Silenced Genes in Colorectal Cancer
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Supplemental Table S1
Entrez Gene Symbol Gene Name Affymetrix EST Glomchip SAGE Stanford Literature HPA confirmed Gene ID Profiling profiling Profiling Profiling array profiling confirmed 1 2 A2M alpha-2-macroglobulin 0 0 0 1 0 2 10347 ABCA7 ATP-binding cassette, sub-family A (ABC1), member 7 1 0 0 0 0 3 10350 ABCA9 ATP-binding cassette, sub-family A (ABC1), member 9 1 0 0 0 0 4 10057 ABCC5 ATP-binding cassette, sub-family C (CFTR/MRP), member 5 1 0 0 0 0 5 10060 ABCC9 ATP-binding cassette, sub-family C (CFTR/MRP), member 9 1 0 0 0 0 6 79575 ABHD8 abhydrolase domain containing 8 1 0 0 0 0 7 51225 ABI3 ABI gene family, member 3 1 0 1 0 0 8 29 ABR active BCR-related gene 1 0 0 0 0 9 25841 ABTB2 ankyrin repeat and BTB (POZ) domain containing 2 1 0 1 0 0 10 30 ACAA1 acetyl-Coenzyme A acyltransferase 1 (peroxisomal 3-oxoacyl-Coenzyme A thiol 0 1 0 0 0 11 43 ACHE acetylcholinesterase (Yt blood group) 1 0 0 0 0 12 58 ACTA1 actin, alpha 1, skeletal muscle 0 1 0 0 0 13 60 ACTB actin, beta 01000 1 14 71 ACTG1 actin, gamma 1 0 1 0 0 0 15 81 ACTN4 actinin, alpha 4 0 0 1 1 1 10700177 16 10096 ACTR3 ARP3 actin-related protein 3 homolog (yeast) 0 1 0 0 0 17 94 ACVRL1 activin A receptor type II-like 1 1 0 1 0 0 18 8038 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 1 0 0 0 0 19 8751 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 1 0 0 0 0 20 8728 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 1 0 0 0 0 21 81792 ADAMTS12 ADAM metallopeptidase with thrombospondin type 1 motif, 12 1 0 0 0 0 22 9507 ADAMTS4 ADAM metallopeptidase with thrombospondin type 1 -
Age Dependence of Tumor Genetics in Unfavorable
Cetinkaya et al. BMC Cancer 2013, 13:231 http://www.biomedcentral.com/1471-2407/13/231 RESEARCH ARTICLE Open Access Age dependence of tumor genetics in unfavorable neuroblastoma: arrayCGH profiles of 34 consecutive cases, using a Swedish 25-year neuroblastoma cohort for validation Cihan Cetinkaya1,2, Tommy Martinsson3, Johanna Sandgren1,4, Catarina Träger5, Per Kogner5, Jan Dumanski1, Teresita Díaz de Ståhl1,4† and Fredrik Hedborg1,6*† Abstract Background: Aggressive neuroblastoma remains a significant cause of childhood cancer death despite current intensive multimodal treatment protocols. The purpose of the present work was to characterize the genetic and clinical diversity of such tumors by high resolution arrayCGH profiling. Methods: Based on a 32K BAC whole-genome tiling path array and using 50-250K Affymetrix SNP array platforms for verification, DNA copy number profiles were generated for 34 consecutive high-risk or lethal outcome neuroblastomas. In addition, age and MYCN amplification (MNA) status were retrieved for 112 unfavorable neuroblastomas of the Swedish Childhood Cancer Registry, representing a 25-year neuroblastoma cohort of Sweden, here used for validation of the findings. Statistical tests used were: Fisher’s exact test, Bayes moderated t-test, independent samples t-test, and correlation analysis. Results: MNA or segmental 11q loss (11q-) was found in 28/34 tumors. With two exceptions, these aberrations were mutually exclusive. Children with MNA tumors were diagnosed at significantly younger ages than those with 11q- tumors (mean: 27.4 vs. 69.5 months; p=0.008; n=14/12), and MNA tumors had significantly fewer segmental chromosomal aberrations (mean: 5.5 vs. 12.0; p<0.001). -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
Noninvasive Sleep Monitoring in Large-Scale Screening of Knock-Out Mice
