From Kunlun Pass Basin, Northeastern Tibetan Plateau and Their Bearings on Development of Water System and Uplift of the Area

Total Page:16

File Type:pdf, Size:1020Kb

From Kunlun Pass Basin, Northeastern Tibetan Plateau and Their Bearings on Development of Water System and Uplift of the Area SCIENCE CHINA Earth Sciences • RESEARCH PAPER • April 2010 Vol.53 No.4: 485–500 doi: 10.1007/s11430-010-0048-5 Pliocene cyprinids (Cypriniformes, Teleostei) from Kunlun Pass Basin, northeastern Tibetan Plateau and their bearings on development of water system and uplift of the area WANG Ning & CHANG Mee-mann* Key Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China Received November 23, 2009; accepted February 25, 2010 Here described are the cyprinid fossils from the Pliocene Lower Member of Qiangtang Formation of the Kunlun Pass Basin, northeastern Tibetan Plateau, collected at a locality 4769 m above the sea level (asl). The materials consist of numerous disar- ticulated and incomplete bones as well as thousands of pharyngeal teeth, fin rays, and vertebrae. The fossils were referred to the genus Gymnocypris, lineage Schizothoracini, family Cyprinidae; the lineage Schizothoracini; and the family Cyprinidae respectively. The Schizothoracini is a freshwater fish group endemic to the Tibetan Plateau and its surrounding area. Previous workers on living schizothoracins regarded that Gymnocypris belongs to the highly specialized grade of the group, colonizing higher altitudes than other members of the group. Two species are so far unequivocally assigned to the genus, i.e., G. przewalskii and G. eckloni, and they are inhabiting Qinghai Lake and the waters on both north (the Golmud River) and south (upper reach of the Yellow River) sides of the East Kunlun Mountain, respectively. The abundant fossil schizothoracins occur in the Kunlun Pass Basin on the southern slope of the East Kunlun Mountain (at 4769 m asl), close to the present Golmud River, indicating comparatively rich waters in the area and possible connections between the water systems on north and south sides of the East Kunlun Mountain during the Pliocene. This also suggests a more humid climate in the area during the Plio- cene than it is today. The presence of the highly specialized schizothoracin Gymnocypris may also imply less amplitude of up- lift (approximately 1000 m) in the area since the Pliocene than previously proposed. Gymnocypris, Schizothoracini, Pliocene, Kunlun Pass Basin of northeastern Tibetan Plateau, development of water sys- tem, uplift of the area Citation: Wang N, Chang M M. Pliocene cyprinids (Cypriniformes, Teleostei) from Kunlun Pass Basin, northeastern Tibetan Plateau and their bearings on development of water system and uplift of the area. Sci China Earth Sci, 2010, 53: 485–500, doi: 10.1007/s11430-010-0048-5 The Kunlun Mountain stretches along the southern border the area that is closely linked to the uplift of the Tibetan of Qaidam Basin, northeastern Tibetan Plateau, whereas Plateau and the global climate and environmental changes Kunlun Pass Basin is situated on the south slope of the mid- [5, 6]. The geology of this area has long attracted the atten- dle section of the East Kunlun Mountain (Figure 1). It is a tion of geologists and paleontologists worldwide. Paleon- fault basin, formed at the beginning of the late Cenozoic [2, tological studies conducted in this area, however, have fo- 3]. It contains comparatively thick late Cenozoic sediments cused mainly on palynology, ostracods, and mollusks, indi- (~700 m [4]), which documented the geological history of cating significant environmental changes since the Pliocene [7-10]. Vertebrate fossils from the Basin have not yet been specifically reported. *Corresponding author (email: [email protected]) There was only one fossil fish locality known in Tibetan © Science China Press and Springer-Verlag Berlin Heidelberg 2010 earth.scichina.com www.springerlink.com 486 WANG Ning, et al. Sci China Earth Sci April (2010) Vol.53 No.4 Figure 1 Geological map of East Kunlun Mountain