Mechanisms of Type-I Ifn Inhibition: Equine Herpesvirus-1 Escape from the Antiviral Effect of Type-1 Interferon Response in Host Cell
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Type I Interferons and the Development of Impaired Vascular Function and Repair in Human and Murine Lupus
Type I Interferons and the Development of Impaired Vascular Function and Repair in Human and Murine Lupus by Seth G Thacker A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Immunology) in The University of Michigan 2011 Doctoral Committee: Associate Professor Mariana J. Kaplan, Chair Professor David A. Fox Professor Alisa E. Koch Professor Matthias Kretzler Professor Nicholas W. Lukacs Associate Professor Daniel T. Eitzman © Seth G Thacker 2011 Sharon, this work is dedicated to you. This achievement is as much yours as it is mine. Your support through all six years of this Ph.D. process has been incredible. You put up with my countless miscalculations on when I would finish experiments, and still managed to make me and our kids feel loved and special. Without you this would have no meaning. Sharon, you are the safe harbor in my life. ii Acknowledgments I have been exceptionally fortunate in my time here at the University of Michigan. I have been able to interact with so many supportive people over the years. I would like to express my thanks and admiration for my mentor. Mariana has taught me so much about writing, experimental design and being a successful scientist in general. I could never have made it here without her help. I would also like to thank Mike Denny. He had a hand in the beginning of all of my projects in one way or another, and was always quick and eager to help in whatever way he could. He really made my first year in the lab successful. -
Middle East Respiratory Syndrome Coronavirus Ns4b Protein Inhibits Host Rnase L Activation
RESEARCH ARTICLE crossmark Middle East Respiratory Syndrome Coronavirus NS4b Protein Inhibits Host RNase L Activation Joshua M. Thornbrough,a* Babal K. Jha,b* Boyd Yount,c Stephen A. Goldstein,a Yize Li,a Ruth Elliott,a Amy C. Sims,c Ralph S. Baric,c,d Robert H. Silverman,b Susan R. Weissa Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USAa; Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USAb; Department of Epidemiologyc and Department of Microbiology and Immunology,d University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA * Present address: Joshua M. Thornbrough, Adelphi Research Global, Doylestown, Pennsylvania, USA; Babal K. Jha, Translational Hematology & Oncology Research, Taussig Cancer Research Institute, Cleveland Clinic, Cleveland, Ohio, USA. ABSTRACT Middle East respiratory syndrome coronavirus (MERS-CoV) is the first highly pathogenic human coronavirus to emerge since severe acute respiratory syndrome coronavirus (SARS-CoV) in 2002. Like many coronaviruses, MERS-CoV carries genes that encode multiple accessory proteins that are not required for replication of the genome but are likely involved in pathogenesis. Evasion of host innate immunity through interferon (IFN) antagonism is a critical component of viral pathogene- sis. The IFN-inducible oligoadenylate synthetase (OAS)-RNase L pathway activates upon sensing of viral double-stranded RNA (dsRNA). Activated RNase L cleaves viral and host single-stranded RNA (ssRNA), which leads to translational arrest and subse- quent cell death, preventing viral replication and spread. Here we report that MERS-CoV, a lineage C Betacoronavirus, and re- lated bat CoV NS4b accessory proteins have phosphodiesterase (PDE) activity and antagonize OAS-RNase L by enzymatically degrading 2=,5=-oligoadenylate (2-5A), activators of RNase L. -
Flaviviral Ns4b, Chameleon and Jack-In-The-Box Roles in Viral
Rev. Med. Virol. 2015; 25: 205–223. Published online 1 April 2015 in Wiley Online Library (wileyonlinelibrary.com) Reviews in Medical Virology DOI: 10.1002/rmv.1835 REVIEW Flaviviral NS4b, chameleon and jack-in-the-box roles in viral replication and pathogenesis, and a molecular target for antiviral intervention Joanna Zmurko, Johan Neyts* and Kai Dallmeier KU Leuven, Rega Institute for Medical Research, Department of Microbiology and Immunology, Laboratory of Virology and Chemotherapy SUMMARY Dengue virus and other flaviviruses such as the yellow fever, West Nile, and Japanese encephalitis viruses are emerging vector-borne human pathogens that affect annually more than 100 million individuals and that may cause debilitating and potentially fatal hemorrhagic and encephalitic