uliginosa . Our results show that second-growth forests can be important refugia for lichen diversity. The majority of the lichen diversity within the Copeland Forest was contained in a small number of sites (6 of 24). This suggests that management strategies should integrate lichen diversity by targeting species-rich areas. We found that sites with a high variation in: canopy closure, tree species, tree age, moisture, and the presence of snags had the highest lichen diversity. Forest managers in southern Ontario can use our results to identify species-rich areas on their properties. Key Words: Lecidea sarcogynoides ; Bellemerea cinereorufescens ; Phlyctis speirea ; Xanthoparmelia angustiphylla ; Candelariella lutella ; Arthonia byssacea ; Arthonia ruana ; Chaenothecopsis pusiola ; Cresponea chloroconia ; Pachyphiale fagicola ; Placynthiella uliginosa ; sustainable forest management; biodiversity; biogeography; Appalachian-Great Lakes; Copeland Forest Resources Management Area; Ontario Introduction level of division that shapes lichen community struc - The lichen biota of Ontario is rich and abundant; ture (nash 2008; Brodo et al. 2001). Much more specif - approximately 1070 species are currently known from ically, many lichens require particular substrates. The the province (newmaster et al., in press), and the lichen substrate requirements for some species are broad, and biomass in some areas is over 9000 kg/ha (McMullin they may grow on a range of types of bark, leaves, et al. 2011). The total terrestrial area of Ontario is rocks, soil, or wood, while other lichen species require 917 741 km 2, which covers a number of diverse ecore - substrates as specific as particular tree species at a par - gions (Perera et al. 2001). Many species have special - ticular stage of development (Söderström 1988; Bot - ized habitat requirements, and the diversity of the land - ting and delong 2009; McMullin et al. 2010). defined scape accounts for the relatively large number of lichens amounts of light and moisture are also of primary im - known from the province. portance for many lichen species (Kenkel and Bradfield Most lichen species require specific habitats, micro - 1986; Coxson and Coyle 2003; Coxson and Stevenson habitats, and substrates (Schmitt and Slack 1990; 2007). An understanding of the habitats that are most Kuusi nen 1996; McMullin et al. 2008). This specificity important for lichen diversity is therefore required to includes lichen communities that change in composi - manage these organisms effectively. tion along a broad bioclimatic gradient from the Arctic/ Managing lichen diversity in southern Ontario pres - alpine zone through boreal, temperate, and tropical ents a number of challenges. The first is a fundamental zones. in Ontario, all but tropical conditions are pres - lack of baseline data: comprehensive knowledge of ent (Ahti 1964; Gowan and Brodo 1988; Brodo et al. the lichen biota before it was altered by air pollution 2001). and development is lacking. Many lichen species are Specific ecosystems, such as bogs, cliffs, coastal intolerant of air pollution (Henderson 2000). Although areas, deserts, forests, prairies, and swamps, are the next point source emissions may be controlled, much of the 240 2013 MCMuLLin And LendeMeR : L iCHen diVeRSiTy in THe COPeLAnd FOReST 241 air pollution in southern Ontario is wide-ranging and communities), and (4) identify sites with high lichen difficult to isolate. extensive urban, industrial, and agri - richness. cultural development is the cause of this air pollution These objectives aim to produce a baseline inven - (Bates and Sizto 1987), but this development has also tory which can be used to monitor any changes in resulted in the loss of much of the old-growth forest lichen diversity over time. identifying the sites that that once dominated the landscape (Henry and Quinby are most important for capturing lichen diversity will 2010). assist forest managers with producing management Many lichen species require habitats that are char - strategies that target these areas. The results can be acteristic of old-growth forests (Lesica et al. 1991; used in the development of sustainable management Goward 1994; McMullin et al. 2008), and most of strategies, both in the study area and throughout south - those species are sensitive to changes in their environ - ern Ontario in other second-growth forests. ments (esseen and Renhorn 1998; Chen et al. 1993; McMullin et al. 2010). An important part of managing Methods lichen diversity in southern Ontario now means under - Study area standing how species colonize second-growth forests. The Copeland Forest Resources Management Area The purpose of this study was to better understand is located in southern Ontario approximately 