bioRxiv preprint doi: https://doi.org/10.1101/517680; this version posted January 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Noninvasive sleep monitoring in large-scale screening of knock-out mice reveals novel sleep-related genes Shreyas S. Joshi1*, Mansi Sethi1*, Martin Striz1, Neil Cole2, James M. Denegre2, Jennifer Ryan2, Michael E. Lhamon3, Anuj Agarwal3, Steve Murray2, Robert E. Braun2, David W. Fardo4, Vivek Kumar2, Kevin D. Donohue3,5, Sridhar Sunderam6, Elissa J. Chesler2, Karen L. Svenson2, Bruce F. O'Hara1,3 1Dept. of Biology, University of Kentucky, Lexington, KY 40506, USA, 2The Jackson Laboratory, Bar Harbor, ME 04609, USA, 3Signal solutions, LLC, Lexington, KY 40503, USA, 4Dept. of Biostatistics, University of Kentucky, Lexington, KY 40536, USA, 5Dept. of Electrical and Computer Engineering, University of Kentucky, Lexington, KY 40506, USA. 6Dept. of Biomedical Engineering, University of Kentucky, Lexington, KY 40506, USA. *These authors contributed equally Address for correspondence and proofs: Shreyas S. Joshi, Ph.D. Dept. of Biology University of Kentucky 675 Rose Street 101 Morgan Building Lexington, KY 40506 U.S.A. Phone: (859) 257-2805 FAX: (859) 257-1717 Email: [email protected] Running title: Sleep changes in knockout mice bioRxiv preprint doi: https://doi.org/10.1101/517680; this version posted January 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. -
Multi-Targeted Mechanisms Underlying the Endothelial Protective Effects of the Diabetic-Safe Sweetener Erythritol
Multi-Targeted Mechanisms Underlying the Endothelial Protective Effects of the Diabetic-Safe Sweetener Erythritol Danie¨lle M. P. H. J. Boesten1*., Alvin Berger2.¤, Peter de Cock3, Hua Dong4, Bruce D. Hammock4, Gertjan J. M. den Hartog1, Aalt Bast1 1 Department of Toxicology, Maastricht University, Maastricht, The Netherlands, 2 Global Food Research, Cargill, Wayzata, Minnesota, United States of America, 3 Cargill RandD Center Europe, Vilvoorde, Belgium, 4 Department of Entomology and UCD Comprehensive Cancer Center, University of California Davis, Davis, California, United States of America Abstract Diabetes is characterized by hyperglycemia and development of vascular pathology. Endothelial cell dysfunction is a starting point for pathogenesis of vascular complications in diabetes. We previously showed the polyol erythritol to be a hydroxyl radical scavenger preventing endothelial cell dysfunction onset in diabetic rats. To unravel mechanisms, other than scavenging of radicals, by which erythritol mediates this protective effect, we evaluated effects of erythritol in endothelial cells exposed to normal (7 mM) and high glucose (30 mM) or diabetic stressors (e.g. SIN-1) using targeted and transcriptomic approaches. This study demonstrates that erythritol (i.e. under non-diabetic conditions) has minimal effects on endothelial cells. However, under hyperglycemic conditions erythritol protected endothelial cells against cell death induced by diabetic stressors (i.e. high glucose and peroxynitrite). Also a number of harmful effects caused by high glucose, e.g. increased nitric oxide release, are reversed. Additionally, total transcriptome analysis indicated that biological processes which are differentially regulated due to high glucose are corrected by erythritol. We conclude that erythritol protects endothelial cells during high glucose conditions via effects on multiple targets. -
Literature Mining Sustains and Enhances Knowledge Discovery from Omic Studies
LITERATURE MINING SUSTAINS AND ENHANCES KNOWLEDGE DISCOVERY FROM OMIC STUDIES by Rick Matthew Jordan B.S. Biology, University of Pittsburgh, 1996 M.S. Molecular Biology/Biotechnology, East Carolina University, 2001 M.S. Biomedical Informatics, University of Pittsburgh, 2005 Submitted to the Graduate Faculty of School of Medicine in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2016 UNIVERSITY OF PITTSBURGH SCHOOL OF MEDICINE This dissertation was presented by Rick Matthew Jordan It was defended on December 2, 2015 and approved by Shyam Visweswaran, M.D., Ph.D., Associate Professor Rebecca Jacobson, M.D., M.S., Professor Songjian Lu, Ph.D., Assistant Professor Dissertation Advisor: Vanathi Gopalakrishnan, Ph.D., Associate Professor ii Copyright © by Rick Matthew Jordan 2016 iii LITERATURE MINING SUSTAINS AND ENHANCES KNOWLEDGE DISCOVERY FROM OMIC STUDIES Rick Matthew Jordan, M.S. University of Pittsburgh, 2016 