Host Plant Range of Raoiella Indica (Acari: Tenuipalpidae) in Areas of Invasion of the New World

Total Page:16

File Type:pdf, Size:1020Kb

Host Plant Range of Raoiella Indica (Acari: Tenuipalpidae) in Areas of Invasion of the New World See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/51641910 Host plant range of Raoiella indica (Acari: Tenuipalpidae) in areas of invasion of the New World Article in Experimental and Applied Acarology · September 2011 DOI: 10.1007/s10493-011-9487-8 · Source: PubMed CITATIONS READS 41 223 6 authors, including: Daniel Carrillo Divina Amalin University of Florida De La Salle University 92 PUBLICATIONS 635 CITATIONS 54 PUBLICATIONS 428 CITATIONS SEE PROFILE SEE PROFILE Farzan Hosein Amy Roda University of Trinidad and Tobago (UTT) Animal and Plant Health Inspection Service 3 PUBLICATIONS 52 CITATIONS 66 PUBLICATIONS 1,037 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Hi Claudia, long time no hear...do you really want to know what I am doing now days? View project Compatibility of agrochemicals with entomopathogenic fungi for management of ambrosia beetles that vector the laurel wilt fungal pathogen attacking avocado trees View project All content following this page was uploaded by Daniel Carrillo on 30 May 2014. The user has requested enhancement of the downloaded file. Exp Appl Acarol (2012) 57:271–289 DOI 10.1007/s10493-011-9487-8 Host plant range of Raoiella indica (Acari: Tenuipalpidae) in areas of invasion of the New World Daniel Carrillo • Divina Amalin • Farzan Hosein • Amy Roda • Rita E. Duncan • Jorge E. Pen˜a Received: 9 September 2010 / Accepted: 23 July 2011 / Published online: 14 September 2011 Ó Springer Science+Business Media B.V. 2011 Abstract Raoiella indica has spread rapidly through the Neotropical region where the mite damages economically and ecologically important plants. Three studies were con- ducted to determine the host plant range of R. indica, using the presence of colonies containing all life stages as an indicator of reproductive suitability. Periodic surveys at the Fairchild Tropical Botanic Garden (Miami Dade County, FL, USA) and the Royal Botanical Gardens (Port of Spain, Trinidad and Tobago) identified 27 new reproductive host plants. The reproductive suitability of two dicotyledonous species and three native Florida palm species was examined. An updated list of reproductive host plants of R. indica is presented. All reported reproductive hosts (91 plant species) of R. indica are monocots from the orders Arecales (Arecaceae), Zingiberales (Heliconiaceae, Musaceae, Strelitziaceae, Zingiberaceae) and Pandanales (Pandanaceae). Most are palms of the family Arecaceae that originated in areas of the Eastern Hemisphere; about one fourth of the reported hosts are native to the New World and could be considered new host associations of R. indica. Six years after the initial detection in the Caribbean, R. indica has expanded its host plant range. Here we report 27 new reproductive host of R. indica that represent 30% of increase on previous host plant records. As this mite continues spreading in the Neotropical region a great diversity of plants is potentially affected. D. Carrillo (&) Á R. E. Duncan Á J. E. Pen˜a Department of Entomology and Nematology, Tropical Research and Education Center, University of Florida, Homestead, FL 33031, USA e-mail: dancar@ufl.edu D. Amalin University of Florida, 13601 Old Cutler Rd., Miami, FL 33158, USA F. Hosein Research Division, Ministry of Agriculture, Land and Marine Resources, Centeno, Trinidad and Tobago A. Roda USDA, APHIS, Plant Protection and Quarantine, Miami, FL 33158, USA 123 272 Exp Appl Acarol (2012) 57:271–289 Keywords Raoiella indica Á Invasive species Á Neotropics Á Reproductive hosts Á Monocotyledons Á Arecaceae Á Palms Introduction Raoiella indica Hirst (Acari: Tenuipalpidae), also called the red palm mite, is a phytopha- gous mite that recently invaded the western hemisphere. This mite is a polyphagous species that can reach very high populations and cause significant damage to various plant species. It is also the first mite species observed feeding through the stomata of its host plants (Ochoa et al. 2011). Through this specialized feeding habit R. indica probably interferes with the photosynthesis and respiration processes of their host. However, the damage caused by this species to most of its host plants has not yet been characterized. In coconut, R. indica feeding causes an initial bronzing of the leaves which later turns into necrotic tissues. During 2004, R. indica was detected in Martinique and St. Lucia, and rapidly expanded its geographical range throughout the Caribbean (Rodrigues et al. 2007; Etienne and Flechtmann 2006; Kane et al. 2005). In December 2007, R. indica was detected in the West Palm Beach area of south Florida (FDACS 2007) and spread to six counties of the state thereafter. Raoiella indica has also reached Venezuela (Va´squez et al. 2008), Brazil (Navia et al. 2011), Colombia (Carrillo et al. 2011) and Mexico (NAPPO 2009). Concerns have arisen about the consequences of the establishment of this exotic species in the Neotropical region where economically