15 km the lichen diversity of second-growth forests in south - north of Barrie and 15 km west of Orillia (Figure 1). ern Ontario by examining a representative sampling it lies between 44°32'34" and 44°35'43"n and be - of habitats in the Copeland Forest Resources Manage - tween 79°44'31" and 79°39'19"W. Highway 400 runs ment Area north of Barrie. Specific objectives were along the length of the northwest side of the Copeland, to (1) determine the number of lichen species in the and Horseshoe Valley Road runs the length of the Copeland, (2) determine the frequency of occurrence southeast side. A continuous property covering 1780 of each lichen species, (3) resolve whether alpha diver - hectares (Golas 1980), the Copeland Forest is a mul ti- sity differs among different sampling sites (vegetation use natural recreation area that is used mainly by FiGuRe 1. The Copeland Forest Resources Management Area with the 24 sampling sites illustrated. Sampling sites are described in Table 1. 242 THe CAnAdiAn FieLd -n ATuRALiST Vol. 127 moun tain bikers, horseback riders, hikers, hunters, and to it as an “intelligent meander”, as it allows more time crosscountry skiers. An extensive network of trails in to be spent in areas with a higher number of lichen the Copeland Forest is maintained by Horseshoe Resort species. for its clientele, particularly for crosscountry skiing. Lichen abundance was determined by the number One of the primary rail lines connecting southern of sampling sites in which each species occurred. A Ontario to western Canada also runs through the forest, voucher specimen of each taxon was collected at each with multiple diesel-powered trains passing through site that was inventoried. daily. Lichen identification The study area lies within the Great Lakes-St. Vouchers were identified using a stereo or com - Lawrence Forest Region and is characterized by rolling pound microscope and chemical spot tests with para- hills, treed wetlands, small ponds, and deciduous mixed - phenylenediamine in ethyl alcohol, nitric acid, sodium wood and coniferous forests (Rowe 1972). The mean hypochlorite, 10% potassium hydroxide, and Lugol’s regional temperature in January is −8.4°C and in July iodine (Brodo et al. 2001). Chemistry was further it is 20.6°C (environment Canada 2012). The average examined using a long-wave ultraviolet light chamber. annual rainfall is 750.6 mm and the average snowfall Specimens that could not be reliably identified by mor - is 292.6 cm (environment Canada 2012). phology , spot tests, or ultraviolet light were analyzed Virtually all of the forested land in the study area is for secondary chemistry using thin-layer chromatog - second-growth. The first recorded evidence
Recommended publications
  • Checklist of Calicioid Lichens and Fungi for Genera with Members in Temperate Western North America Draft: 2012-03-13
    Draft: 2012-03-13 Checklist of Calicioids – E. B. Peterson Checklist of Calicioid Lichens and Fungi For Genera with Members in Temperate Western North America Draft: 2012-03-13 by E. B. Peterson Calicium abietinum, EBP#4640 1 Draft: 2012-03-13 Checklist of Calicioids – E. B. Peterson Genera Acroscyphus Lév. Brucea Rikkinen Calicium Pers. Chaenotheca Th. Fr. Chaenothecopsis Vainio Coniocybe Ach. = Chaenotheca "Cryptocalicium" – potentially undescribed genus; taxonomic placement is not known but there are resemblances both to Mycocaliciales and Onygenales Cybebe Tibell = Chaenotheca Cyphelium Ach. Microcalicium Vainio Mycocalicium Vainio Phaeocalicium A.F.W. Schmidt Sclerophora Chevall. Sphinctrina Fr. Stenocybe (Nyl.) Körber Texosporium Nádv. ex Tibell & Hofsten Thelomma A. Massal. Tholurna Norman Additional genera are primarily tropical, such as Pyrgillus, Tylophoron About the Species lists Names in bold are believed to be currently valid names. Old synonyms are indented and listed with the current name following (additional synonyms can be found in Esslinger (2011). Names in quotes are nicknames for undescribed species. Names given within tildes (~) are published, but may not be validly published. Underlined species are included in the checklist for North America north of Mexico (Esslinger 2011). Names are given with authorities and original citation date where possible, followed by a colon. Additional citations are given after the colon, followed by a series of abbreviations for states and regions where known. States and provinces use the standard two-letter abbreviation. Regions include: NAm = North America; WNA = western North America (west of the continental divide); Klam = Klamath Region (my home territory). For those not known from North America, continental distribution may be given: SAm = South America; EUR = Europe; ASIA = Asia; Afr = Africa; Aus = Australia.