and surrounding area, northeastern Tibetan Plateau (Based on Geological Map of Qinghai Province [1]). Plateau (Lunbola Basin [11]) before the team from the are extremely rare (Figure 2). Described so far from this Natural History Museum of Los Angeles County (LAM) area were Plesioschizothorax macrocephalus [11], a fossil and Institute of Vertebrate Paleontology and Paleoanthro- genus and species originally referred to the family Cyprini- pology (IVPP), led by Wang Xiaoming, started to work in dae; Hsianwenia wui [14], another fossil genus and species Qaidam Basin, northeastern Tibetan Plateau, at the end of referred to the subfamily Schizothoracinae (=Oreininae, last Century. Several vertebrate fossil localities, including Cyprinidae); and several disarticulated pharyngeal bones fish remains, were found in Qaidam Basin [12–14] (Figure with teeth referred to the Barbinae [13] of the Cyprinidae. 2). During the field seasons of 2006 and 2007, the team Both Plesioschizothorax macrocephalus and Hsianwenia worked in the Kunlun Pass Basin and discovered numerous wui were considered as belonging to the subfamily disarticulated fish bones and teeth as well as some mam- Schizothoracinae by Chang et al. [14]. mals [17]. The fish fossils were collected from the locality The Cyprinidae is the largest family of freshwater fishes. KL0607 (35°38′09.0″N, 94°05′05.6″E), about two kilome- Although works abound as to the phylogeny of the group ters east of the Qingzang Railway and 116 km southwest to during the last two decades, both from morphological and Golmud City, Qinghai Province (Figure 1). The altitude of molecular aspects [18-27], views are equally abundant the locality is 4769 m above the sea level (asl). This is one among ichthyologists on recognition of the subgroups of the of the few localities uncovered recently from the Plateau family, their scope, and their interrelationships. For pos- with a large quantity of fossil fish, and it is one of the high- sessing the unique “anal scales”, schizothoracins are re- est vertebrate fossil localities in the world. The fish remains garded as a monophyletic subfamily (Schizothoracinae) [16, from the Kunlun Pass Basin were collected from the Lower 28-32] or a subgroup (Schizothoracini) within the subfam- Member of the Qiangtang Formation [6]. The age of the ily Cyprininae [19, 33]. For their restricted distribution, Lower Member of the Qiangtang Formation is 2.58-1.77 schizothoracins usually were not included or only one spe- Ma based on a magnetostratigraphic study, ranges from the cies was included in a number of phylogenetic analyses of late Pliocene to early Pleistocene according to Song et al. the Cyprinidae or Cypriniformes [20-22, 24-27]. Because [6], or late Pliocene according to Wang et al.’s work on of lack of specimens, the group was rarely discussed in fossil mammals [17]. In this paper we adopt the view in the these works. Wherever more specimens of this group were latter work. The fish-bearing deposits are fluvial-lacustrine involved, the group was frequently treated as monophyletic dark gray mudstones intercalated with yellow brown muddy [18, 19, 31, 32, 33-37], regardless of which taxonomic rank sandstones or siltstones. (subfamily, lineage or tribe) the group is placed at. In a few The Cenozoic fossil fishes found from Tibetan Plateau recent works dealing with the phylogeny of the Cyprinidae, WANG Ning, et al. Sci China Earth Sci April (2010) Vol.53 No.4 487 Figure 2 Map of Cenozoic fossil fish localities and distribution of Recent Gymnocypris species in Tibetan Plateau, based on Wu and Wu [15] and Chen and Cao [16]. however, schizothoracins were considered non-monophy- tion and environment. We were able to identify some of the letic [38-41]. bones as belonging to Gymnocypris sp. indet., and a few In most morphological and molecular studies of the Cy- others to the lineage Schizothoracini gen. and sp. indet. priniformes and Cyprinidae, the subfamily Cyprininae [19, (subfamily Cyprininae). For the rest of bones, we could 20, 26, 27] or Series Barbini [18] is well supported, and the only refer them to the family Cyprinidae gen. and sp. indet. Schizothoracini, where included, is treated as one of its without any specifications. subgroups [19, 33]. In this paper, we follow Howes [19] and The zoogeography of the living schizothoracins has been Kullander et al. [33] to refer the materials, which we are studied and the evolutionary process of the group deduced able to identify as belonging to Gymnocypris, to the [30, 42]. The living schizothoracins were considered to have Schizothoracini lineage (=Tribe Oreinini [33], Schizotho- developed in correlation with the uplift of the Tibetan Pla- racinae [28]), subfamily Cyprininae. As for the lineage teau and were divided into three grades: primitive, special- (Tribe) name, we prefer Schizothoracini to Oreinini at pre- ized, and highly specialized. The division of the three sent, pending further works to clarify the priority of the ge- grades was based on the extent of modifications of their nus name, Schizothorax or Oreinus [33]. The lineage scales, barbells, and rows of pharyngeal teeth, and their dis- Schizothoracini is a comparatively large group with nu- tribution at three successive altitudes at which water tem- merous morphologically similar genera and species. The perature and precipitation decrease, and solar radiation and phylogenetic relationship of the group is in need of further evaporation increase [30]. The genus Gymnocypris from our work. materials falls in the highly specialized grade. From the numerous fish bones collected from the locality KL0607, Kunlun Pass Basin, we could recognize fishes belonging to two cypriniform families, the Cyprinidae and 1 Materials and methods Nemacheilidae. In this paper, we describe the cyprinid bones and discuss some problems concerning their distribu- All fish remains from Kunlun Pass Basin consist of disar- 488 WANG Ning, et al. Sci China Earth Sci April (2010) Vol.53 No.4 ticulated, incomplete bones. They do not seem buried in situ 2 Systematic paleontology but sorted and transported by water, then re-deposited, for only relatively thick bones or thick parts of bones are pre- Superorder Ostariophysi Sagemehl, 1885 served.
Recommended publications
  • Duplication of Toll-Like Receptor 22 in Teleost Fishes
    Fish and Shellfish Immunology 94 (2019) 752–760 Contents lists available at ScienceDirect Fish and Shellfish Immunology journal homepage: www.elsevier.com/locate/fsi Full length article Duplication of toll-like receptor 22 in teleost fishes T ∗ Delin Qia, , Yan Chaob, Cunfang Zhanga, Zhenji Wangc, Wei Wanga, Qichang Chena, Ziqin Zhenga,b, Zhao Zhanga,b a State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China b Animal Science Department of Agriculture and Animal Husbandry College, Qinghai University, Xining, 810016, China c Fishery Environmental Monitoring Station of Qinghai Province, Xining, 810012, China ARTICLE INFO ABSTRACT Keywords: The TLRs of teleost fishes have distinct features and are highly diverse, but the duplication characteristics and Toll-like receptor 22 expression patterns of the tlr22 gene remain unclear. Here, we identified paralogous tlr22 genes in 13 teleost Duplication fishes by screening available fish genomic resources and using molecular cloning. We then conducted com- Expression pattern prehensive bioinformatics analyses and investigated spatiotemporal differences in the expression patterns of the Gymnocypris eckloni tlr22 genes in G. eckloni. The results indicated that more than three paralogous tlr22 genes were possessed by Teleost fishes some teleost fishes. Of these, tlr22c is specific to some subfamilies of the Cyprinidae (e.g., Barbinae, Cyprininae, Schizothoracinae, and Leuciscinae). Phylogenetic and syntenic analyses showed that the paralogous tlr22 genes originated from two single-gene duplication events. Molecular clock calculations dated the two gene duplication events at 49.5 and 39.3 MYA, which is before the common carp-specific genome duplication event and well after the fish-specific genome duplication.
