Gear Receives U of I's Highest Alumni Honor Alumni News Laursen And

Total Page:16

File Type:pdf, Size:1020Kb

Gear Receives U of I's Highest Alumni Honor Alumni News Laursen And Summer 2001 Vol. 2, No. 6 Alumni News Gear receives U of I’s Reed named highest alumni honor Gutgsell Professor When C. W. (Bill) Gear intro- On May 7, 2001, Dan Reed was invested as an Edward duced his novel methods for William Gutgsell and Jane Marr Gutgsell Endowed finding solutions to stiff equa- Professor at a ceremony held at the Beckman Institute. tions, almost overnight solving He was recognized for innovative collaborative research these very difficult but impor- and for working with government, private industry, and tant problems became routine, academia to chart the future of computational science and and the computer program that engineering. The professorships were funded through an implemented these methods estate gift from the Gutgsells, who were loyal and made Gear’s name a household generous supporters of the university their entire lives. word among scientists and Both earned BS degrees in 1934—he in LAS and she in engineers across a myriad of journalism. They both died in 1989. In 1998, the univer- disciplines. Gear’s name is also Bill Gear sity established the Gutgsell Professorships to recognized one closely associated with the some of its most distinguished senior faculty. Department of Computer Science at the University of Reed recently stepped down as department head of Illinois, where he spent more than three decades, first as a computer science in May and will be interim head until a graduate student and later as a faculty member and head. replacement is found. He continues as a professor of Now, he is the first computer scientist whose portrait computer science and director of the National Center for graces the halls of the Illini Union as a recipient of the Supercomputing Applications (NCSA) and the National University of Illinois’s highest alumni honor, the Alumni Computational Science Alliance. n Association’s Alumni Achievement Award. Gear re- continued on p. 12 Laursen and Matsushita endow new fellowships Fellowships are one of the best ways to attract the Oracle6. He was most recently at Phone.com as vice brightest and most promising graduate students to our president of engineering before he retired in the summer department. Recognizing this, Andy and Shana Laursen of 2000. He and Shana, an educator, live with their two and Shigenori Matsushita have established and fully sons in Auburn, Calif. Their fellowship will be called the funded two new endowed fellowships that will benefit Andrew and Shana Laursen Fellowship. computer science students now and for generations to Shigenori Matsushita established a fellowship in honor come: The Laursen Fellowship and the Muroga Fellow- of Professor Saburo Muroga, with whom he studied at ship. Illinois in 1962-63. It will be called the Saburo Muroga Andy Laursen has had a long and productive career, Fellowship. Matsushita has had a long career at Toshiba starting at Bell Laboratories. He earned his MS at Uni- Corp. and now works for Wink Communications in versity of Illinois in 1982 as part of the company’s Japan. advanced degree program and returned to Bell Labs, An article on Matsushita appears on page 9, and an article where he worked on electronic switching systems. He on Laursen from the January 2001 CS Alumni News can be moved on to Tolerant Systems, before spending a decade found at www.cs.uiuc.edu. n at Oracle, where he was one of the original designers of Tebbe wins two From the corner office . alumni honors Reed says farewell Mark Tebbe Over five years ago, I agreed to take on the challenges seems to be and responsibilities associated with leading the depart- appearing in ment. During that time, we have seen extraordinary every issue of changes in computing within the department, across the the CS Alumni campus, and in our daily lives. The Internet has become News lately. a household word, in large part due to the seminal This time, his contributions of our alumni, students and faculty. More- accomplish- over, information technology is now recognized as one of ments have been the primary engines of national and international eco- recognized with nomic growth. I have been proud, privileged, and two very humbled to serve as head of one of the world’s very best important computer science departments during this time. awards: The As I look back on the past five years, I take great pride Chicago Illini of in the department’s accomplishments. the Year Award Mark Tebbe with longtime friend Profes- sor Sylvian Ray, who has been ACM’s and the College · The launch of our Internet distance learning program, adviser from its inception. of Engineering based on streaming media distribution of courses and our Alumni Award professional MCS degree. for Distinguished Service. After graduating with a BS in CS in 1983, Tebbe went · Dramatic