    [Show full text]
  • Lichens Rosemary Etheridge Lichens Are Small and Insignificant and Hard to Identify So They Are Often Ignored but They Can Be Beautiful
    Lichens Rosemary Etheridge Lichens are small and insignificant and hard to identify so they are often ignored but they can be beautiful. They are organisms that grow on surfaces such as rocks, bark and soil. Churchyards are particularly good places to look, especially limestone tombstones. Lichens on a tombstone What are lichens? A lichen is a small ecosystem in its own right comprising 2 or sometimes 3 organisms, a green alga or cyanobacterium and a fungus, living together in harmony in one body as an example of symbiosis. The fungus protects the alga or bacterium from drying out and from intense sunlight while the green alga or cyanobacterium makes food by photosynthesis. The bacteria also absorb atmospheric nitrogen and turn it into nitrates. It could also be argued that it is parasitism by the fungus rather than symbiosis, since the fungus gets most of the advantage from the relationship as the alga can live alone and as part of a lichen it gives up 80% of its food to the fungus. Lichens can occur in any habitat, from polar regions and mountain tops through temperate regions, deserts and the tropics. They can cope with extreme temperatures, drought, ultraviolet light and ionising radiation. However, air pollution kills lichens because they absorb water and any dissolved contents over the whole of their surface. This means that lichens can be used for bio-monitoring, one example being the complete disappearance of Usnea from the industrial areas of the north, Midlands and London and the South-east but with the improvements in air quality it is making a comeback.
    [Show full text]
  • Appendix K. Survey and Manage Species Persistence Evaluation
    Appendix K. Survey and Manage Species Persistence Evaluation Establishment of the 95-foot wide construction corridor and TEWAs would likely remove individuals of H. caeruleus and modify microclimate conditions around individuals that are not removed. The removal of forests and host trees and disturbance to soil could negatively affect H. caeruleus in adjacent areas by removing its habitat, disturbing the roots of host trees, and affecting its mycorrhizal association with the trees, potentially affecting site persistence. Restored portions of the corridor and TEWAs would be dominated by early seral vegetation for approximately 30 years, which would result in long-term changes to habitat conditions. A 30-foot wide portion of the corridor would be maintained in low-growing vegetation for pipeline maintenance and would not provide habitat for the species during the life of the project. Hygrophorus caeruleus is not likely to persist at one of the sites in the project area because of the extent of impacts and the proximity of the recorded observation to the corridor. Hygrophorus caeruleus is likely to persist at the remaining three sites in the project area (MP 168.8 and MP 172.4 (north), and MP 172.5-172.7) because the majority of observations within the sites are more than 90 feet from the corridor, where direct effects are not anticipated and indirect effects are unlikely. The site at MP 168.8 is in a forested area on an east-facing slope, and a paved road occurs through the southeast part of the site. Four out of five observations are more than 90 feet southwest of the corridor and are not likely to be directly or indirectly affected by the PCGP Project based on the distance from the corridor, extent of forests surrounding the observations, and proximity to an existing open corridor (the road), indicating the species is likely resilient to edge- related effects at the site.