    [Show full text]
  • Abstracts Submitted to the 8 International Congress on The
    Abstracts Submitted to the 8th International Congress on the Biology of Fish Portland, Oregon, USA July 28- August 1, 2008 Compiled by Don MacKinlay Fish Biology Congress Abstracts 1 HISTOLOGICAL AND HISTOCHEMICAL STUDY OF LIVER AND PANCREAS IN ADULT OTOLITHES RUBER IN PERSIAN GULF Abdi , R. , Sheibani , M and Adibmoradi , M. Symposium: Morphometrics Presentation: Oral Contact: Rahim Abdi, Khoramshahr University of Marine science and Technology Khoramshahr Khozestan 64199-43175 Iran E-Mail: [email protected] Abstract: In this study, the digestive system of 10 adult Otolithes ruber, were removed and the livers and pancreases were put in the formalin 10 % to be fixed. The routine procedures of preparation of tissues were followed and the paraffin blocks were cut at 6 microns, stained with H&E, PAS and Gomori studied under light microscope. The results of microscopic studies showed that liver as the greatest accessory organ surrounds the pancreatic tissue. Liver is a lobulated organ which surrounds the pancreas as an accessory gland among its lobules. Hepatic tissue of this fish is similar to many other osteichthyes. Hepatocytes include glycogen stores and fat vacuoles located around the hepatic sinusoids. Pancreas as a mixed gland microscopically was composed of lobules consisting of serous acini(exocrine portion) and langerhans islets (endocrine portion). However, pancreatic lobules are usually seen as two rows of acini among which there is a large blood vessel. ECOLOGICAL CONSEQUENCES OF A TRANSPANTING EXOTIC FISH SPECIES TO FRESHWATER ECOSYSTEMS OF IRAN: A CASE STUDY OF RAINBOW TROUT ONCORHYNCHUS MYKISS (WALBAUM, 1792) Abdoli, A., Patimar, R., Mirdar, J., Rahmani, H., and Rasooli, P.
    [Show full text]
  • 附录1 甘肃省鱼类种类组成appendix 1 Fish Species Composition in Gansu
    王太, 张艳萍, 管丽红, 杜岩岩, 娄忠玉, 焦文龙. 甘肃省鱼类资源现状及DNA条形码在鱼类物种鉴定中的应用. 生物多样性, 2015, 23(3): 306-313. http://www.biodiversity-science.net/CN/article/downloadArticleFile.do?attachType=PDF&id=10015 附录1 甘肃省鱼类种类组成 Appendix 1 Fish species composition in Gansu Province 目 Order 科 Family 属 Genus 种 Species 鲑形目 Salmoniformes 鲑科 Salmonidae 细鳞鲑属 Brachymystax 秦岭细鳞鲑 Brachymystax lenok tsinlingensis 公鱼属 Hypomesus 池沼公鱼 Hypomesus olidus 鲇形目 Siluriformes 鲇科 Siluridae 鲇属 Silurus 鲇鱼 Silurus asotus 怀头鲶 Silurus soldatovi 鮡科 Sisoridae 鮡属 Pareuchiloglanis 前臀鮡 Pareuchiloglanis anteanalis 纹胸鮡属 Glyptothorax 中华纹胸鮡 Glyptothorax sinense 鲿科 Bagridae 拟鲿属 Pseudobagrus 切尾拟鲿 Pseudobagrus truncatus 鱯属 Mystus 大鳍鱯 Mystus macropterus 鲈形目 Perciformes 鰕虎鱼科 Gobiidae 吻鰕虎鱼属 Rhinogobius 褐吻鰕虎鱼 Rhinogobius brunneus 塘鳢科 Hypseleotris 黄黝鱼属 Hypseleotris 黄黝鱼 Hypseleotris swinhonis 合鳃鱼目 Symbranchiformes 合鳃鱼科 Synbranchidae 黄鳝属 Monopterus 黄鳝 Monopterus albus 鲤形目 Cypriniformes 鲤科 Cyprinidae 鰟鮍属 Rhodeus 高体鰟鮍 Rhodeus ocellatus 棒花鱼属 Abbottina 棒花鱼 Abbottina rivularis 颌须鮈属 Gnathopogon 嘉陵颌须鮈 Gnathopogon herzensteini 短须颌须鮈 Gnathopogon imberbis 胡鮈属 Huigobio 清徐胡鮈 Huigobio chinssuensis 鮈属 Gobio 黄河鮈 Gobio huanghensis 似铜鮈 Gobio coriparoides 蛇鮈属 Saurogobio 蛇鮈 Saurogobio dabryi 似鮈属 Pseudogobio 似鮈 Pseudogobio vaillanti 片唇鮈属 Platysmacheilus 裸腹片唇鮈 Platysmacheilus nudiventris 麦穗鱼属 Pseudorasbora 麦穗鱼 Pseudorasbora parva 属 Hemibarbus 唇 Hemibarbus labeo 花 Hemibarbus maculatus 似 属 Belligobio 似 Belligobio nummifer 马口鱼属 Opsariichthys 马口鱼 Opsariichthys bidens 鱲属 Zacco 宽鳍鱲 Zacco platypus 属 Phoxinus 拉氏 Phoxinus lagowskii 尖头 Phoxinus
    [Show full text]
  • Phylogeography of Schizopygopsis Stoliczkai (Cyprinidae) in Northwest Tibetan Plateau Area
