Basal Ganglia

Total Page:16

File Type:pdf, Size:1020Kb

Basal Ganglia The Basal Ganglia SMA Posterior S1 M1 Anterior Posterior PMA parietal Prefrontal Basal Ganglia Loop Ganglia Basal Thalamus VLc VLo Pons Overview 1 Caudate Putamen N. Accumbens Red Globus pallidus Cerebellum Cerebellar Loop Cerebellar Nuc. Substantia nigra Subthalamic nuc. Inf. Sup. & Inf. Olive Colliculi Vest. Retic. Nuc. Form. Spinocerebellar Tr. Spinocerebellar Vest. Retic. Rubro Cortico- Tecto- Spinal Spinal Spinal Spinal Spinal Tr. Tr. Tr. Tr. Tr. Anterior Posterior 1 SMA Posterior S1 M1 Posterior PMA parietal Prefrontal Basal Ganglia Loop Ganglia Basal Thalamus VLc VLo Pons Overview 1 Caudate Putamen N. Accumbens Red Globus pallidus Cerebellum Cerebellar Loop Cerebellar Nuc. Substantia nigra Subthalamic nuc. Inf. Sup. & Inf. Olive Colliculi Vest. Retic. Nuc. Form. Spinocerebellar Tr. Spinocerebellar Vest. Retic. Rubro Cortico- Tecto- Spinal Spinal Spinal Spinal Spinal Tr. Tr. Tr. Tr. Tr. Areas of the Nervous System Involved in Movement Upper Motor Neuron Association Cortex Association Cortex Thalamus Thalamus Basal Ganglia Cerebellum Lower Motor Neuron Muscle 2 Motor loop of the basal ganglia Nuclei of the Basal Ganglia Input Intrinsic Output Caudate nucleus Putamen Globus pallidus – Nucleus accumbens external segment Subthalamic nucleus Globus pallidus – Substantia nigra pars internal segment compacta Substantia nigra pars Ventral tegmentum reticulata Ventral pallidum Ventricles Thalamus Caudate Putamen Globus Pallidus 3 Coronal Section Corpus Callosum Cingulate Gyrus Lateral Ventricle Caudate (head) Septum Pellucidum Internal Capsule Claustrum Putamen Nucleus Accumbens Optic Chiasm 4 Coronal Section Caudate Nucleus Putamen Internal Capsule Thalamus Globus Pallidus Pars Externa Pars Interna Amygdala BCP p.479 5 Simplified box diagram of basal ganglia loop Substantia nigra pars compacta Ventral tegmental area Output nuclei Input nuclei Thalamus Globus pallidus Cerebral cortex Caudate n. pars interna Ventral lateral n. (all lobes) BasalPutamen Ganglia CircuitryVentral pallidum Ventral anterior n. N. accumbens Substania nigra Medial dorsal n. pars reticulata Direct route Globus pallidus Subthalamic Frontal lobe pars externa nucleus Indirect route Corticospinal / Corticobulbar Tract General Circuitry of the Basal Ganglia Direct and Indirect Pathways Substantia Nigra Direct route Cerebral cortex (all lobes) Input nuclei Output nuclei Thalamus Indirect route Globus pallidus Subthalamic Frontal lobe pars externa nucleus The Direct Pathway (Skeletomotor) Substantia nigra pars compacta D1 Cortex Thalamus E I Globus pallidus I M1, S1 pars interna Premotor Putamen VA, VL Substania nigra cortex pars reticulata Low Spontaneous High Spontaneous M1, SMA, PMA E E I I E: Sign Preserving – “disinhibitory” 6 The Indirect Pathway (Skeletomotor) Substantia nigra pars compacta Cortex D2 Thalamus Globus pallidus M1, S1 E I pars interna Premotor Putamen VA, VL Substania nigra cortex pars reticulata I E I Globus pallidus Subthalamic M1, SMA, PMA pars externa nucleus E E I I E I E: Sign Inverting – “inhibitory” Skeletomotor Loop Substantia nigra Inhibition Excitation pars compacta Dopamine Thalamus Globus pallidus M1, S1 pars interna Premotor Putamen VA, VL Substania nigra cortex pars reticulata Direct pathway Globus pallidus Subthalamic M1, SMA, PMA pars externa nucleus Corticospinal/corticobulbar tract Direct path excites thalamic target neurons Indirect path inhibits