    [Show full text]
  • St Kilda Lichen Survey April 2014
    A REPORT TO NATIONAL TRUST FOR SCOTLAND St Kilda Lichen Survey April 2014 Andy Acton, Brian Coppins, John Douglass & Steve Price Looking down to Village Bay, St. Kilda from Glacan Conachair Andy Acton [email protected] Brian Coppins [email protected] St. Kilda Lichen Survey Andy Acton, Brian Coppins, John Douglass, Steve Price Table of Contents 1 INTRODUCTION ............................................................................................................ 3 1.1 Background............................................................................................................. 3 1.2 Study areas............................................................................................................. 4 2 METHODOLOGY ........................................................................................................... 6 2.1 Field survey ............................................................................................................ 6 2.2 Data collation, laboratory work ................................................................................ 6 2.3 Ecological importance ............................................................................................. 7 2.4 Constraints ............................................................................................................. 7 3 RESULTS SUMMARY ................................................................................................... 8 4 MARITIME GRASSLAND (INCLUDING SWARDS DOMINATED BY PLANTAGO MARITIMA AND ARMERIA
    [Show full text]
  • Checklist of Lichenicolous Fungi and Lichenicolous Lichens of Svalbard, Including New Species, New Records and Revisions
    Herzogia 26 (2), 2013: 323 –359 323 Checklist of lichenicolous fungi and lichenicolous lichens of Svalbard, including new species, new records and revisions Mikhail P. Zhurbenko* & Wolfgang von Brackel Abstract: Zhurbenko, M. P. & Brackel, W. v. 2013. Checklist of lichenicolous fungi and lichenicolous lichens of Svalbard, including new species, new records and revisions. – Herzogia 26: 323 –359. Hainesia bryonorae Zhurb. (on Bryonora castanea), Lichenochora caloplacae Zhurb. (on Caloplaca species), Sphaerellothecium epilecanora Zhurb. (on Lecanora epibryon), and Trimmatostroma cetrariae Brackel (on Cetraria is- landica) are described as new to science. Forty four species of lichenicolous fungi (Arthonia apotheciorum, A. aspicili- ae, A. epiphyscia, A. molendoi, A. pannariae, A. peltigerina, Cercidospora ochrolechiae, C. trypetheliza, C. verrucosar- ia, Dacampia engeliana, Dactylospora aeruginosa, D. frigida, Endococcus fusiger, E. sendtneri, Epibryon conductrix, Epilichen glauconigellus, Lichenochora coppinsii, L. weillii, Lichenopeltella peltigericola, L. santessonii, Lichenostigma chlaroterae, L. maureri, Llimoniella vinosa, Merismatium decolorans, M. heterophractum, Muellerella atricola, M. erratica, Pronectria erythrinella, Protothelenella croceae, Skyttella mulleri, Sphaerellothecium parmeliae, Sphaeropezia santessonii, S. thamnoliae, Stigmidium cladoniicola, S. collematis, S. frigidum, S. leucophlebiae, S. mycobilimbiae, S. pseudopeltideae, Taeniolella pertusariicola, Tremella cetrariicola, Xenonectriella lutescens, X. ornamentata,
    [Show full text]
  • Verzeichnis Meiner 2008-2014 Publizierten Flechten-Bildtafeln
    Verzeichnis meiner 2008 – 2014 publizierten Flechten-Bildtafeln 1 Verzeichnis meiner 2008-2014 publizierten Flechten-Bildtafeln von Felix Schumm Index zu den Bildtafeln in folgenden Büchern: M = F. Schumm (2008): Flechten Madeiras, der Kanaren und Azoren.