growth in our departmental endowment for to Arthur Andersen. A year later, he started Lante, a undergraduate scholarships, graduate fellowships, chairs, consulting firm, with money borrowed from his credit and professorships. card and with a passion for microcomputers and net- working. His company has grown from a two-person · An equally dramatic increase in the department’s annual operation in Chicago to a major public company with research expenditures, reflecting a renewed commitment offices in 10 cities and more than 300 employees, many of to cutting edge research and associated research infra- whom are U of I graduates. Tebbe is an authority on structure. emerging technologies and has appeared in numerous publications, including InfoWorld, for which he writes the · Tom Siebel’s incredible donation of $32M to endow the weekly column “Behind the Lines.” In 1999, Tebbe was Siebel Center for Computer Science, a dramatic new named to the “40 under 40” list in Crain’s Chicago Busi- $75M facility for computer science education and re- ness, and the following year he was inducted into the search. Along with this donation, our faculty size will Chicago Area Entrepreneurial Hall of Fame. He is a grow to 63, graduate enrollments will increase to over founding member of two leading computer groups in 500, and undergraduate enrollments will rise to over Chicago, is active in many technological organizations 1,300. and standard committees, and serves on several corpo- rate boards. · A broad and intellectually deep distinguished entrepre- Tebbe returns to campus often and has been especially neur lecture series that brings our successful alumni back supportive of the Association for Computing Machinery, to the department, with all lectures webcast via the which he resurrected on campus in the early 1980s. He Internet. was pivotal in making CS eligible to compete in Engi- neering Open House, and he and his colleagues won the · Recruiting new faculty and staff, the next generation of department’s first EOH award. In 1999 he joined the Illinois excellence. During the past five years, fifteen new College of Engineering Advisory Board and delivered a faculty members joined the department as the early talk as part of the department’s Distinguished Entrepre- founders and giants of the field retired. The influx of new neur Series. He received the Chicago Illini of the Year ideas and research directions from all of these additions is Award at the Chicago Athletic Club on March 1, 2001, bearing great fruit. and the COE alumni award at the Illini Union during Convocation on April 20, 2001. n One of the constants in computing is change, and leader- ship positions are no exception. I recently accepted a new 2 CS ALUMNI NEWS position as director of the National Center for Kay Tomlin honored Supercomputing Applications (NCSA) at Illinois and its associated consortium of fifty national partners, the Kay Tomlin, secretary in the National Computational Science Alliance. This is an department’s academic exciting new opportunity for me to help define the future office, won the 2000-01 of high-performance computing in the United States. Chancellor’s Distinguished In my new role as NCSA and Alliance director, I will Staff Award. Professor Sam be leading creation and deployment of a new generation Kamin, director of under- of computing, communication, and storage systems for graduate programs, who the national science and engineering research community. nominated Tomlin, wrote: In this role, I look forward to working with the computer “Her dedication to her science department to advance the state of computing at work, her caring attitude, Illinois and around the world. her cheerfulness even in times of great stress, and her Keep inventing the future! — Dan willingness and ability to sort out bureaucratic Kay Tomlin problems make her a virtual legend among CS faculty and students.” For the past 11 years, Tomlin has been a More changes key contact person for undergraduates, helping students with academic problems or issues that arise as they Not only has Dan Reed stepped down as head of the CS navigate through the university. In 1998, she was hon- department (he will remain on the CS faculty and con- ored with the Dads Day Award, which is based on tinue to serve as director of NCSA) . David Daniel, student nominations. According to Professor Dan Reed, who has been head of the civil engineering department department head, “Kay is a calm and reassuring voice, for the past five years, replaced William Schowalter as with a quick smile and a deep knowledge of possible dean of the College of Engineering. Steve Kang left as solutions and alternatives. She mends intellectual and head of ECE to become dean of the engineering college at emotional skinned knees, dispenses wisdom, and moves University of California at Santa Cruz. Richard Blahut is with a quiet grace that makes even the most worried the new ECE head.