thalamic target neurons DopamineX (SNc) ? Direct path Indirect path Dopamine is thought to facilitate movement by both exciting direct path and inhibiting indirect path 7 Normal Diseased SNc Parkinson’s disease (Paralysis Agitans) Loss of dopaminergic SN pars compacta (SNc) inputs to the basal ganglia increases inhibition of voluntary movement Hypokinetic signs (impoverished movement) Major impairment initiating movements – akinesia Reduction in the extent and speed of movements – bradykinesia Postural deficits Resting tremor (shaking palsy, resembles pill rolling) Expressionless face, infrequent blinking – mask facies Characteristic limb stiffness – lead pipe or cogwheel rigidity Disorders of the basal ganglia: disturbances of tone: dystonia abnormalities of movements: dyskinesia Upper Motor Neuron signs Extrapyramidal signs •Increased tone in specific •General increased tone across muscle groups all muscles •Clasp-knife response •Cogwheel rigidity •Hyperreflexia •Reflexes ~normal •Weakness (paresis) •Slowed/limited movement, but not particularly weak •Positive signs (tremor, ballism, chorea, athetosis) 8 Ballismus / hemiballismus “Releases” Indirect pathway thalamus Cortex Thalamus Globus pallidus M1, S1 E Putamen pars interna I Premotor Substania nigra VA, VL cortex pars reticulata I E Globus pallidus I Subthalamic M1, SMA, PMA pars externa nucleus E Caused by vascular accidents affecting the subthalmamic nucleus Loss of excitatory influence of subthalamic nucleus reduces output of GPi, which in turn releases thalamus of inhibition Leads to exaggerated, large amplitude movements: hyperkinesis Dyskinesias due to degeneration of the striatum (Huntington’s disease) Substantia Nigra Cerebral cortex (all lobes) Input nuclei Output nuclei Thalamus Direct route X Globus pallidus Subthalamic Frontal lobe pars externa nucleus Indirect route Normal Diseased Chorea / Choreiform Movements Involuntary, sudden, frequent, and purposeless jerks of the extremities, head, and trunk 9 Athetosis / Athetoid Movements Combination of symptoms characterized chiefly by a more or less constant mobility of the extremities and an inability to retain them in any fixed position Treatment of basal ganglia disorders such as PD Dopamine replacement (levodopa) MAO inhibitors (e.g. selegiline) prolong action of dopamine Surgical lesions: pallidotomy (reduces rigitidy) thalamotomy (relieves tremor) Fetal nigral transplantation Drug MPTP, a heroin like compound, destroys DA neurons, and has been used to develop a experimental model of Parkinsonism 10 Implantable Components Patient Component System Start-up Requirements Cortical origin Input nucleus Output nuclei Thalamus / SC Posterior M1 SMA parietal PosteriorCaudate S1 SN, reticulata VA nucleus PMA Prefrontal parietal GP, interna Prefrontal MD Additional loops Loop Ganglia Basal Frontal & Oculomotor loop Suppl. eye fields Thalamus VLc VLo Posterior Pons SN, reticulata parietal Caudate Caudate VA GP, interna Premotor nucleus Putamen MD N. Accumbens Red Globus pallidus Cerebellum Cerebellar Loop Cerebellar Nuc. Association loop Substantia nigra Prefrontal Subthalamic nuc. Inf. Sup. & Inf. Olive Colliculi Vest. Retic. Nuc. Form. Ventral pallidum Temporal Ventral striatum SN, reticulata MD Hippocampus (n. accumbens) Spinocerebellar Tr. Spinocerebellar GP, interna VA Vest. Retic. Rubro Cortico- Tecto- Ant. cingulateSpinal Spinal Spinal SpinalLimbic loopSpinal OrbitofrontalTr. Tr. Tr. Tr. Tr. Overview 1 11.