- 1-294, ISBN978-300-023700-3. S = F. Schumm & A. Aptroot (2010): Seychelles Lichen Guide. - 1-404, ISBN 978-3-00-030254-1. ALB = F. Schumm (2011): Kalkflechten der Schäbischen Alb - ein mikroskopisch anatomischer Atlas. - 1-410, ISBN 978-3-8448-7365-8. ROCC = A. Aptroot & F. Schumm (2011): Fruticose Roccellaceae - an anatomical-microscopical Atlas and Guide with a worldwide Key and further Notes on some crustose Roccellaceae or similar Lichens. - 1- 374, ISBN 978-3-033689-8. THAI = F. Schumm & A Aptroot (2012): A microscopical Atlas of some tropical Lichens from SE-Asia (Thailand, Cambodia, Philippines, Vietnam). - Volume 1: 1-455 (Anisomeridium-Lobaria), ISBN 978-3-8448-9258-1, Volume 2: 456-881 (Malmidea -Trypethelium). ISBN 978-3-8448-9259- 9 AZ = F. Schumm & A. Aptroot (2013): Flechten Madeiras, der Kanaren und Azoren – Band 2 (Ergänzungsband): 1-457, ISBN 978-3-7322-7480-2 AUS = F. Schumm & J.A. Elix (2014): Images from Lichenes Australasici Exsiccati and of other characteristic Australasian Lichens – Volume 1: 1- 665, ISBN 978-3-7386-8386-9; Volume 2: 666-1327, ISBN 978-3-7386- 8387-5 Email: [email protected] Absconditella ---------------------------------------------------------------------------------------------------------S 7 Absconditella delutula (Nyl.) Coppins & H.Kilias
    [Show full text]
  • 1307 Fungi Representing 1139 Infrageneric Taxa, 317 Genera and 66 Families ⇑ Jolanta Miadlikowska A, , Frank Kauff B,1, Filip Högnabba C, Jeffrey C
    Molecular Phylogenetics and Evolution 79 (2014) 132–168 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families ⇑ Jolanta Miadlikowska a, , Frank Kauff b,1, Filip Högnabba c, Jeffrey C. Oliver d,2, Katalin Molnár a,3, Emily Fraker a,4, Ester Gaya a,5, Josef Hafellner e, Valérie Hofstetter a,6, Cécile Gueidan a,7, Mónica A.G. Otálora a,8, Brendan Hodkinson a,9, Martin Kukwa f, Robert Lücking g, Curtis Björk h, Harrie J.M. Sipman i, Ana Rosa Burgaz j, Arne Thell k, Alfredo Passo l, Leena Myllys c, Trevor Goward h, Samantha Fernández-Brime m, Geir Hestmark n, James Lendemer o, H. Thorsten Lumbsch g, Michaela Schmull p, Conrad L. Schoch q, Emmanuël Sérusiaux r, David R. Maddison s, A. Elizabeth Arnold t, François Lutzoni a,10, Soili Stenroos c,10 a Department of Biology, Duke University, Durham, NC 27708-0338, USA b FB Biologie, Molecular Phylogenetics, 13/276, TU Kaiserslautern, Postfach 3049, 67653 Kaiserslautern, Germany c Botanical Museum, Finnish Museum of Natural History, FI-00014 University of Helsinki, Finland d Department of Ecology and Evolutionary Biology, Yale University, 358 ESC, 21 Sachem Street, New Haven, CT 06511, USA e Institut für Botanik, Karl-Franzens-Universität, Holteigasse 6, A-8010 Graz, Austria f Department of Plant Taxonomy and Nature Conservation, University of Gdan´sk, ul. Wita Stwosza 59, 80-308 Gdan´sk, Poland g Science and Education, The Field Museum, 1400 S.
    [Show full text]
  • A New Species of Lecanora S. Lat., Growing on Lasallia Pustulata
    The Lichenologist 40(2): 111–118 (2008) 2008 British Lichen Society doi:10.1017/S0024282908007469 Printed in the United Kingdom A new species of Lecanora s. lat., growing on Lasallia pustulata Sergio PEuREZ-ORTEGA and Javier ETAYO Abstract: The new species Lecanora lasalliae Pe´rez-Ortega & Etayo is described from Spain. It is included provisionally in Lecanora s. lat as characters such as Lecanora-type ascus, exciple composed of thick radiating hyphae and the usual presence of algal cells in the excipulum or its lichenicolous habitus on Lasallia pustulata, do not fit well within any known genus of lichenicolous or lichenized fungi. Its taxonomic affinities with several taxa are discussed, including the parasitic Lecanora gyrophorina. Key words: Carbonea, Lecidea, lichenicolous fungi, Nesolechia, Phacopsis, Protoparmelia, Ramboldia, Scoliciosporum, Spain Introduction and compare it to other genera with licheni- The umbilicate genus Lasallia Me´rat does colous species with Lecanora-type ascus with not host many species of fungi; so we were which the species could be related or surprised to find several healthy thalli of confused. Lasallia pustulata (L.) Me´rat. with small patches of apothecia growing on the thallus Material and Methods margins, mainly mixed with clusters of isidia. Because of the frequent presence of The material was examined using standard micro- scopical techniques. Photographs were taken with a dispersed algae in the exciple, thick excipu- Leica Mz75 stereomicroscope and a Zeiss Axioskop2 lar hyphae, the nature of the pigments in Plus microscope equipped with differential contrast. paraphyses and excipulum, and the Amyloid reactions were tested with Lugol’s reagent, Lecanora-type ascus, we hesitated to include either without or with a pre-treatment with KOH (I and K/I respectively).