and ecologically important plants could potentially be affected. Most studies and reports of this mite have focused on one of its more suitable and economically important host, Cocos nucifera (Arecales: Arecaceae) (Carrillo et al. 2010; Pen˜a et al. 2009; Sarkar and Somchoudry 1989; Nageshachandra and Channabasavanna 1984, 1983). Few studies have addressed the potential effects of R. indica on other host plants in the New World. In 2006, Welbourn made available a list of reported host plants of R. indica in the Caribbean region compromising 59 plant species. All the reported plants were monocotyledons that belong to the orders Arecales [family Arecaceae (42 species)], Zingiberales [families Musaceae (6), Heliconiaceae (5), Strelitziaceae (2) and Zingibera- ceae (3)] or Pandanales [family Pandanaceae (1)] (‘‘Appendix’’). In 2009, Cocco and Hoy published an expanded list of 72 reported host plants. Interestingly, these reports included 7 dicotyledon plant species from the families Aceraceae (1), Celastraceae (1), Myrtaceae (2), Lamiaceae (1) Oleaceae (1) and Fabacaeae (1) raising the question whether this mite is a highly polyphagous species or a stenophagous species that feeds and reproduces on relatively few plant families within the orders Arecales, Zingiberales and Pandanales. As this exotic species keeps expanding its geographical range in the New World, a compre- hensive study on the host plant range of R. indica is needed in order to devise feasible management options for the pest. We present results of three studies that contribute to the knowledge of the host plant range of R. indica in the New World. We evaluated the potential host range of red palm mite by surveying two botanical gardens that had extensive tropical plant and palm col- lections located in areas of recent R. indica invasion (Miami Dade, FL, USA and Port of Spain, Trinidad and Tobago). The reproductive suitability of two dicotyledonous species and three native Florida palm species was examined through infesting the plants with known numbers of R. indica in a plant nursery. Further field surveys evaluated the viability of the Florida native palms as reproductive hosts. Based on these studies, we present an updated host plant list and discuss the known distribution and phylogenetic placement of the reported reproductive hosts of R. indica. 123 Exp Appl Acarol (2012) 57:271–289 273 Methods Fairchild Tropical Botanic Garden survey, Florida, USA This botanical garden, located in the Coral Gables area of Miami Dade County, has a large collection of taxonomically arranged and well-documented tropical plants with emphasis on palms. All plants in the Palmetum area of the garden reachable with an extension pole (5 m) were inspected three times (25 February 2009, 24 November 2009 and 25 February 2010). Plants were inspected by looking at the underside of five fronds per plant using a hand lens (209). Plants with at least one R. indica individual were recorded and samples of 5 pinnae/plant were taken to the laboratory to count the total number of individuals (eggs, immatures and adults) per pinna under a dissecting microscope (509). Leaf area was measured using a leaf area meter (LI-3000C Portable area meter; LI-COR Biosciences) and mite densities estimated by dividing the number of mites by the area per pinna. Plants with established R. indica colonies, having all developmental stages (egg, larva, protonymph, deutonymph and adult), were considered reproductive hosts. Plants with only R. indica adults were considered non-reproductive hosts. In addition, all natural enemies (predators or pathogens) found associated with R. indica were also recorded and counted. The study was conducted approximately 6 years after the first report of R. indica in the area. Royal Botanical Gardens survey, Port of Spain, Trinidad and Tobago Twenty five species of palms were selected from this 61.8 acre botanical garden located at 10.675284, -61.513696. Three trees were selected for each species when possible. The trees received no regular fertilizer or pesticide application, but mowing was performed periodically around them. The size of the palm depended on the species and ranged from 2 to 8 m tall. One frond from the upper 1/3rd of the canopy (leaf 3 from the central spike), the middle 1/3rd canopy and the lower 1/3rd canopy were removed during the dry season (March 26–April 14, 2008) and again in the rainy season (May 29–June 11, 2008). The fronds were individually placed into plastic bags and transported to the laboratory in coolers. All stages of red palm mites (adults, nymphs, larvae and eggs) and phytoseiid motiles (adults, nymphs and larvae) were counted using a mite brushing machine (Leedom Engineering, Twain Harte, CA). As in the Fairchild Garden study, plants with R. indica colonies of all stages (egg, larva, protonymph, deutonymph and adult) were considered reproductive hosts while plants with only R. indica adults were considered non-repro- ductive hosts. The surface area of each of frond was estimated taking the width and height for the section and calculating the area using base 9 height in order to account for the triangular shape of the sample.