Recommended publications
  • Spinal Tracts.Pdf
    Spinal Tracts Andreas Talgø Lie Illustrations by: Peder Olai Skjeflo Holman Previous material: Maja Solbakken Definitions to bring home Nerve Ganglion Neuron Nucleus Tract Collection neurons Collection of nerve A single cell Collection of Collection of axons that transmits cell bodies in the transmitting nerve cell bodies in traveling up or sensation or motor PNS, typically linked electrical impluses. the CNS, typically down the spinal impulses depending by synapses. linked by synapses. cord, depending on the function and Location: both on function destination. Location: PNS Location: CNS and destination. Location: PNS Location: CNS - does it matter? Tract - highway to pass anatomy exam? • Highway = Tract • Lane = Neuron • Car = Signal Slow... Fast!! Just to make sure... • Ipsilateral or contralateral • Ventral = anterior • Dorsal = posterior High yield points to understand • What does the tract transmit - Motor or sensory? If sensory: which sensation? • Where does the neurones synapse - 1.st, 2nd and 3rd order neron? Which ganglion/nuclei? • Where there are decussations - If there are any decussations at all? ASCENDING / SENSORY TRACTS Sensations * Temperature NOT transmitted by the tracts: * Pressure * Visualization * Pain * Audition * Fine touch * Olfaction * Crude touch * Gustation * Proprioception * Vibration Sensations Precise sensation Primitive sensation Fine touch Crude touch Pressure Pain Vibration Temperature Proprioception Other: sexual, itching, tickling Ascending tracts / Sensory tracts Dorsal coulmn Lat. Spinothalamic Ant.
    [Show full text]
  • Basal Ganglia & Cerebellum
    1/2/2019 This power point is made available as an educational resource or study aid for your use only. This presentation may not be duplicated for others and should not be redistributed or posted anywhere on the internet or on any personal websites. Your use of this resource is with the acknowledgment and acceptance of those restrictions. Basal Ganglia & Cerebellum – a quick overview MHD-Neuroanatomy – Neuroscience Block Gregory Gruener, MD, MBA, MHPE Vice Dean for Education, SSOM Professor, Department of Neurology LUHS a member of Trinity Health Outcomes you want to accomplish Basal ganglia review Define and identify the major divisions of the basal ganglia List the major basal ganglia functional loops and roles List the components of the basal ganglia functional “circuitry” and associated neurotransmitters Describe the direct and indirect motor pathways and relevance/role of the substantia nigra compacta 1 1/2/2019 Basal Ganglia Terminology Striatum Caudate nucleus Nucleus accumbens Putamen Globus pallidus (pallidum) internal segment (GPi) external segment (GPe) Subthalamic nucleus Substantia nigra compact part (SNc) reticular part (SNr) Basal ganglia “circuitry” • BG have no major outputs to LMNs – Influence LMNs via the cerebral cortex • Input to striatum from cortex is excitatory – Glutamate is the neurotransmitter • Principal output from BG is via GPi + SNr – Output to thalamus, GABA is the neurotransmitter • Thalamocortical projections are excitatory – Concerned with motor “intention” • Balance of excitatory & inhibitory inputs to striatum, determine whether thalamus is suppressed BG circuits are parallel loops • Motor loop – Concerned with learned movements • Cognitive loop – Concerned with motor “intention” • Limbic loop – Emotional aspects of movements • Oculomotor loop – Concerned with voluntary saccades (fast eye-movements) 2 1/2/2019 Basal ganglia “circuitry” Cortex Striatum Thalamus GPi + SNr Nolte.
    [Show full text]
  • Basal Ganglia Anatomy, Physiology, and Function Ns201c
    Basal Ganglia Anatomy, Physiology, and Function NS201c Human Basal Ganglia Anatomy Basal Ganglia Circuits: The ‘Classical’ Model of Direct and Indirect Pathway Function Motor Cortex Premotor Cortex + Glutamate Striatum GPe GPi/SNr Dopamine + - GABA - Motor Thalamus SNc STN Analagous rodent basal ganglia nuclei Gross anatomy of the striatum: gateway to the basal ganglia rodent Dorsomedial striatum: -Inputs predominantly from mPFC, thalamus, VTA Dorsolateral striatum: -Inputs from sensorimotor cortex, thalamus, SNc Ventral striatum: Striatal subregions: Dorsomedial (caudate) -Inputs from vPFC, hippocampus, amygdala, Dorsolateral (putamen) thalamus, VTA Ventral (nucleus accumbens) Gross anatomy of the striatum: patch and matrix compartments Patch/Striosome: -substance P -mu-opioid receptor Matrix: -ChAT and AChE -somatostatin Microanatomy of the striatum: cell types Projection neurons: MSN: medium spiny neuron (GABA) •striatonigral projecting – ‘direct pathway’ •striatopallidal projecting – ‘indirect pathway’ Interneurons: FS: fast-spiking interneuron (GABA) LTS: low-threshold spiking interneuron (GABA) LA: large aspiny neuron (ACh) 30 um Cellular properties of striatal neurons Microanatomy of the striatum: striatal microcircuits • Feedforward inhibition (mediated by fast-spiking interneurons) • Lateral feedback inhibition (mediated by MSN collaterals) Basal Ganglia Circuits: The ‘Classical’ Model of Direct and Indirect Pathway Function Motor Cortex Premotor Cortex + Glutamate Striatum GPe GPi/SNr Dopamine + - GABA - Motor Thalamus SNc STN The simplified ‘classical’ model of basal ganglia circuit function • Information encoded as firing rate • Basal ganglia circuit is linear and unidirectional • Dopamine exerts opposing effects on direct and indirect pathway MSNs Basal ganglia motor circuit: direct pathway Motor Cortex Premotor Cortex Glutamate Striatum GPe GPi/SNr Dopamine + GABA Motor Thalamus SNc STN Direct pathway MSNs express: D1, M4 receptors, Sub.