Recommended publications
  • The ASCI Red TOPS Supercomputer
    The ASCI Red TOPS Supercomputer http://www.sandia.gov/ASCI/Red/RedFacts.htm The ASCI Red TOPS Supercomputer Introduction The ASCI Red TOPS Supercomputer is the first step in the ASCI Platforms Strategy, which is aimed at giving researchers the five-order-of-magnitude increase in computing performance over current technology that is required to support "full-physics," "full-system" simulation by early next century. This supercomputer, being installed at Sandia National Laboratories, is a massively parallel, MIMD computer. It is noteworthy for several reasons. It will be the world's first TOPS supercomputer. I/O, memory, compute nodes, and communication are scalable to an extreme degree. Standard parallel interfaces will make it relatively simple to port parallel applications to this system. The system uses two operating systems to make the computer both familiar to the user (UNIX) and non-intrusive for the scalable application (Cougar). And it makes use of Commercial Commodity Off The Shelf (CCOTS) technology to maintain affordability. Hardware The ASCI TOPS system is a distributed memory, MIMD, message-passing supercomputer. All aspects of this system architecture are scalable, including communication bandwidth, main memory, internal disk storage capacity, and I/O. Artist's Concept The TOPS Supercomputer is organized into four partitions: Compute, Service, System, and I/O. The Service Partition provides an integrated, scalable host that supports interactive users, application development, and system administration. The I/O Partition supports a scalable file system and network services. The System Partition supports system Reliability, Availability, and Serviceability (RAS) capabilities. Finally, the Compute Partition contains nodes optimized for floating point performance and is where parallel applications execute.
    [Show full text]
  • 2017 HPC Annual Report Team Would Like to Acknowledge the Invaluable Assistance Provided by John Noe
    sandia national laboratories 2017 HIGH PERformance computing The 2017 High Performance Computing Annual Report is dedicated to John Noe and Dino Pavlakos. Building a foundational framework Editor in high performance computing Yasmin Dennig Contributing Writers Megan Davidson Sandia National Laboratories has a long history of significant contributions to the high performance computing Mattie Hensley community and industry. Our innovative computer architectures allowed the United States to become the first to break the teraflop barrier—propelling us to the international spotlight. Our advanced simulation and modeling capabilities have been integral in high consequence US operations such as Operation Burnt Frost. Strong partnerships with industry leaders, such as Cray, Inc. and Goodyear, have enabled them to leverage our high performance computing capabilities to gain a tremendous competitive edge in the marketplace. Contributing Editor Laura Sowko As part of our continuing commitment to provide modern computing infrastructure and systems in support of Sandia’s missions, we made a major investment in expanding Building 725 to serve as the new home of high performance computer (HPC) systems at Sandia. Work is expected to be completed in 2018 and will result in a modern facility of approximately 15,000 square feet of computer center space. The facility will be ready to house the newest National Nuclear Security Administration/Advanced Simulation and Computing (NNSA/ASC) prototype Design platform being acquired by Sandia, with delivery in late 2019 or early 2020. This new system will enable continuing Stacey Long advances by Sandia science and engineering staff in the areas of operating system R&D, operation cost effectiveness (power and innovative cooling technologies), user environment, and application code performance.
    [Show full text]
  • An Extensible Administration and Configuration Tool for Linux Clusters
    An extensible administration and configuration tool for Linux clusters John D. Fogarty B.Sc A dissertation submitted to the University of Dublin, in partial fulfillment of the requirements for the degree of Master of Science in Computer Science 1999 Declaration I declare that the work described in this dissertation is, except where otherwise stated, entirely my own work and has not been submitted as an exercise for a degree at this or any other university. Signed: ___________________ John D. Fogarty 15th September, 1999 Permission to lend and/or copy I agree that Trinity College Library may lend or copy this dissertation upon request. Signed: ___________________ John D. Fogarty 15th September, 1999 ii Summary This project addresses the lack of system administration tools for Linux clusters. The goals of the project were to design and implement an extensible system that would facilitate the administration and configuration of a Linux cluster. Cluster systems are inherently scalable and therefore the cluster administration tool should also scale well to facilitate the addition of new nodes to the cluster. The tool allows the administration and configuration of the entire cluster from a single node. Administration of the cluster is simplified by way of command replication across one, some or all nodes. Configuration of the cluster is made possible through the use of a flexible, variables substitution scheme, which allows common configuration files to reflect differences between nodes. The system uses a GUI interface and is intuitively simple to use. Extensibility is incorporated into the system, by allowing the dynamic addition of new commands and output display types to the system.