Recommended publications
  • Anatomia Foliar De Allagoptera Nees (Arecaceae) Como Subsídio À
    Universidade de Brasília Instituto de Ciências Biológicas Departamento de Botânica Programa de Pós Graduação em Botânica Dissertação de Mestrado Anatomia foliar de Allagoptera Nees (Arecaceae) como subsídio à taxonomia André Silva Pinedo Orientadora: Profª Drª Sueli Maria Gomes Brasília, março de 2015 i Universidade de Brasília Instituto de Ciências Biológicas Departamento de Botânica Programa de Pós Graduação em Botânica Dissertação de Mestrado Anatomia foliar de Allagoptera Nees (Arecaceae) como subsídio à taxonomia Dissertação apresentada ao Programa de Pós- Graduação em Botânica da Universidade de Brasília como um dos requisitos para obtenção do título de Mestre em Botânica. André Silva Pinedo Orientadora: Profª Drª Sueli Maria Gomes Brasília, março de 2015 ii Universidade de Brasília Instituto de Ciências Biológicas Departamento de Botânica Programa de Pós Graduação em Botânica Banca examinadora: iii Agradecimentos Primeiramente a Deus, sou eternamente grato pela minha vida, pela oportunidade proporcionada e pela capacitação de estar realizando este curso de pós-graduação, que tem sido uma grande experiência de amadurecimento para mim; À minha orientadora, Profª. Drª. Sueli Maria Gomes, pela sua paciência ao me ensinar e constantes críticas construtivas que fez ao longo do período em que trabalhamos juntos, que fizeram desse mestrado uma grande oportunidade para o meu crescimento profissional; À Profª. Drª. Renata Corrêa Martins, por sua parceria nesse projeto, auxiliando na coleta e identificação das espécies, além de ser uma profissional extremamente prestativa; À Profª. Drª. Cássia Munhoz, minha orientadora em estágio de Iniciação Científica na graduação, motivando-me a trabalhar com plantas; Ao Prof. Dr. Eduardo Gomes Gonçalves, por ter me incentivado a trabalhar com o grupo das palmeiras; À Profª.
    [Show full text]
  • Approved Plant List 10/04/12
    FLORIDA The best time to plant a tree is 20 years ago, the second best time to plant a tree is today. City of Sunrise Approved Plant List 10/04/12 Appendix A 10/4/12 APPROVED PLANT LIST FOR SINGLE FAMILY HOMES SG xx Slow Growing “xx” = minimum height in Small Mature tree height of less than 20 feet at time of planting feet OH Trees adjacent to overhead power lines Medium Mature tree height of between 21 – 40 feet U Trees within Utility Easements Large Mature tree height greater than 41 N Not acceptable for use as a replacement feet * Native Florida Species Varies Mature tree height depends on variety Mature size information based on Betrock’s Florida Landscape Plants Published 2001 GROUP “A” TREES Common Name Botanical Name Uses Mature Tree Size Avocado Persea Americana L Bahama Strongbark Bourreria orata * U, SG 6 S Bald Cypress Taxodium distichum * L Black Olive Shady Bucida buceras ‘Shady Lady’ L Lady Black Olive Bucida buceras L Brazil Beautyleaf Calophyllum brasiliense L Blolly Guapira discolor* M Bridalveil Tree Caesalpinia granadillo M Bulnesia Bulnesia arboria M Cinnecord Acacia choriophylla * U, SG 6 S Group ‘A’ Plant List for Single Family Homes Common Name Botanical Name Uses Mature Tree Size Citrus: Lemon, Citrus spp. OH S (except orange, Lime ect. Grapefruit) Citrus: Grapefruit Citrus paradisi M Trees Copperpod Peltophorum pterocarpum L Fiddlewood Citharexylum fruticosum * U, SG 8 S Floss Silk Tree Chorisia speciosa L Golden – Shower Cassia fistula L Green Buttonwood Conocarpus erectus * L Gumbo Limbo Bursera simaruba * L
    [Show full text]
  • IEEE Paper Word Template in A4 Page Size (V3)