    [Show full text]
  • L4-Physiology of Motor Tracts.Pdf
    : chapter 55 page 667 Objectives (1) Describe the upper and lower motor neurons. (2) Understand the pathway of Pyramidal tracts (Corticospinal & corticobulbar tracts). (3) Understand the lateral and ventral corticospinal tracts. (4) Explain functional role of corticospinal & corticobulbar tracts. (5) Describe the Extrapyramidal tracts as Rubrospinal, Vestibulospinal, Reticulospinal and Tectspinal Tracts. The name of the tract indicate its pathway, for example Corticobulbar : Terms: - cortico: cerebral cortex. Decustation: crossing. - Bulbar: brainstem. Ipsilateral : same side. *So it starts at cerebral cortex and Contralateral: opposite side. terminate at the brainstem. CNS influence the activity of skeletal muscle through two set of neurons : 1- Upper motor neurons (UMN) 2- lower motor neuron (LMN) They are neurons of motor cortex & their axons that pass to brain stem and They are Spinal motor neurons in the spinal spinal cord to activate: cord & cranial motor neurons in the brain • cranial motor neurons (in brainstem) stem which innervate muscles directly. • spinal motor neurons (in spinal cord) - These are the only neurons that innervate - Upper motor neurons (UMN) are the skeletal muscle fibers, they function as responsible for conveying impulses for the final common pathway, the final link voluntary motor activity through between the CNS and skeletal muscles. descending motor pathways that make up by the upper motor neurons. Lower motor neurons are classified based on the type of muscle fiber the innervate: There are two UMN Systems through which 1- alpha motor neurons (UMN) control (LMN): 2- gamma motor neurons 1- Pyramidal system (corticospinal tracts ). 2- Extrapyramidal system The activity of the lower motor neuron (LMN, spinal or cranial) is influenced by: 1.
    [Show full text]
  • Hippocampal–Caudate Nucleus Interactions Support Exceptional Memory Performance
    Brain Struct Funct DOI 10.1007/s00429-017-1556-2 ORIGINAL ARTICLE Hippocampal–caudate nucleus interactions support exceptional memory performance Nils C. J. Müller1 · Boris N. Konrad1,2 · Nils Kohn1 · Monica Muñoz-López3 · Michael Czisch2 · Guillén Fernández1 · Martin Dresler1,2 Received: 1 December 2016 / Accepted: 24 October 2017 © The Author(s) 2017. This article is an open access publication Abstract Participants of the annual World Memory competitive interaction between hippocampus and caudate Championships regularly demonstrate extraordinary mem- nucleus is often observed in normal memory function, our ory feats, such as memorising the order of 52 playing cards findings suggest that a hippocampal–caudate nucleus in 20 s or 1000 binary digits in 5 min. On a cognitive level, cooperation may enable exceptional memory performance. memory athletes use well-known mnemonic strategies, We speculate that this cooperation reflects an integration of such as the method of loci. However, whether these feats the two memory systems at issue-enabling optimal com- are enabled solely through the use of mnemonic strategies bination of stimulus-response learning and map-based or whether they benefit additionally from optimised neural learning when using mnemonic strategies as for example circuits is still not fully clarified. Investigating 23 leading the method of loci. memory athletes, we found volumes of their right hip- pocampus and caudate nucleus were stronger correlated Keywords Memory athletes · Method of loci · Stimulus with each other compared to matched controls; both these response learning · Cognitive map · Hippocampus · volumes positively correlated with their position in the Caudate nucleus memory sports world ranking. Furthermore, we observed larger volumes of the right anterior hippocampus in ath- letes.