    Received: 11 April 2017 | Revised: 14 August 2017 | Accepted: 17 August 2017 DOI: 10.1002/ece3.3452 ORIGINAL RESEARCH Phylogeography of Schizopygopsis stoliczkai (Cyprinidae) in Northwest Tibetan Plateau area Kunyuan Wanghe1,2,3,4 | Yongtao Tang1,2,3,4 | Fei Tian1,2,4 | Chenguang Feng1,2,3,4 | Renyi Zhang5 | Guogang Li6 | Sijia Liu1,2,3,4 | Kai Zhao1,2,4 1Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Abstract Plateau Biology, Chinese Academy of Schizopygopsis stoliczkai (Cyprinidae, subfamily Schizothoracinae) is one of the major Sciences, Xining, Qinghai, China freshwater fishes endemic to the northwestern margin of the Tibetan Plateau. In the 2Laboratory of Plateau Fish Evolutionary and Functional Genomics, Northwest Institute current study, we used mitochondrial DNA markers cytochrome b (Cyt b) and 16S of Plateau Biology, Chinese Academy of rRNA (16S), as well as the nuclear marker, the second intron of the nuclear beta- actin Sciences, Xining, Qinghai, China gene (Act2), to uncover the phylogeography of S. stoliczkai. In total, we obtained 74 3Qinghai Key Laboratory of Animal Ecological Genomics, Xining, Qinghai, China haplotypes from 403 mitochondrial concatenated sequences. The mtDNA markers 4University of Chinese Academy of Sciences, depict the phylogenetic structures of S. stoliczkai, which consist of clade North and Beijing, China clade South. The split time of the two clades is dated back to 4.27 Mya (95% 5Guizhou Normal University, Guiyang, China HPD = 1.96–8.20 Mya). The estimated split time is earlier than the beginning of the 6Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, ice age of Pleistocene (2.60 Mya), suggesting that the northwestern area of the Tibetan Mengla, China Plateau probably contain at least two glacial refugia for S.
    [Show full text]
  • Teleostei: Cypriniformes: Cyprinidae) Inferred from Complete Mitochondrial Genomes
    Biochemical Systematics and Ecology 64 (2016) 6e13 Contents lists available at ScienceDirect Biochemical Systematics and Ecology journal homepage: www.elsevier.com/locate/biochemsyseco Molecular phylogeny of the subfamily Schizothoracinae (Teleostei: Cypriniformes: Cyprinidae) inferred from complete mitochondrial genomes * Jie Zhang a, b, Zhuo Chen a, Chuanjiang Zhou b, Xianghui Kong b, a College of Life Science, Henan Normal University, Xinxiang 453007, PR China b College of Fisheries, Henan Normal University, Xinxiang 453007, PR China article info abstract Article history: The schizothoracine fishes, members of the Teleost order Cypriniformes, are one of the Received 16 June 2015 most diverse group of cyprinids in the QinghaieTibetan Plateau and surrounding regions. Received in revised form 19 October 2015 However, taxonomy and phylogeny of these species remain unclear. In this study, we Accepted 14 November 2015 determined the complete mitochondrial genome of Schizopygopsis malacanthus. We also Available online xxx used the newly obtained sequence, together with 31 published schizothoracine mito- chondrial genomes that represent eight schizothoracine genera and six outgroup taxa to Keywords: reconstruct the phylogenetic relationships of the subfamily Schizothoracinae by different Mitochondrial genome Phylogeny partitioned maximum likelihood and partitioned Bayesian inference at nucleotide and fi Schizothoracinae amino acid levels. The schizothoracine shes sampled form a strongly supported mono- Schizopygopsis malacanthus phyletic group that is the sister taxon to Barbus barbus. A sister group relationship between the primitive schizothoracine group and the specialized schizothoracine group þ the highly specialized schizothoracine group was supported. Moreover, members of the specialized schizothoracine group and the genera Schizothorax, Schizopygopsis, and Gym- nocypris were found to be paraphyletic. © 2015 Published by Elsevier Ltd.