    [Show full text]
  • H. Thorsten Lumbsch VP, Science & Education the Field Museum 1400
    H. Thorsten Lumbsch VP, Science & Education The Field Museum 1400 S. Lake Shore Drive Chicago, Illinois 60605 USA Tel: 1-312-665-7881 E-mail: [email protected] Research interests Evolution and Systematics of Fungi Biogeography and Diversification Rates of Fungi Species delimitation Diversity of lichen-forming fungi Professional Experience Since 2017 Vice President, Science & Education, The Field Museum, Chicago. USA 2014-2017 Director, Integrative Research Center, Science & Education, The Field Museum, Chicago, USA. Since 2014 Curator, Integrative Research Center, Science & Education, The Field Museum, Chicago, USA. 2013-2014 Associate Director, Integrative Research Center, Science & Education, The Field Museum, Chicago, USA. 2009-2013 Chair, Dept. of Botany, The Field Museum, Chicago, USA. Since 2011 MacArthur Associate Curator, Dept. of Botany, The Field Museum, Chicago, USA. 2006-2014 Associate Curator, Dept. of Botany, The Field Museum, Chicago, USA. 2005-2009 Head of Cryptogams, Dept. of Botany, The Field Museum, Chicago, USA. Since 2004 Member, Committee on Evolutionary Biology, University of Chicago. Courses: BIOS 430 Evolution (UIC), BIOS 23410 Complex Interactions: Coevolution, Parasites, Mutualists, and Cheaters (U of C) Reading group: Phylogenetic methods. 2003-2006 Assistant Curator, Dept. of Botany, The Field Museum, Chicago, USA. 1998-2003 Privatdozent (Assistant Professor), Botanical Institute, University – GHS - Essen. Lectures: General Botany, Evolution of lower plants, Photosynthesis, Courses: Cryptogams, Biology
    [Show full text]
  • Changes in Land Cover and Breeding Bird Populations with Restoration of Riparian Habitats in East-Central Iowa
    Journal of the Iowa Academy of Science: JIAS Volume 113 Number 1-2 Article 4 2006 Changes in Land Cover and Breeding Bird Populations with Restoration of Riparian Habitats in East-central Iowa Thomas J. Benson Iowa State University James J. Dinsmore Iowa State University William L. Hohman Iowa State University Let us know how access to this document benefits ouy Copyright © Copyright 2007 by the Iowa Academy of Science, Inc. Follow this and additional works at: https://scholarworks.uni.edu/jias Part of the Anthropology Commons, Life Sciences Commons, Physical Sciences and Mathematics Commons, and the Science and Mathematics Education Commons Recommended Citation Benson, Thomas J.; Dinsmore, James J.; and Hohman, William L. (2006) "Changes in Land Cover and Breeding Bird Populations with Restoration of Riparian Habitats in East-central Iowa," Journal of the Iowa Academy of Science: JIAS, 113(1-2), 10-16. Available at: https://scholarworks.uni.edu/jias/vol113/iss1/4 This Research is brought to you for free and open access by the Iowa Academy of Science at UNI ScholarWorks. It has been accepted for inclusion in Journal of the Iowa Academy of Science: JIAS by an authorized editor of UNI ScholarWorks. For more information, please contact [email protected]. four. Iowa Acad. Sci. 113(1,2):10-16, 2006 Changes in Land Cover and Breeding Bird Populations with Restoration of Riparian Habitats in East-central Iowa THOMAS ]. BENSON* Department of Natural Resource Ecology and Management, Iowa State University, 124 Science Hall II, Ames, Iowa 50011, USA JAMES]. DINSMORE Department of Natural Resource Ecology and Management, Iowa State University, 124 Science Hall II, Ames, Iowa 50011, USA WILLIAM L.