    [Show full text]
  • Gene Expression of Prohormone and Proprotein Convertases in the Rat CNS: a Comparative in Situ Hybridization Analysis
    The Journal of Neuroscience, March 1993. 73(3): 1258-1279 Gene Expression of Prohormone and Proprotein Convertases in the Rat CNS: A Comparative in situ Hybridization Analysis Martin K.-H. Schafer,i-a Robert Day,* William E. Cullinan,’ Michel Chri?tien,3 Nabil G. Seidah,* and Stanley J. Watson’ ‘Mental Health Research Institute, University of Michigan, Ann Arbor, Michigan 48109-0720 and J. A. DeSeve Laboratory of *Biochemical and 3Molecular Neuroendocrinology, Clinical Research Institute of Montreal, Montreal, Quebec, Canada H2W lR7 Posttranslational processing of proproteins and prohor- The participation of neuropeptides in the modulation of a va- mones is an essential step in the formation of bioactive riety of CNS functions is well established. Many neuropeptides peptides, which is of particular importance in the nervous are synthesized as inactive precursor proteins, which undergo system. Following a long search for the enzymes responsible an enzymatic cascade of posttranslational processing and mod- for protein precursor cleavage, a family of Kexin/subtilisin- ification events during their intracellular transport before the like convertases known as PCl, PC2, and furin have recently final bioactive products are secreted and act at either pre- or been characterized in mammalian species. Their presence postsynaptic receptors. Initial endoproteolytic cleavage occurs in endocrine and neuroendocrine tissues has been dem- C-terminal to pairs of basic amino acids such as lysine-arginine onstrated. This study examines the mRNA distribution of (Docherty and Steiner, 1982) and is followed by the removal these convertases in the rat CNS and compares their ex- of the basic residues by exopeptidases. Further modifications pression with the previously characterized processing en- can occur in the form of N-terminal acetylation or C-terminal zymes carboxypeptidase E (CPE) and peptidylglycine a-am- amidation, which is essential for the bioactivity of many neu- idating monooxygenase (PAM) using in situ hybridization ropeptides.
    [Show full text]
  • Distinct Transcriptomic Cell Types and Neural Circuits of the Subiculum and Prosubiculum Along 2 the Dorsal-Ventral Axis 3 4 Song-Lin Ding1,2,*, Zizhen Yao1, Karla E
    bioRxiv preprint doi: https://doi.org/10.1101/2019.12.14.876516; this version posted December 15, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Distinct transcriptomic cell types and neural circuits of the subiculum and prosubiculum along 2 the dorsal-ventral axis 3 4 Song-Lin Ding1,2,*, Zizhen Yao1, Karla E. Hirokawa1, Thuc Nghi Nguyen1, Lucas T. Graybuck1, Olivia 5 Fong1, Phillip Bohn1, Kiet Ngo1, Kimberly A. Smith1, Christof Koch1, John W. Phillips1, Ed S. Lein1, 6 Julie A. Harris1, Bosiljka Tasic1, Hongkui Zeng1 7 8 1Allen Institute for Brain Science, Seattle, WA 98109, USA 9 10 2Lead Contact 11 12 *Correspondence: [email protected] (SLD) 13 14 15 Highlights 16 17 1. 27 transcriptomic cell types identified in and spatially registered to “subicular” regions. 18 2. Anatomic borders of “subicular” regions reliably determined along dorsal-ventral axis. 19 3. Distinct cell types and circuits of full-length subiculum (Sub) and prosubiculum (PS). 20 4. Brain-wide cell-type specific projections of Sub and PS revealed with specific Cre-lines. 21 22 23 In Brief 24 25 Ding et al. show that mouse subiculum and prosubiculum are two distinct regions with differential 26 transcriptomic cell types, subtypes, neural circuits and functional correlation. The former has obvious 27 topographic projections to its main targets while the latter exhibits widespread projections to many 28 subcortical regions associated with reward, emotion, stress and motivation.