    [Show full text]
  • Population Genetic Structure and Its Implication in the Conservation of Schizopygopsis Pylzovi in Yellow River As Inferred from Mitochondrial DNA Sequence Analysis
    Population genetic structure and its implication in the conservation of Schizopygopsis pylzovi in Yellow River as inferred from mitochondrial DNA sequence analysis Y.N. Ma1, Y.Y. Du2, Y.P. Zhang2 and T. Wang1,2 1Department of Chemistry and Life Sciences, Gansu Normal University for Nationalities, Hezuo, Gansu, China 2Gansu Key Laboratory of Cold Water Fishes Germplasm Resources and Genetics Breeding, Gansu Fishery Research Institute, Lanzhou, Gansu, China Corresponding author: T. Wang E-mail: [email protected] Genet. Mol. Res. 15 (3): gmr.15038480 Received January 25, 2016 Accepted April 15, 2015 Published August 29, 2016 DOI http://dx.doi.org/10.4238/gmr.15038480 Copyright © 2016 The Authors. This is an open-access article distributed under the terms of the Creative Commons Attribution ShareAlike (CC BY-SA) 4.0 License. ABSTRACT. To assess the genetic diversity, structure, and population dynamics of Schizopygopsis pylzovi, we examined the changes in mitochondrial DNA sequences (the mtDNA control region and the Cyt b gene; 1835 bp) in 304 individuals from nine populations. The samples were segregated into 112 haplotypes, with high haplotype diversity and low nucleotide diversity. The haplotype diversity was highest in the Minhe (HS) range of Huangshui River and lowest in the Weiyuan (WY) range of Weihe River. Analysis of molecular variance showed that 69.64% of the total genetic variance was contributed by within-the-group variation and 30.36% was contributed by among-the-group variation. Pairwise FST revealed significant divergence between the populations. The FST Genetics and Molecular Research 15 (3): gmr.15038480 Y.N. Ma et al.
    [Show full text]
  • Age Structure and Growth Characteristics of the Endemic Fish
    Zoological Studies 50(1): 69-75 (2011) Age Structure and Growth Characteristics of the Endemic Fish Oxygymnocypris stewartii (Cypriniformes: Cyprinidae: Schizothoracinae) in the Yarlung Tsangpo River, Tibet Yin-Tao Jia1,2 and Yi-Feng Chen1,* 1Laboratory of Biological Invasion and Adaptive Evolution, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China 2Graduate School of Chinese Academy of Sciences, Beijing 100039, China (Accepted September 10, 2010) Yin-Tao Jia and Yi-Feng Chen (2011) Age structure and growth characteristics of the endemic fish Oxygymnocypris stewartii (Cypriniformes: Cyprinidae: Schizothoracinae) in the Yarlung Tsangpo River, Tibet. Zoological Studies 50(1): 69-75. The age structure and growth characteristics of Oxygymnocypris stewartii were studied using 430 specimens collected from the Yarlung Tsangpo River, Tibet. Our study on the length-frequency and age structure indicated that this population was suffering from unreasonable exploitation. The standard length (SL; mm)-body weight (W; g) relationship was W = 1.30 × 10-5 SL3.002. The SL (Lt)- and weight (Wt)-at-age relationships were described by von Bertalanffy growth functions -0.1069 (t - 0.5728) -0.1069 (t - 0.5728) 2.997 as follows: Lt = 877.4821[1 - e ] and Wt = 8805.1493[1 - e ] for females, and -0.1686(t - 0.6171) -0.1686(t - 0.6171) 3.098 Lt = 599.3939[1 - e ] and Wt = 3091.3496[1 - e ] for males. It was observed that O. stewartii grew faster during the 1st 3 yr than other schizothoracines inhabiting the same region, and then its growth became slower. Our study also indicated that (1) O. stewartii’s growth performance was relatively higher than those of other schizothoracines which inhabit the same region, and (2) its growth performance was relatively lower than those of other piscivore Cyprinidae fishes such as Culter alburnus Basilewsky which inhabit Wu and Cheng Lakes.