Genomic, proteomic and other experimentally generated data from studies of biological systems aiming to discover disease biomarkers are currently analyzed without sufficient supporting evidence from the literature due to complexities associated with automated processing. Extracting prior knowledge about markers associated with biological sample types and disease states from the literature is tedious, and little research has been performed to understand how to use this knowledge to inform the generation of classification models from ‘omic’ data. Using pathway analysis methods to better understand the underlying biology of complex diseases such as breast and lung cancers is state-of-the-art. However, the problem of how to combine literature- mining evidence with pathway analysis evidence is an open problem in biomedical informatics research. -
Frequent Variations in Cancer-Related Genes May Play Prognostic Role in Treatment of Patients with Chronic Myeloid Leukemia Alexander V
Lavrov et al. BMC Genetics 2016, 17(Suppl 1):14 DOI 10.1186/s12863-015-0308-7 RESEARCH Open Access Frequent variations in cancer-related genes may play prognostic role in treatment of patients with chronic myeloid leukemia Alexander V. Lavrov1,2*, Ekaterina Y. Chelysheva3, Svetlana A. Smirnikhina1, Oleg A. Shukhov3, Anna G. Turkina3, Elmira P. Adilgereeva1 and Sergey I. Kutsev1,2 From The 7th International Young Scientists School “Systems Biology and Bioinformatics” (SBB’2015) Novosibirsk, Russia. 22-25 June 2015 Abstract Background: Genome variability of host genome and cancer cells play critical role in diversity of response to existing therapies and overall success in treating oncological diseases. In chronic myeloid leukemia targeted therapy with tyrosine kinase inhibitors demonstrates high efficacy in most of the patients. However about 15 % of patients demonstrate primary resistance to standard therapy. Whole exome sequencing is a good tool for unbiased search of genetic variations important for prognosis of survival and therapy efficacy in many cancers. We apply this approach to CML patients with optimal response and failure of tyrosine kinase therapy. Results: We analyzed exome variations between optimal responders and failures and found 7 variants in cancer- related genes with different genotypes in two groups of patients. Five of them were found in optimal responders: rs11579366, rs1990236, rs176037, rs10653661, rs3803264 and two in failures: rs3099950, rs9471966. These variants were found in genes associated with cancers (ANKRD35, DNAH9, MAGEC1, TOX3) or participating in cancer-related signaling pathways (THSD1, MORN2, PTCRA). Conclusion: We found gene variants which may become early predictors of the therapy outcome and allow development of new early prognostic tests for estimation of therapy efficacy in CML patients. -
Fanyue Sun-Dissertation.Pdf
Towards the identification of sex-determining gene(s) in channel catfish by Fanyue Sun A dissertation submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Auburn, Alabama August 3rd, 2013 Keywords: sex determination, sex chromosome, next-generation sequencing, genome assembly and scaffolding, comparative analysis, catfish Copyright 2013 by Fanyue Sun Approved by Zhanjiang Liu, Chair, Alumni Professor of Fisheries and Allied Aquacultures Joanna Wysocka-Diller, Associate Professor of Biological Sciences Nannan Liu, Professor of Plant Pathology and Entomology Rex Dunham, Alumni Professor of Fisheries and Allied Aquacultures Abstract Sex is the most fundamental feature in the life of an organism. Studying of sex determination is an important area in animal developmental and evolutionary biology, as well as ecology. In teleost, sex determination mechanism exhibits extraordinary plasticity and diversity with respect to the evolutionary pattern. Catfish have a XY male/XX female sex chromosome system. The exact mechanism of sex determination in catfish is unknown at present. As a first step towards the identification of