    [Show full text]
  • (Corticobulbar) Tract
    Cor$cospinal (cor$cobulbar) Tract 6/18/12 1. Appreciate the functions of the corticospinal & corticobulbar tracts. 2. Distinguish corticospinal and corticobulbar tracts. Theodore Tzavaras MD2015 3. Identify the locations of both Laurie L. Wellman Ph.D. tracts through the forebrain, Eastern Virginia Medical School brainstem and spinal cord. 4. Identify the level of decussation of the corticospinal tract, and it’s clinical importance. Dr. Craig Goodmurphy Anatomy Guy Pathway Overview Pathway Overview Corticospinal Corticobulbar ² Begin in primary motor cortex. ² Begin in primary motor cortex. ² Upper ² Travel through the posterior limb Travel through the posterior limb Upper of the internal capsule (somatotopic). Motor of the internal capsule (somatotopic). Motor ² Descend through the middle 3/5 of Neuron ² Descend through the middle 3/5 of the crus cerebri (somatotopic). the crus cerebri (somatotopic). Neuron ² Travel through the brainstem as ² Travel through the brainstem and the descending pyramidal system. synapse on brainstem nuclei. Crosses Lower ² Decussate at the caudal medulla in Midline ² α-Motor neurons project along the pyramidal decussation. cranial nerves for facial movements Motor ² Descend in the spinal cord as the and voice production. Neuron corticospinal tract Lower ² All cranial nerve nuclei receive ² Synapse on α-motor neurons Motor bilateral UMN input* ² Exit spinal cord in ventral rami Neuron *Part of CN VI is the exception AnatomyGuy.com 1 Cor$cospinal (cor$cobulbar) Tract 6/18/12 Overview Corticospinal ² Primary motor cortex Don’t ü ² Try to learn all the details on your first Posterior limb of the internal pass. capsule (somatotopic). Do ü Try to sketch out each brain, ² Middle 3/5 of the crus cerebri brainstem, and cord level we showed (somatotopic).
    [Show full text]
  • Characterization of Substantia Nigra
    Mourtzi et al. Stem Cell Research & Therapy (2021) 12:335 https://doi.org/10.1186/s13287-021-02398-3 RESEARCH Open Access Characterization of substantia nigra neurogenesis in homeostasis and dopaminergic degeneration: beneficial effects of the microneurotrophin BNN-20 Theodora Mourtzi1,2*, Dimitrios Dimitrakopoulos2†, Dimitrios Kakogiannis2†, Charalampos Salodimitris2, Konstantinos Botsakis1, Danai Kassandra Meri2, Maria Anesti2,3, Aggeliki Dimopoulou1, Ioannis Charalampopoulos4,5, Achilleas Gravanis4,5, Nikolaos Matsokis3, Fevronia Angelatou1† and Ilias Kazanis2*† Abstract Background: Loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) underlines much of the pathology of Parkinson’s disease (PD), but the existence of an endogenous neurogenic system that could be targeted as a therapeutic strategy has been controversial. BNN-20 is a synthetic, BDNF-mimicking, microneurotrophin that we previously showed to exhibit a pleiotropic neuroprotective effect on the dopaminergic neurons of the SNpc in the “weaver” mouse model of PD. Here, we assessed its potential effects on neurogenesis. Methods: We quantified total numbers of dopaminergic neurons in the SNpc of wild-type and “weaver” mice, with or without administration of BNN-20, and we employed BrdU labelling and intracerebroventricular injections of DiI to evaluate the existence of dopaminergic neurogenesis in the SNpc and to assess the origin of newborn dopaminergic neurons. The in vivo experiments were complemented by in vitro proliferation/differentiation assays of adult neural stem cells (NSCs) isolated from the substantia nigra and the subependymal zone (SEZ) stem cell niche to further characterize the effects of BNN-20. * Correspondence: [email protected]; [email protected]; [email protected] †Dimitrios Dimitrakopoulos and Dimitrios Kakogiannis contributed equally to this work.