    [Show full text]
  • Lipics-ISAAC-2020-42.Pdf (0.5
    Multiparty Selection Ke Chen Department of Computer Science, University of Wisconsin–Milwaukee, WI, USA [email protected] Adrian Dumitrescu Department of Computer Science, University of Wisconsin–Milwaukee, WI, USA [email protected] Abstract Given a sequence A of n numbers and an integer (target) parameter 1 ≤ i ≤ n, the (exact) selection problem is that of finding the i-th smallest element in A. An element is said to be (i, j)-mediocre if it is neither among the top i nor among the bottom j elements of S. The approximate selection problem is that of finding an (i, j)-mediocre element for some given i, j; as such, this variant allows the algorithm to return any element in a prescribed range. In the first part, we revisit the selection problem in the two-party model introduced by Andrew Yao (1979) and then extend our study of exact selection to the multiparty model. In the second part, we deduce some communication complexity benefits that arise in approximate selection. In particular, we present a deterministic protocol for finding an approximate median among k players. 2012 ACM Subject Classification Theory of computation Keywords and phrases approximate selection, mediocre element, comparison algorithm, i-th order statistic, tournaments, quantiles, communication complexity Digital Object Identifier 10.4230/LIPIcs.ISAAC.2020.42 1 Introduction Given a sequence A of n numbers and an integer (selection) parameter 1 ≤ i ≤ n, the selection problem asks to find the i-th smallest element in A. If the n elements are distinct, the i-th smallest is larger than i − 1 elements of A and smaller than the other n − i elements of A.
    [Show full text]
  • Scalability and Performance of Salinas on the Computational Plant
    Scalability and performance of salinas on the computa- tional plant Manoj Bhardwaj, Ron Brightwell & Garth Reese Sandia National Laboratories Abstract This paper presents performance results from a general-purpose, finite element struc- tural dynamics code called Salinas, on the Computational Plant (CplantTM), which is a large-scale Linux cluster. We compare these results to a traditional supercomputer, the ASCI/Red machine at Sandia National Labs. We describe the hardware and software environment of the Computational Plant, including its unique ability to support eas- ily switching a large section of compute nodes between multiple different independent cluster heads. We provide an overview of the Salinas application and present results from up to 1000 nodes on both machines. In particular, we discuss one of the chal- lenges related to scaling Salinas beyond several hundred processors on CplantTM and how this challenge was addressed and overcome. We have been able to demonstrate that the performance and scalability of Salinas is comparable to a proprietary large- scale parallel computing platform. 1 Introduction Parallel computing platforms composed of commodity personal computers (PCs) in- terconnected by gigabit network technology are a viable alternative to traditional pro- prietary supercomputing platforms. Small- and medium-sized clusters are now ubiqui- tous, and larger-scale procurements, such as those made recently by National Science Foundation for the Distributed Terascale Facility [1] and by Pacific Northwest National Lab [13], are becoming more prevalent. The cost effectiveness of these platforms has allowed for larger numbers of processors to be purchased. In spite of the continued increase in the number of processors, few real-world ap- plication results on large-scale clusters have been published.
    [Show full text]
  • Computer Architectures an Overview
    Computer Architectures An Overview PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Sat, 25 Feb 2012 22:35:32 UTC Contents Articles Microarchitecture 1 x86 7 PowerPC 23 IBM POWER 33 MIPS architecture 39 SPARC 57 ARM architecture 65 DEC Alpha 80 AlphaStation 92 AlphaServer 95 Very long instruction word 103 Instruction-level parallelism 107 Explicitly parallel instruction computing 108 References Article Sources and Contributors 111 Image Sources, Licenses and Contributors 113 Article Licenses License 114 Microarchitecture 1 Microarchitecture In computer engineering, microarchitecture (sometimes abbreviated to µarch or uarch), also called computer organization, is the way a given instruction set architecture (ISA) is implemented on a processor. A given ISA may be implemented with different microarchitectures.[1] Implementations might vary due to different goals of a given design or due to shifts in technology.[2] Computer architecture is the combination of microarchitecture and instruction set design. Relation to instruction set architecture The ISA is roughly the same as the programming model of a processor as seen by an assembly language programmer or compiler writer. The ISA includes the execution model, processor registers, address and data formats among other things. The Intel Core microarchitecture microarchitecture includes the constituent parts of the processor and how these interconnect and interoperate to implement the ISA. The microarchitecture of a machine is usually represented as (more or less detailed) diagrams that describe the interconnections of the various microarchitectural elements of the machine, which may be everything from single gates and registers, to complete arithmetic logic units (ALU)s and even larger elements.