sex-determining genes in catfish, we performed the first transcriptome-level analysis of the catfish testis using high throughput Illumina sequencing to understand the transcriptome of the catfish testes. Gene ontology and annotation analysis suggested that many of the male-biased genes identified from the analysis were involved in gonadogenesis, spermatogenesis, testicular determination, gametogenesis, gonad differentiation, and possibly sex determination. Our analysis would lay the basis for further follow-up analysis of genes involved in sex determination and differentiation in catfish. To move toward the goal of identification of the Y-specific fragments in channel catfish, we utilized multiple approaches to get the best assembly and scaffolding of X and Y chromosome in catfish and conducted in silico comparative analysis between these two chromosomes. -
Genomic Abnormalities in Chronic Lymphocytic Leukemia Influence Gene Expression by a Gene Dosage Effect
769-778 24/3/06 12:54 Page 769 INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 17: 769-778, 2006 769 Genomic abnormalities in chronic lymphocytic leukemia influence gene expression by a gene dosage effect JOHN D. DICKINSON1, AVADHUT JOSHI1, JAVEED IQBAL2, WARREN SANGER3, PHILIP J. BIERMAN4 and SHANTARAM S. JOSHI1 1Department of Genetics, Cell Biology, and Anatomy, 2Department of Pathology and Microbiology, 3Center for Human Genetics, 4Oncology/Hematology Section, Department of Internal Medicine, Center for Research in Leukemia and Lymphoma, University of Nebraska Medical Center, Omaha, NE, USA Received November 16, 2005; Accepted December 21, 2005 Abstract. This work describes the identification and impact lymphocytes and is identified by co-expression of CD5, 19, of somatic genomic abnormalities in human chronic lympho- and 23 cell surface markers (3,4). CLL has been characterized cytic leukemia (CLL). Using molecular cytogenetics (FISH) by broad clinical and biological heterogeneity and not all and G-banding cytogenetic analysis, chromosome abnormalities patients require immediate therapy (3,5,6). Much of the were detected in 37 of 46 (80.4%) CLL patients. 13q14 research in the area of CLL has focused on identifying prog- deletion was the most common finding followed by trisomy nostic factors that can predict which patients will ultimately 12 and 11q22.3 deletion. 17p13 deletion was also detected as undergo tumor progression and require therapy. In addition, were several less frequent chromosome abnormalities. The elucidating the mechanisms of tumor progression in order to presence of these abnormalities significantly influenced the develop new molecular therapies and adjuvant therapies to period of treatment-free survival as well as other clinical induce long-term remissions is an important goal of CLL characteristics. -
Supplementary Table 1 Double Treatment Vs Single Treatment
Supplementary table 1 Double treatment vs single treatment Probe ID Symbol Gene name P value Fold change TC0500007292.hg.1 NIM1K NIM1 serine/threonine protein kinase 1.05E-04 5.02 HTA2-neg-47424007_st NA NA 3.44E-03 4.11 HTA2-pos-3475282_st NA NA 3.30E-03 3.24 TC0X00007013.hg.1 MPC1L mitochondrial pyruvate carrier 1-like 5.22E-03 3.21 TC0200010447.hg.1 CASP8 caspase 8, apoptosis-related cysteine peptidase 3.54E-03 2.46 TC0400008390.hg.1 LRIT3 leucine-rich repeat, immunoglobulin-like and transmembrane domains 3 1.86E-03 2.41 TC1700011905.hg.1 DNAH17 dynein, axonemal, heavy chain 17 1.81E-04 2.40 TC0600012064.hg.1 GCM1 glial cells missing homolog 1 (Drosophila) 2.81E-03 2.39 TC0100015789.hg.1 POGZ Transcript Identified by AceView, Entrez Gene ID(s) 23126 3.64E-04 2.38 TC1300010039.hg.1 NEK5 NIMA-related kinase 5 3.39E-03 2.36 TC0900008222.hg.1 STX17 syntaxin 17 1.08E-03 2.29 TC1700012355.hg.1 KRBA2 KRAB-A domain containing 2 5.98E-03 2.28 HTA2-neg-47424044_st NA NA 5.94E-03 2.24 HTA2-neg-47424360_st NA NA 2.12E-03 2.22 TC0800010802.hg.1 C8orf89 chromosome 8 open reading frame 89 6.51E-04 2.20 TC1500010745.hg.1 POLR2M polymerase (RNA) II (DNA directed) polypeptide M 5.19E-03 2.20 TC1500007409.hg.1 GCNT3 glucosaminyl (N-acetyl) transferase 3, mucin type 6.48E-03 2.17 TC2200007132.hg.1 RFPL3 ret finger protein-like 3 5.91E-05 2.17 HTA2-neg-47424024_st NA NA 2.45E-03 2.16 TC0200010474.hg.1 KIAA2012 KIAA2012 5.20E-03 2.16 TC1100007216.hg.1 PRRG4 proline rich Gla (G-carboxyglutamic acid) 4 (transmembrane) 7.43E-03 2.15 TC0400012977.hg.1 SH3D19 -