diseases. Currently, there are no specific antiviral drugs for the treat- ment of flavivirus-associated disease. A better understanding of the flavivirus–host interactions during the different events of the flaviviral life cycle may be essential when developing novel antiviral strategies. The flaviviral non-structural protein 4b (NS4b) appears to play an important role in flaviviral replication by facilitating the formation of the viral replication complexes and in counteracting innate immune responses such as the following: (i) type I IFN signaling; (ii) RNA interfer- ence; (iii) formation of stress granules; and (iv) the unfolded protein response. Intriguingly, NS4b has recently been shown to constitute an excellent target for the selective inhibition of flavivirus replication. We here review the current knowledge on NS4b. © 2015 The Authors. Reviews in Medical Virology published by John Wiley & Sons Ltd. Received: 27 October 2014; Revised: 16 February 2015; Accepted: 17 February 2015 INTRODUCTION mosquito-borne viral disease, endemic in over 100 The genus Flavivirus comprises over 70 members, countries with over three billion people at direct including important human pathogens such as risk of infection [1]. -
IFN-Ε Protects Primary Macrophages Against HIV Infection
RESEARCH ARTICLE IFN-ε protects primary macrophages against HIV infection Carley Tasker,1 Selvakumar Subbian,2 Pan Gao,3 Jennifer Couret,1 Carly Levine,2 Saleena Ghanny,1 Patricia Soteropoulos,1 Xilin Zhao,1,2 Nathaniel Landau,4 Wuyuan Lu,3 and Theresa L. Chang1,2 1Department of Microbiology, Biochemistry and Molecular Genetics and 2Public Health Research Institute, Rutgers University, New Jersey Medical School, Newark, New Jersey, USA.3Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA.4Department of Microbiology, New York University School of Medicine, New York, New York, USA. IFN-ε is a unique type I IFN that is not induced by pattern recognition response elements. IFN-ε is constitutively expressed in mucosal tissues, including the female genital mucosa. Although the direct antiviral activity of IFN-ε was thought to be weak compared with IFN-α, IFN-ε controls Chlamydia muridarum and herpes simplex virus 2 in mice, possibly through modulation of immune response. We show here that IFN-ε induces an antiviral state in human macrophages that blocks HIV-1 replication. IFN-ε had little or no protective effect in activated CD4+ T cells or transformed cell lines unless activated CD4+ T cells were infected with replication-competent HIV-1 at a low MOI. The block to HIV infection of macrophages was maximal after 24 hours of treatment and was reversible. IFN-ε acted on early stages of the HIV life cycle, including viral entry, reverse transcription, and nuclear import. The protection did not appear to operate through known type I IFN-induced HIV host restriction factors, such as APOBEC3A and SAMHD1. -
Type of the Paper (Article
Review Epigenetic Landscape during Coronavirus Infection Alexandra Schäfer and Ralph S. Baric * Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599 USA; [email protected] * Correspondence: [email protected] Academic Editor: Lawrence S. Young Received: 23 November 2016; Accepted: 7 February 2017; Published: 15 February 2017 Abstract: Coronaviruses (CoV) comprise a large group of emerging human and animal pathogens, including the highly pathogenic severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) strains. The molecular mechanisms regulating emerging coronavirus pathogenesis are complex and include virus–host interactions associated with entry, replication, egress and innate immune control. Epigenetics research investigates the genetic and non-genetic factors that regulate phenotypic variation, usually caused by external and environmental factors that alter host expression patterns and performance without any change in the underlying genotype. Epigenetic modifications, such as histone modifications, DNA methylation, chromatin remodeling, and non-coding RNAs, function as important regulators that remodel host chromatin, altering host expression patterns and networks in a highly flexible manner. For most of the past two and a half decades, research has focused on the molecular mechanisms by which RNA viruses antagonize the signaling and sensing components that regulate induction of the host innate immune and antiviral defense programs upon infection. More recently, a growing body of evidence supports the hypothesis that viruses, even lytic RNA viruses that replicate in the cytoplasm, have developed intricate, highly evolved, and well-coordinated processes that are designed to regulate the host epigenome, and control host innate immune antiviral defense processes, thereby promoting robust virus replication and pathogenesis. -