    [Show full text]
  • COMPUTERSCIENCE Science
    BIBLIOGRAPHY DEPARTMENT OF COMPUTER SCIENCE TECHNICAL REPORTS, 1963- 1988 Talecn Marashian Nazarian Department ofComputer Science Stanford University Stanford, California 94305 1 X Abstract: This report lists, in chronological order, all reports published by the Stanford Computer Science Department (CSD) since 1963. Each report is identified by CSD number, author's name, title, number of pages, and date. If a given report is available from the department at the time of this Bibliography's printing, price is also listed. For convenience, an author index is included in the back of the text. Some reports are noted with a National Technical Information Service (NTIS) retrieval number (i.e., AD-XXXXXX), if available from the NTIS. Other reports are noted with Knowledge Systems Laboratory {KSL) or Computer Systems Laboratory (CSL) numbers (KSL-XX-XX; CSL-TR-XX-XX), and may be requested from KSL or (CSL), respectively. 2 INSTRUCTIONS In the Bibliography which follows, there is a listing for each Computer Science Department report published as of the date of this writing. Each listing contains the following information: " Report number(s) " Author(s) " Tide " Number ofpages " Month and yearpublished " NTIS number, ifknown " Price ofhardcopy version (standard price for microfiche: $2/copy) " Availability code AVAILABILITY CODES i. + hardcopy and microfiche 2. M microfiche only 3. H hardcopy only 4. * out-of-print All Computer Science Reports, if in stock, may be requested from following address: Publications Computer Science Department Stanford University Stanford, CA 94305 phone: (415) 723-4776 * 4 % > 3 ALTERNATIVE SOURCES Rising costs and restrictions on the use of research funds for printing reports have made it necessary to charge for all manuscripts.
    [Show full text]
  • Test, Evaluation, and Build Procedures for Sandia's ASCI Red (Janus) Teraflops Operating System
    SANDIA REPORT SAND2005-3356 Unlimited Release Printed October 2005 Test, Evaluation, and Build Procedures For Sandia's ASCI Red (Janus) Teraflops Operating System Daniel W. Barnette Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550 Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under Contract DE-AC04-94AL85000. Approved for public release; further dissemination unlimited. Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia Corporation. NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States Government, any agency thereof, or any of their contractors. Printed in the United States of America. This report has been reproduced directly from the best available copy. Available to DOE and DOE contractors from U.S.
    [Show full text]
  • High Performance Computing
    C R C P R E S S . T A Y L O R & F R A N C I S High Performance Computing A Chapter Sampler www.crcpress.com Contents 1. Overview of Parallel Computing From: Elements of Parallel Computing, by Eric Aubanel 2. Introduction to GPU Parallelism and CUDA From: GPU Parallel Program Development Using CUDA, by Tolga Soyata 3. Optimization Techniques and Best Practices for Parallel Codes From: Parallel Programming for Modern High Performance Computing Systems, by Pawel Czarnul 4. Determining an Exaflop Strategy From: Programming for Hybrid Multi/Manycore MMP Systems, by John Levesque, Aaron Vose 5. Contemporary High Performance Computing From: Contemporary High Performance Computing: From Petascale toward Exascale, by Jeffrey S. Vetter 6. Introduction to Computational Modeling From: Introduction to Modeling and Simulation with MATLAB® and Python, by Steven I. Gordon, Brian Guilfoos 20% Discount Available We're offering you 20% discount on all our entire range of CRC Press titles. Enter the code HPC10 at the checkout. Please note: This discount code cannot be combined with any other discount or offer and is only valid on print titles purchased directly from www.crcpress.com. www.crcpress.com Copyright Taylor & Francis Group. Do Not Distribute. CHAPTER 1 Overview of Parallel Computing 1.1 INTRODUCTION In the first 60 years of the electronic computer, beginning in 1940, computing performance per dollar increased on average by 55% per year [52]. This staggering 100 billion-fold increase hit a wall in the middle of the first decade of this century. The so-called power wall arose when processors couldn't work any faster because they couldn't dissipate the heat they pro- duced.