    [Show full text]
  • Life History Traits of the Chinese Minnow Rhynchocypris
    Liang et al. Zoological Studies 2014, 53:36 http://www.zoologicalstudies.com/content/53/1/36 RESEARCH Open Access Life history traits of the Chinese minnow Rhynchocypris oxycephalus in the upper branch of Yangtze River, China Yangyang Liang1,2, Xiaoyun Sui1,3*, Yifeng Chen1, Yintao Jia1 and Dekui He1 Abstract Background: Study of the life history traits of any species plays an essential role for understanding their relationship with the surrounding environment and scientific management. The Chinese minnow Rhynchocypris oxycephalus,an ecologically and economically important species which was widely distributed in East Asia, is currently diminishing. In the present study, we depicted the main life history traits of R. oxycephalus for the first time. Results: A total of 442 individuals were collected from April 2012 to March 2013, with total length (TL) ranging from 32.2 to 158.0 mm. The otolith (lapillus) was proved suitable for age determination. Moreover, the results from marginal increment ratio (MIR) analyses demonstrated its unusual growth pattern: two pairs of opaque and transparent bands were formed each year, which might provide some implications for the age determination of other species. The maximum age for females (4 years) was higher than for males (3 years), while 1- and 2-year-old individuals dominated the population. Both females and males reached maturity at 1 year, and the TL at first maturity was 78.8 mm for females and 60.3 mm for males. Obvious sexual dimorphism was observed as females growing faster and larger than males after maturity. As a multiple spawner, R. oxycephalus releases batches of eggs from April to August.
    [Show full text]
  • And Adaptive Evolution in Their Mitochondrial Genomes
    Genes Genet. Syst. (2014) 89, p. 187–191 Polyphyletic origins of schizothoracine fish (Cyprinidae, Osteichthyes) and adaptive evolution in their mitochondrial genomes Takahiro Yonezawa1,2, Masami Hasegawa1,2 and Yang Zhong1,3* 1School of Life Sciences, Fudan University, SongHu Rd. 2005, Shanghai 200438, China 2The Institute of Statistical Mathematics, Midori-cho 10-3, Tachikawa, Tokyo 190-8562, Japan 3Institute of Biodiversity Science and Geobiology, Tibet University, JiangSu Rd. 36, Lhasa, 850000, China (Received 25 July 2014, accepted 9 October 2014) The schizothoracine fish, also called snow trout, are members of the Cyprinidae, and are the most diversified teleost fish in the Qinghai-Tibetan Plateau (QTP). Clarifying the evolutionary history of the schizothoracine fish is therefore important for better understanding the biodiversity of the QTP. Although mor- phological and molecular phylogenetic studies have supported the monophyly of the Schizothoracinae, a recent molecular phylogenetic study based on the mito- chondrial genome questioned the monophyly of this taxon. However, the phylo- genetic analysis of that study was on the basis of only three schizothoracine species, and the support values were low. In this report, we inferred the phylo- genetic tree on the basis of mitochondrial genome data including 21 schizothora- cine species and five closely related species, and the polyphyletic origins of the Schizothoracinae were strongly supported. The tree further suggests that the Schizothoracinae consists of two clades, namely the “morphologically specialized clade” and the “morphologically primitive clade”, and that these two clades migrated independently of each other to the QTP and adapted to high altitude. We also detected in their mitochondrial genomes strong signals of posi- tive selection, which probably represent evidence of high-altitude adaptation.