Opportunistic Intruders: How Viruses Orchestrate ER Functions to Infect Cells
REVIEWS Opportunistic intruders: how viruses orchestrate ER functions to infect cells Madhu Sudhan Ravindran*, Parikshit Bagchi*, Corey Nathaniel Cunningham and Billy Tsai Abstract | Viruses subvert the functions of their host cells to replicate and form new viral progeny. The endoplasmic reticulum (ER) has been identified as a central organelle that governs the intracellular interplay between viruses and hosts. In this Review, we analyse how viruses from vastly different families converge on this unique intracellular organelle during infection, co‑opting some of the endogenous functions of the ER to promote distinct steps of the viral life cycle from entry and replication to assembly and egress. The ER can act as the common denominator during infection for diverse virus families, thereby providing a shared principle that underlies the apparent complexity of relationships between viruses and host cells. As a plethora of information illuminating the molecular and cellular basis of virus–ER interactions has become available, these insights may lead to the development of crucial therapeutic agents. Morphogenesis Viruses have evolved sophisticated strategies to establish The ER is a membranous system consisting of the The process by which a virus infection. Some viruses bind to cellular receptors and outer nuclear envelope that is contiguous with an intri‑ particle changes its shape and initiate entry, whereas others hijack cellular factors that cate network of tubules and sheets1, which are shaped by structure. disassemble the virus particle to facilitate entry. After resident factors in the ER2–4. The morphology of the ER SEC61 translocation delivering the viral genetic material into the host cell and is highly dynamic and experiences constant structural channel the translation of the viral genes, the resulting proteins rearrangements, enabling the ER to carry out a myriad An endoplasmic reticulum either become part of a new virus particle (or particles) of functions5. -
Inflammation and Cancer: a Comparative View
Review J Vet Intern Med 2012;26:18–31 Inflammation and Cancer: A Comparative View Wallace B. Morrison Rudolph Virchow first speculated on a relationship between inflammation and cancer more than 150 years ago. Subse- quently, chronic inflammation and associated reactive free radical overload and some types of bacterial, viral, and parasite infections that cause inflammation were recognized as important risk factors for cancer development and account for one in four of all human cancers worldwide. Even viruses that do not directly cause inflammation can cause cancer when they act in conjunction with proinflammatory cofactors or when they initiate or promote cancer via the same signaling path- ways utilized in inflammation. Whatever its origin, inflammation in the tumor microenvironment has many cancer-promot- ing effects and aids in the proliferation and survival of malignant cells and promotes angiogenesis and metastasis. Mediators of inflammation such as cytokines, free radicals, prostaglandins, and growth factors can induce DNA damage in tumor suppressor genes and post-translational modifications of proteins involved in essential cellular processes including apoptosis, DNA repair, and cell cycle checkpoints that can lead to initiation and progression of cancer. Key words: Cancer; Comparative; Infection; Inflammation; Tumor. pidemiologic evidence suggests that approximately that has documented similar or identical genetic E25% of all human cancer worldwide is associated expression, inflammatory cell infiltrates, cytokine and with chronic inflammation, chronic infection, or both chemokine expression, and other biomarkers in (Tables 1 and 2).1–5 Local inflammation as an anteced- humans and many domestic mammals with morpho- ent event to cancer development has long been recog- logically equivalent cancers.65–78 The author is una- nized in cancer patients. -
A Dengue Virus Type 2 (DENV-2) NS4B-Interacting Host Factor, SERP1, Reduces DENV-2 Production by Suppressing Viral RNA Replication