    [Show full text]
  • Delivering Insight: the History of the Accelerated Strategic Computing
    Lawrence Livermore National Laboratory Computation Directorate Dona L. Crawford Computation Associate Director Lawrence Livermore National Laboratory 7000 East Avenue, L-559 Livermore, CA 94550 September 14, 2009 Dear Colleague: Several years ago, I commissioned Alex R. Larzelere II to research and write a history of the U.S. Department of Energy’s Accelerated Strategic Computing Initiative (ASCI) and its evolution into the Advanced Simulation and Computing (ASC) Program. The goal was to document the first 10 years of ASCI: how this integrated and sustained collaborative effort reached its goals, became a base program, and changed the face of high-performance computing in a way that independent, individually funded R&D projects for applications, facilities, infrastructure, and software development never could have achieved. Mr. Larzelere has combined the documented record with first-hand recollections of prominent leaders into a highly readable, 200-page account of the history of ASCI. The manuscript is a testament to thousands of hours of research and writing and the contributions of dozens of people. It represents, most fittingly, a collaborative effort many years in the making. I’m pleased to announce that Delivering Insight: The History of the Accelerated Strategic Computing Initiative (ASCI) has been approved for unlimited distribution and is available online at https://asc.llnl.gov/asc_history/. Sincerely, Dona L. Crawford Computation Associate Director Lawrence Livermore National Laboratory An Equal Opportunity Employer • University of California • P.O. Box 808 Livermore, California94550 • Telephone (925) 422-2449 • Fax (925) 423-1466 Delivering Insight The History of the Accelerated Strategic Computing Initiative (ASCI) Prepared by: Alex R.
    [Show full text]
  • Sandia's ASCI Red, World's First Teraflop Supercomputer, Is
    Sandia’s ASCI Red, world’s first teraflop supercomputer, is decommissioned Participants at informal wake recall struggles and glories of nine-year run ALBUQUERQUE, N.M. — On a table in a small meeting room at Sandia National Laboratories rested a picture of the deceased — a row of identical cabinets that formed part of the entity known as ASCI Red, the world’s first teraflop supercomputer. Still one of the world’s 500 fastest supercomputers after all these years — nine — ASCI Red was being YOU'RE STILL THE ONE — By supercomputer standards, Sandia’s decommissioned. ASCI Red, the world’s first teraflop machine, was ancient, but what a run “I’ve never buried a computer before,” said Justin Rattner, it had! Here, designer Jim Tomkins (left) talks about ASCI Red and its Intel Chief Technology Officer, to 30 people from Sandia accomplishments with Intel officials and the Intel Corp. who gathered in mid-June to pay their Justin Rattner and Stephen Wheat. Rob Leland looks on at right. (Photos by Paul respects. “We should go around the room so everyone can Edward Sanchez) say their final farewells.” On a nearby table sat a simple white frosted cake. Encircled top and bottom by two strings of small simulated pearls and topped by pink flowers and a silver ribbon, it resembled a hat that could be worn by a very elderly lady, and indeed, ASCI Red was very old by supercomputer standards. Sandia vice-president Rick Stulen eulogized, “ASCI Red broke all records and most importantly ushered the world into the teraflop regime.
    [Show full text]
  • Performance of Various Computers Using Standard Linear Equations Software
    ———————— CS - 89 - 85 ———————— Performance of Various Computers Using Standard Linear Equations Software Jack J. Dongarra* Electrical Engineering and Computer Science Department University of Tennessee Knoxville, TN 37996-1301 Computer Science and Mathematics Division Oak Ridge National Laboratory Oak Ridge, TN 37831 University of Manchester CS - 89 - 85 June 15, 2014 * Electronic mail address: [email protected]. An up-to-date version of this report can be found at http://www.netlib.org/benchmark/performance.ps This work was supported in part by the Applied Mathematical Sciences subprogram of the Office of Energy Research, U.S. Department of Energy, under Contract DE-AC05-96OR22464, and in part by the Science Alliance a state supported program at the University of Tennessee. 6/15/2014 2 Performance of Various Computers Using Standard Linear Equations Software Jack J. Dongarra Electrical Engineering and Computer Science Department University of Tennessee Knoxville, TN 37996-1301 Computer Science and Mathematics Division Oak Ridge National Laboratory Oak Ridge, TN 37831 University of Manchester June 15, 2014 Abstract This report compares the performance of different computer systems in solving dense systems of linear equations. The comparison involves approximately a hundred computers, ranging from the Earth Simulator to personal computers. 1. Introduction and Objectives The timing information presented here should in no way be used to judge the overall performance of a computer system. The results reflect only one problem area: solving dense systems of equations. This report provides performance information on a wide assortment of computers ranging from the home-used PC up to the most powerful supercomputers. The information has been collected over a period of time and will undergo change as new machines are added and as hardware and software systems improve.
    [Show full text]