    Effect of Sugar Concentrations on Bacterial Cellulose Production as Cellulose Membrane in Mixture Liquid Medium and Material Properties Analysis Faridah1, Selvie Diana2, Helmi3, M. Sami4, Mudliana5 1,2,3,4,5Faculty of Chemical Engineering, State of Polytechnic Lhokseumawe Lhokseumawe, 24301, Aceh, Indonesia Email: [email protected] Abstract— Cellulose membrane is bacterial cellulose which and can be used to separate the two components by restraining produced from the fermentation process by Acetobacter xylinum. certain components pass through the pores. Moreover, Cellulose membrane was performed in mixture liquid medium by membrane cellulose also has some advantages in the using coconut water and sugar palm juice as the base medium. separation process; the separation can be operated in In this study, different present sugar concentrations including continuous way and does not need too much energy [13]. The 0%, 7,5% and 10% were added into fermentation medium to enhance bacterial cellulose production. By adding three different first study shows that membrane cellulose from bacterial sugar concentrations, the bacterial cellulose from different sugar cellulose has high mechanical strength and highly hydrophilic concentration was made into cellulose membrane. Cellulose holding water [14]. Therefore bacterial cellulose can be membrane were tested for physical properties of cellulose performed separation membrane. membrane, such as the degree of crystallinity by x-ray diffraction In this study, membrane cellulose was produced by (XRD), water content and thermal decomposition behaviour by Acetobacter xylinum in mixture liquid medium by using TGA, scanning electron microscopy analysis (SEM), tensile coconut water and sugar palm juice as the base medium. The strength, FTIR spectra of cellulose membrane.
    [Show full text]
  • Journal of the International Palm Society Vol. 58(4) Dec. 2014 the INTERNATIONAL PALM SOCIETY, INC
    Palms Journal of the International Palm Society Vol. 58(4) Dec. 2014 THE INTERNATIONAL PALM SOCIETY, INC. The International Palm Society Palms (formerly PRINCIPES) Journal of The International Palm Society Founder: Dent Smith The International Palm Society is a nonprofit corporation An illustrated, peer-reviewed quarterly devoted to engaged in the study of palms. The society is inter- information about palms and published in March, national in scope with worldwide membership, and the June, September and December by The International formation of regional or local chapters affiliated with the Palm Society Inc., 9300 Sandstone St., Austin, TX international society is encouraged. Please address all 78737-1135 USA. inquiries regarding membership or information about Editors: John Dransfield, Herbarium, Royal Botanic the society to The International Palm Society Inc., 9300 Gardens, Kew, Richmond, Surrey, TW9 3AE, United Sandstone St., Austin, TX 78737-1135 USA, or by e-mail Kingdom, e-mail [email protected], tel. 44-20- to [email protected], fax 512-607-6468. 8332-5225, Fax 44-20-8332-5278. OFFICERS: Scott Zona, Dept. of Biological Sciences (OE 167), Florida International University, 11200 SW 8 Street, President: Leland Lai, 21480 Colina Drive, Topanga, Miami, Florida 33199 USA, e-mail [email protected], tel. California 90290 USA, e-mail [email protected], 1-305-348-1247, Fax 1-305-348-1986. tel. 1-310-383-2607. Associate Editor: Natalie Uhl, 228 Plant Science, Vice-Presidents: Jeff Brusseau, 1030 Heather Drive, Cornell University, Ithaca, New York 14853 USA, e- Vista, California 92084 USA, e-mail mail [email protected], tel. 1-607-257-0885.