    [Show full text]
  • BLS Bulletin 111 Winter 2012.Pdf
    1 BRITISH LICHEN SOCIETY OFFICERS AND CONTACTS 2012 PRESIDENT B.P. Hilton, Beauregard, 5 Alscott Gardens, Alverdiscott, Barnstaple, Devon EX31 3QJ; e-mail [email protected] VICE-PRESIDENT J. Simkin, 41 North Road, Ponteland, Newcastle upon Tyne NE20 9UN, email [email protected] SECRETARY C. Ellis, Royal Botanic Garden, 20A Inverleith Row, Edinburgh EH3 5LR; email [email protected] TREASURER J.F. Skinner, 28 Parkanaur Avenue, Southend-on-Sea, Essex SS1 3HY, email [email protected] ASSISTANT TREASURER AND MEMBERSHIP SECRETARY H. Döring, Mycology Section, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, email [email protected] REGIONAL TREASURER (Americas) J.W. Hinds, 254 Forest Avenue, Orono, Maine 04473-3202, USA; email [email protected]. CHAIR OF THE DATA COMMITTEE D.J. Hill, Yew Tree Cottage, Yew Tree Lane, Compton Martin, Bristol BS40 6JS, email [email protected] MAPPING RECORDER AND ARCHIVIST M.R.D. Seaward, Department of Archaeological, Geographical & Environmental Sciences, University of Bradford, West Yorkshire BD7 1DP, email [email protected] DATA MANAGER J. Simkin, 41 North Road, Ponteland, Newcastle upon Tyne NE20 9UN, email [email protected] SENIOR EDITOR (LICHENOLOGIST) P.D. Crittenden, School of Life Science, The University, Nottingham NG7 2RD, email [email protected] BULLETIN EDITOR P.F. Cannon, CABI and Royal Botanic Gardens Kew; postal address Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, email [email protected] CHAIR OF CONSERVATION COMMITTEE & CONSERVATION OFFICER B.W. Edwards, DERC, Library Headquarters, Colliton Park, Dorchester, Dorset DT1 1XJ, email [email protected] CHAIR OF THE EDUCATION AND PROMOTION COMMITTEE: S.
    [Show full text]
  • Lichens and Associated Fungi from Glacier Bay National Park, Alaska
    The Lichenologist (2020), 52,61–181 doi:10.1017/S0024282920000079 Standard Paper Lichens and associated fungi from Glacier Bay National Park, Alaska Toby Spribille1,2,3 , Alan M. Fryday4 , Sergio Pérez-Ortega5 , Måns Svensson6, Tor Tønsberg7, Stefan Ekman6 , Håkon Holien8,9, Philipp Resl10 , Kevin Schneider11, Edith Stabentheiner2, Holger Thüs12,13 , Jan Vondrák14,15 and Lewis Sharman16 1Department of Biological Sciences, CW405, University of Alberta, Edmonton, Alberta T6G 2R3, Canada; 2Department of Plant Sciences, Institute of Biology, University of Graz, NAWI Graz, Holteigasse 6, 8010 Graz, Austria; 3Division of Biological Sciences, University of Montana, 32 Campus Drive, Missoula, Montana 59812, USA; 4Herbarium, Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA; 5Real Jardín Botánico (CSIC), Departamento de Micología, Calle Claudio Moyano 1, E-28014 Madrid, Spain; 6Museum of Evolution, Uppsala University, Norbyvägen 16, SE-75236 Uppsala, Sweden; 7Department of Natural History, University Museum of Bergen Allégt. 41, P.O. Box 7800, N-5020 Bergen, Norway; 8Faculty of Bioscience and Aquaculture, Nord University, Box 2501, NO-7729 Steinkjer, Norway; 9NTNU University Museum, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; 10Faculty of Biology, Department I, Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; 11Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK; 12Botany Department, State Museum of Natural History Stuttgart, Rosenstein 1, 70191 Stuttgart, Germany; 13Natural History Museum, Cromwell Road, London SW7 5BD, UK; 14Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43 Průhonice, Czech Republic; 15Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-370 05 České Budějovice, Czech Republic and 16Glacier Bay National Park & Preserve, P.O.
    [Show full text]