    [Show full text]
  • Evolutionary Trends of the Pharyngeal Dentition in Cypriniformes (Actinopterygii: Ostariophysi)
    Evolutionary trends of the pharyngeal dentition in Cypriniformes (Actinopterygii: Ostariophysi). Emmanuel Pasco-Viel, Cyril Charles, Pascale Chevret, Marie Semon, Paul Tafforeau, Laurent Viriot, Vincent Laudet To cite this version: Emmanuel Pasco-Viel, Cyril Charles, Pascale Chevret, Marie Semon, Paul Tafforeau, et al.. Evolution- ary trends of the pharyngeal dentition in Cypriniformes (Actinopterygii: Ostariophysi).. PLoS ONE, Public Library of Science, 2010, 5 (6), pp.e11293. 10.1371/journal.pone.0011293. hal-00591939 HAL Id: hal-00591939 https://hal.archives-ouvertes.fr/hal-00591939 Submitted on 31 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Evolutionary Trends of the Pharyngeal Dentition in Cypriniformes (Actinopterygii: Ostariophysi) Emmanuel Pasco-Viel1, Cyril Charles3¤, Pascale Chevret2, Marie Semon2, Paul Tafforeau4, Laurent Viriot1,3*., Vincent Laudet2*. 1 Evo-devo of Vertebrate Dentition, Institut de Ge´nomique Fonctionnelle de Lyon, Universite´ de Lyon, CNRS, INRA, Ecole Normale Supe´rieure de Lyon, Lyon, France, 2 Molecular Zoology, Institut de Ge´nomique Fonctionnelle de Lyon, Universite´ de Lyon, CNRS, INRA, Ecole Normale Supe´rieure de Lyon, Lyon, France, 3 iPHEP, CNRS UMR 6046, Universite´ de Poitiers, Poitiers, France, 4 European Synchrotron Radiation Facility, Grenoble, France Abstract Background: The fish order Cypriniformes is one of the most diverse ray-finned fish groups in the world with more than 3000 recognized species.
    [Show full text]
  • Local Adaptation of Gymnocypris Przewalskii (Cyprinidae) on The
    www.nature.com/scientificreports OPEN Local adaptation of Gymnocypris przewalskii (Cyprinidae) on the Tibetan Plateau Received: 17 September 2014 1,4 2 1 1,4 1,4 Accepted: 05 March 2015 Renyi Zhang , Arne Ludwig , Cunfang Zhang , Chao Tong , Guogang Li , 1,4 3 1 Published: 06 May 2015 Yongtao Tang , Zuogang Peng & Kai Zhao Divergent selection among environments affects species distributions and can lead to speciation. In this article, we investigated the transcriptomes of two ecotypes of scaleless carp (Gymnocypris przewalskii przewalskii and G. p. ganzihonensis) from the Tibetan Plateau. We used a transcriptome sequencing approach to screen approximately 250,000 expressed sequence tags (ESTs) from the gill and kidney tissues of twelve individuals from the Ganzi River and Lake Qinghai to understand how this freshwater fish has adapted to an ecological niche shift from saline to freshwater. We identified 9,429 loci in the gill transcriptome and 12,034 loci in the kidney transcriptome with significant differences in their expression, of which 242 protein-coding genes exhibited strong positive selection 2+ (Ka/Ks > 1). Many of the genes are involved in ion channel functions (e.g., Ca -binding proteins), immune responses (e.g., nephrosin) or cellular water absorption functions (e.g., aquaporins). These results have potentially broad importance in understanding shifts from saline to freshwater habitats. Furthermore, this study provides the first transcriptome of G. przewalskii, which will facilitate future ecological genomics studies and aid in the identification of genes underlying adaptation and incipient ecological speciation. The causes of speciation have long been one of the central questions in evolutionary biology1–6.
    [Show full text]
  • Downloaded Six Alkaline Intolerant Schizothoracine Fish Transcriptomes (Zhou Et Al
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.23.424241; this version posted April 16, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Genomic signature of shifts in selection and alkaline adaptation in highland fish 2 3 Chao Tong1,2, Miao Li3, Yongtao Tang1,4, Kai Zhao1,* 4 5 1 Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau 6 Biology, Chinese Academy of Sciences, Xining, 810001, China; 7 2 Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA; 8 3 Center for Advanced Retinal and Ocular Therapeutics, Scheie Eye Institute, University of 9 Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA; 10 4 College of Fisheries, Henan Normal University, Xinxiang, 453007, China 11 12 * Corresponding author: 13 Chao Tong, [email protected], https://orcid.org/0000-0001-5202-5507 14 Kai Zhao, [email protected] 15 bioRxiv preprint doi: https://doi.org/10.1101/2020.12.23.424241; this version posted April 16, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 16 Abstract 17 Understanding how organisms adapt to aquatic life at high altitude is fundamental in 18 evolutionary biology.
    [Show full text]