viruses Article A Dengue Virus Type 2 (DENV-2) NS4B-Interacting Host Factor, SERP1, Reduces DENV-2 Production by Suppressing Viral RNA Replication Jia-Ni Tian 1,2, Chi-Chen Yang 1, Chiu-Kai Chuang 3, Ming-Han Tsai 4 , Ren-Huang Wu 1, Chiung-Tong Chen 1 and Andrew Yueh 1,* 1 Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan 2 Department of Life Sciences, National Central University, Jhongli 32001, Taiwan 3 Division of Animal Technology, Agricultural Technology Research Institute, Miaoli 35053, Taiwan 4 Institute of Microbiology and Immunology, National Yang-Ming University, Taipei 11221, Taiwan * Correspondence: [email protected]; Tel.: +886-37-246-166 (ext. 35719); Fax: +886-37-586-456 Received: 31 July 2019; Accepted: 27 August 2019; Published: 27 August 2019 Abstract: Host cells infected with dengue virus (DENV) often trigger endoplasmic reticulum (ER) stress, a key process that allows viral reproduction, without killing the host cells until the late stage of the virus life-cycle. However, little is known regarding which DENV viral proteins interact with the ER machinery to support viral replication. In this study, we identified and characterized a novel host factor, stress-associated ER protein 1 (SERP1), which interacts with the DENV type 2 (DENV-2) NS4B protein by several assays, for example, yeast two-hybrid, subcellular localization, NanoBiT complementation, and co-immunoprecipitation. A drastic increase (34.5-fold) in the SERP1 gene expression was observed in the DENV-2-infected or replicon-transfected Huh7.5 cells. The SERP1 overexpression inhibited viral yields (37-fold) in the DENV-2-infected Huh7.5 cells. -
Type I Interferons in Anticancer Immunity
REVIEWS Type I interferons in anticancer immunity Laurence Zitvogel1–4*, Lorenzo Galluzzi1,5–8*, Oliver Kepp5–9, Mark J. Smyth10,11 and Guido Kroemer5–9,12 Abstract | Type I interferons (IFNs) are known for their key role in antiviral immune responses. In this Review, we discuss accumulating evidence indicating that type I IFNs produced by malignant cells or tumour-infiltrating dendritic cells also control the autocrine or paracrine circuits that underlie cancer immunosurveillance. Many conventional chemotherapeutics, targeted anticancer agents, immunological adjuvants and oncolytic 1Gustave Roussy Cancer Campus, F-94800 Villejuif, viruses are only fully efficient in the presence of intact type I IFN signalling. Moreover, the France. intratumoural expression levels of type I IFNs or of IFN-stimulated genes correlate with 2INSERM, U1015, F-94800 Villejuif, France. favourable disease outcome in several cohorts of patients with cancer. Finally, new 3Université Paris Sud/Paris XI, anticancer immunotherapies are being developed that are based on recombinant type I IFNs, Faculté de Médecine, F-94270 Le Kremlin Bicêtre, France. type I IFN-encoding vectors and type I IFN-expressing cells. 4Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 507, F-94800 Villejuif, France. Type I interferons (IFNs) were first discovered more than Type I IFNs in cancer immunosurveillance 5Equipe 11 labellisée par la half a century ago as the factors underlying viral inter Type I IFNs are known to mediate antineoplastic effects Ligue Nationale contre le ference — that is, the ability of a primary viral infection against several malignancies, which is a clinically rel Cancer, Centre de Recherche 1 des Cordeliers, F-75006 Paris, to render cells resistant to a second distinct virus . -
Hepatitis C Virus P7—A Viroporin Crucial for Virus Assembly and an Emerging Target for Antiviral Therapy
Viruses 2010, 2, 2078-2095; doi:10.3390/v2092078 OPEN ACCESS viruses ISSN 1999-4915 www.mdpi.com/journal/viruses Review Hepatitis C Virus P7—A Viroporin Crucial for Virus Assembly and an Emerging Target for Antiviral Therapy Eike Steinmann and Thomas Pietschmann * TWINCORE †, Division of Experimental Virology, Centre for Experimental and Clinical Infection Research, Feodor-Lynen-Str. 7, 30625 Hannover, Germany; E-Mail: [email protected] † TWINCORE is a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI). * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +49-511-220027-130; Fax: +49-511-220027-139. Received: 22 July 2010; in revised form: 2 September 2010 / Accepted: 6 September 2010 / Published: 27 September 2010 Abstract: The hepatitis C virus (HCV), a hepatotropic plus-strand RNA virus of the family Flaviviridae, encodes a set of 10 viral proteins. These viral factors act in concert with host proteins to mediate virus entry, and to coordinate RNA replication and virus production. Recent evidence has highlighted the complexity of HCV assembly, which not only involves viral structural proteins but also relies on host factors