    [Show full text]
  • Rhesus Monkey Brain Atlas Subcortical Gray Structures
    Rhesus Monkey Brain Atlas: Subcortical Gray Structures Manual Tracing for Hippocampus, Amygdala, Caudate, and Putamen Overview of Tracing Guidelines A) Tracing is done in a combination of the three orthogonal planes, as specified in the detailed methods that follow. B) Each region of interest was originally defined in the right hemisphere. The labels were then reflected onto the left hemisphere and all borders checked and adjusted manually when necessary. C) For the initial parcellation, the user used the “paint over function” of IRIS/SNAP on the T1 template of the atlas. I. Hippocampus Major Boundaries Superior boundary is the lateral ventricle/temporal horn in the majority of slices. At its most lateral extent (subiculum) the superior boundary is white matter. The inferior boundary is white matter. The anterior boundary is the lateral ventricle/temporal horn and the amygdala; the posterior boundary is lateral ventricle or white matter. The medial boundary is CSF at the center of the brain in all but the most posterior slices (where the medial boundary is white matter). The lateral boundary is white matter. The hippocampal trace includes dentate gyrus, the CA3 through CA1 regions of the hippocamopus, subiculum, parasubiculum, and presubiculum. Tracing A) Tracing is done primarily in the sagittal plane, working lateral to medial a. Locate the most lateral extent of the subiculum, which is bounded on all sides by white matter, and trace. b. As you page medially, tracing the hippocampus in each slice, the superior, anterior, and posterior boundaries of the hippocampus become the lateral ventricle/temporal horn. c. Even further medially, the anterior boundary becomes amygdala and the posterior boundary white matter.
    [Show full text]
  • Chronic Amphetamine Exposure Causes Long Term Effects on Dopamine Uptake in Cultured Cells Nafisa Ferdous
    University of North Dakota UND Scholarly Commons Theses and Dissertations Theses, Dissertations, and Senior Projects January 2016 Chronic Amphetamine Exposure Causes Long Term Effects On Dopamine Uptake In Cultured Cells Nafisa Ferdous Follow this and additional works at: https://commons.und.edu/theses Recommended Citation Ferdous, Nafisa, "Chronic Amphetamine Exposure Causes Long Term Effects On Dopamine Uptake In Cultured Cells" (2016). Theses and Dissertations. 2016. https://commons.und.edu/theses/2016 This Thesis is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND Scholarly Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UND Scholarly Commons. For more information, please contact [email protected]. CHRONIC AMPHETAMINE EXPOSURE CAUSES LONG TERM EFFECTS ON DOPAMINE UPTAKE IN CULTURED CELLS By Nafisa Ferdous Bachelor of Science, North South University, Bangladesh 2012 A Thesis submitted to the Graduate Faculty of the University of North Dakota in partial fulfillment of the requirements for the degree of Master of Science Grand Forks, North Dakota December 2016 ii PERMISSION Title Chronic amphetamine exposure causes long term effects on dopamine uptake in cultured cells Department Biomedical Sciences Degree Master of Science In presenting this thesis in partial fulfillment of the requirements for a graduate degree from the University of North Dakota, I agree that the library of this University shall make it freely available for inspection. I further agree that permission for extensive copying for scholarly purposes may be granted by the professor who supervised my thesis work or, in his absence, by the Chairperson of the department or the Dean of the School of Graduate Studies.
    [Show full text]
  • The Roles of the Caudate Nucleus in Human Classification Learning
    The Journal of Neuroscience, March 16, 2005 • 25(11):2941–2951 • 2941 Behavioral/Systems/Cognitive The Roles of the Caudate Nucleus in Human Classification Learning Carol A. Seger and Corinna M. Cincotta Department of Psychology, Colorado State University, Fort Collins, Colorado 80523 The caudate nucleus is commonly active when learning relationships between stimuli and responses or categories. Previous research has not differentiated between the contributions to learning in the caudate and its contributions to executive functions such as feedback processing. We used event-related functional magnetic resonance imaging while participants learned to categorize visual stimuli as predicting “rain” or “sun.” In each trial, participants viewed a stimulus, indicated their prediction via a button press, and then received feedback. Conditions were defined on the bases of stimulus–outcome contingency (deterministic, probabilistic, and random) and feedback (negative and positive). A region of interest analysis was used to examine activity in the head of the caudate, body/tail of the caudate, and putamen. Activity associated with successful learning was localized in the body and tail of the caudate and putamen; this activity increased as the stimulus–outcome contingencies were learned. In contrast, activity in the head of the caudate and ventral striatum was associated most strongly with processing feedback and decreased across trials. The left superior frontal gyrus was more active for deterministic than probabilistic stimuli; conversely, extrastriate visual areas were more active for probabilistic than determin- istic stimuli. Overall, hippocampal activity was associated with receiving positive feedback but not with correct classification. Successful learning correlated positively with activity in the body and tail of the caudate nucleus and negatively with activity in the hippocampus.
    [Show full text]