(A) Schematic Representation of the Secondary Assays Done to Control for Promoter Or Luciferase Specific Effects
Supplementary Figure 1. Secondary Assays (A) Schematic representation of the secondary assays done to control for promoter or luciferase specific effects. The Hh-GL2 Assay is the original assay format. The Hh-GL3 assay is similar to the original reporter construct, but lacks a 3' intron that contributed to nonsense mediated decay of the reporter (see Materials and Methods). In the luciferase reversal assay, the promoters and luciferase constructs were swapped. In the promoter matching assay, the Hh expressing construct was driven by a Pol III promoter. (B) Ci overexpression partially activates the Hh signaling pathway and can partially rescue loss of reporter activity due to RNAi elimination of smo. Graphic representation of normalized luciferase values for the indicated stimulus (either Hh or Ci, in equal amounts) and dsRNA treatment. Ci expression activates the ptc∆136 reporter to about half the level induced by Hh treatment. smo dsRNA almost completely eliminates reporter activity when Hh is used as stimulus, while smo dsRNA only reduces reporter by about 30% when Ci is used as stimulus. Supplementary Figure 1 A B Hh Ci Ptc∆136 Firefly GL2 Assay 70 Pol 3 Renilla 60 50 Actin Hedgehog FL 40 30 20 GL3 10 Ptc∆136 Firefly Assay 0 Normalized Value Pol 3 Renilla GFP Smo 5' Ci 5' Actin Hedgehog FL dsRNA Luciferase Pol 3 Firefly Reversal Assay Ptc∆136 Renilla Actin Hedgehog FL Promoter Ptc∆136 Firefly Matching Pol 3 Renilla Assay Pol 3 Hedgehog FL Supplementary Figure 2. Phosphorylation of Fu and Cos2 are not affected by reduction in Cdk9, Pitslre, or mts. -
High-Density Array Comparative Genomic Hybridization Detects Novel Copy Number Alterations in Gastric Adenocarcinoma
ANTICANCER RESEARCH 34: 6405-6416 (2014) High-density Array Comparative Genomic Hybridization Detects Novel Copy Number Alterations in Gastric Adenocarcinoma ALINE DAMASCENO SEABRA1,2*, TAÍSSA MAÍRA THOMAZ ARAÚJO1,2*, FERNANDO AUGUSTO RODRIGUES MELLO JUNIOR1,2, DIEGO DI FELIPE ÁVILA ALCÂNTARA1,2, AMANDA PAIVA DE BARROS1,2, PAULO PIMENTEL DE ASSUMPÇÃO2, RAQUEL CARVALHO MONTENEGRO1,2, ADRIANA COSTA GUIMARÃES1,2, SAMIA DEMACHKI2, ROMMEL MARIO RODRÍGUEZ BURBANO1,2 and ANDRÉ SALIM KHAYAT1,2 1Human Cytogenetics Laboratory and 2Oncology Research Center, Federal University of Pará, Belém Pará, Brazil Abstract. Aim: To investigate frequent quantitative alterations gastric cancer is the second most frequent cancer in men and of intestinal-type gastric adenocarcinoma. Materials and the third in women (4). The state of Pará has a high Methods: We analyzed genome-wide DNA copy numbers of 22 incidence of gastric adenocarcinoma and this disease is a samples and using CytoScan® HD Array. Results: We identified public health problem, since mortality rates are above the 22 gene alterations that to the best of our knowledge have not Brazilian average (5). been described for gastric cancer, including of v-erb-b2 avian This tumor can be classified into two histological types, erythroblastic leukemia viral oncogene homolog 4 (ERBB4), intestinal and diffuse, according to Laurén (4, 6, 7). The SRY (sex determining region Y)-box 6 (SOX6), regulator of intestinal type predominates in high-risk areas, such as telomere elongation helicase 1 (RTEL1) and UDP- Brazil, and arises from precursor lesions, whereas the diffuse Gal:betaGlcNAc beta 1,4- galactosyltransferase, polypeptide 5 type has a similar distribution in high- and low-risk areas and (B4GALT5).