important for lipoprotein synthesis, and a number of viral assembly co-factors. The latter include the integral membrane protein p7, which oligomerizes and forms cation-selective pores. Based on these properties, p7 was included into the family of viroporins comprising viral proteins from multiple virus families which share the ability to manipulate membrane permeability for ions and to facilitate virus production. Although the precise mechanism as to how p7 and its ion channel function contributes to virus production is still elusive, recent structural and functional studies have revealed a number of intriguing new facets that should guide future efforts to dissect the role and function of p7 in the viral replication cycle. -
Type I Interferon Suppresses Tumor Growth Through Activating the STAT3-Granzyme B Pathway in Tumor-Infiltrating Cytotoxic T Lymphocytes Chunwan Lu1,2,3*, John D
Lu et al. Journal for ImmunoTherapy of Cancer (2019) 7:157 https://doi.org/10.1186/s40425-019-0635-8 RESEARCHARTICLE Open Access Type I interferon suppresses tumor growth through activating the STAT3-granzyme B pathway in tumor-infiltrating cytotoxic T lymphocytes Chunwan Lu1,2,3*, John D. Klement1,2,3, Mohammed L. Ibrahim1,2,3, Wei Xiao1,2, Priscilla S. Redd1,2,3, Asha Nayak-Kapoor2, Gang Zhou2 and Kebin Liu1,2,3* Abstract Background: Type I interferons (IFN-I) have recently emerged as key regulators of tumor response to chemotherapy and immunotherapy. However, IFN-I function in cytotoxic T lymphocytes (CTLs) in the tumor microenvironment is largely unknown. Methods: Tumor tissues and CTLs of human colorectal cancer patients were analyzed for interferon (alpha and beta) receptor 1 (IFNAR1) expression. IFNAR1 knock out (IFNAR-KO), mixed wild type (WT) and IFNAR1-KO bone marrow chimera mice, and mice with IFNAR1 deficiency only in T cells (IFNAR1-TKO) were used to determine IFN-I function in T cells in tumor suppression. IFN-I target genes in tumor-infiltrating and antigen-specific CTLs were identified and functionally analyzed. Results: IFNAR1 expression level is significantly lower in human colorectal carcinoma tissue than in normal colon tissue. IFNAR1 protein is also significantly lower on CTLs from colorectal cancer patients than those from healthy donors. Although IFNAR1-KO mice exhibited increased susceptibility to methylcholanthrene-induced sarcoma, IFNAR1-sufficient tumors also grow significantly faster in IFNAR1-KO mice and in mice with IFNAR1 deficiency only in T cells (IFNAR1-TKO), suggesting that IFN-I functions in T cells to enhance host cancer immunosurveillance. -
Detecting the Stable Point of Therapeutic Effect of Chronic Myeloid
Xu et al. BMC Bioinformatics 2019, 20(Suppl 7):202 https://doi.org/10.1186/s12859-019-2738-0 RESEARCH Open Access Detecting the stable point of therapeutic effect of chronic myeloid leukemia based on dynamic network biomarkers Junhua Xu1,MinWu1, Shanshan Zhu1,JinzhiLei2 and Jie Gao1* From The 12th International Conference on Computational Systems Biology (ISB 2018) Guiyang, China. 18-21 August 2018 Abstract Background: Most researches of chronic myeloid leukemia (CML) are currently focused on the treatment methods, while there are relatively few researches on the progress of patients’ condition after drug treatment. Traditional biomarkers of disease can only distinguish normal state from disease state, and cannot recognize the pre-stable state after drug treatment. Results: A therapeutic effect recognition strategy based on dynamic network biomarkers (DNB) is provided for CML patients’ gene expression data. With the DNB criteria, the DNB with 250 genes is selected and the therapeutic effect index (TEI) is constructed for the detection of individual disease. The pre-stable state before the disease condition becomes stable is 1 month. Through functional analysis for the DNB, some genes are confirmed as key genes to affect the progress of CML patients’ condition. Conclusions: The results provide a certain theoretical direction and theoretical basis for medical personnel in the treatment of CML patients, and find new therapeutic targets in the future. The biomarkers of CML can help patients to be treated promptly and minimize drug resistance, treatment failure and relapse, which reduce the mortality of CML significantly. Keywords: Chronic myeloid leukemia (CML), Dynamic network biomarkers (DNB), Differentially expressed genes (DEGs), Therapeutic effect index (TEI), Pre-stable state, Treatment time Introduction At present, the use of ABL kinase inhibitors (e.g.