    [Show full text]
  • Ecosystem Profile Madagascar and Indian
    ECOSYSTEM PROFILE MADAGASCAR AND INDIAN OCEAN ISLANDS FINAL VERSION DECEMBER 2014 This version of the Ecosystem Profile, based on the draft approved by the Donor Council of CEPF was finalized in December 2014 to include clearer maps and correct minor errors in Chapter 12 and Annexes Page i Prepared by: Conservation International - Madagascar Under the supervision of: Pierre Carret (CEPF) With technical support from: Moore Center for Science and Oceans - Conservation International Missouri Botanical Garden And support from the Regional Advisory Committee Léon Rajaobelina, Conservation International - Madagascar Richard Hughes, WWF – Western Indian Ocean Edmond Roger, Université d‘Antananarivo, Département de Biologie et Ecologie Végétales Christopher Holmes, WCS – Wildlife Conservation Society Steve Goodman, Vahatra Will Turner, Moore Center for Science and Oceans, Conservation International Ali Mohamed Soilihi, Point focal du FEM, Comores Xavier Luc Duval, Point focal du FEM, Maurice Maurice Loustau-Lalanne, Point focal du FEM, Seychelles Edmée Ralalaharisoa, Point focal du FEM, Madagascar Vikash Tatayah, Mauritian Wildlife Foundation Nirmal Jivan Shah, Nature Seychelles Andry Ralamboson Andriamanga, Alliance Voahary Gasy Idaroussi Hamadi, CNDD- Comores Luc Gigord - Conservatoire botanique du Mascarin, Réunion Claude-Anne Gauthier, Muséum National d‘Histoire Naturelle, Paris Jean-Paul Gaudechoux, Commission de l‘Océan Indien Drafted by the Ecosystem Profiling Team: Pierre Carret (CEPF) Harison Rabarison, Nirhy Rabibisoa, Setra Andriamanaitra,
    [Show full text]
  • Download (2MB)
    UNIVERSITI PUTRA MALAYSIA DEVELOPMENT AND CHARACTERIZATION OF THERMOPLASTIC SUGAR PALM STARCH/AGAR POLYMER BLEND, REINFORCED SEAWEED WASTE AND SUGAR PALM FIBER HYBRID COMPOSITE RIDHWAN BIN JUMAIDIN FK 2017 62 DEVELOPMENT AND CHARACTERIZATION OF THERMOPLASTIC SUGAR PALM STARCH/AGAR POLYMER BLEND, REINFORCED SEAWEED WASTE AND SUGAR PALM FIBER HYBRID COMPOSITE UPM By RIDHWAN BIN JUMAIDIN COPYRIGHT Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Doctor of Philosophy © May 2017 All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia. Copyright © Universiti Putra Malaysia UPM COPYRIGHT © DEDICATION To Al-Quran, the greatest source of knowledge Bring me sheets of iron" - until, when he had leveled [them] between the two mountain walls, he said, "Blow [with bellows]," until when he had made it [like] fire, he said, "Bring me, that I may pour over it molten copper." (Al-Kahf:Verse 96) & To my beloved father and mother & To my beloved wife UPM & To my beloved daughter and son COPYRIGHT © Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Doctor of Philosophy DEVELOPMENT AND CHARACTERIZATION OF THERMOPLASTIC SUGAR PALM STARCH/AGAR POLYMER BLEND, REINFORCED SEAWEED WASTE AND SUGAR PALM FIBER HYBRID COMPOSITE By RIDHWAN BIN JUMAIDIN May 2017 Chairman : Mohd Sapuan Bin Salit, PhD Faculty : Engineering UPM In recent, the needs to develop more environmental friendly product is increasing due to the accumulating of non-biodegradable waste, particularly the disposable product.
    [Show full text]
  • Kelley Palm Species List
    Actinorhytis clapparia Aiphanes horrida Archontophoenix purpurea Areca guppyana Areca triandra Large Hardwoods Areca vestiaria Blue Marble Elaeocarpus angustifolius Arenga hookeriana Monkeypod Samanea saman Astrocaryum murumuru Rubber tree Ficus elastica Attalea cohune Bacurubu Schizolobium parahyba Barretiokentia hapala Kapok Ceiba pentandra Beccariophoenix alfredii Redwood Sequoia Sempervirens Beccariophoenix fenestralis Bentinckia condapanna Bismarckia nobilis Borassodendron machadonis Burretiokentia hapala Caryota gigas Chamaedorea ernesti-augusti Chamaedorea glaucifolia Chamaedoria tepejilote Chambeyronia macrocarpa Clinostigma somoense Corypha umbraculifera Corypha utan Dypsis ampasindavae Dypsis baronii Dypsis basilonga Dypsis bejofo Dypsis carlsmithii Dypsis decipiens Dypsis hovitro Dypsis lanceolata Dypsis lastelliana Dypsis leptocheilos Dypsis mananjarensis Dypsis nauseosa Dypsis onilahensis Dypsis paludosa Dypsis pilulifera Dypsis pinnatifrons Dypsis prestoniana Dypsis procera Dypsis psammophila Dypsis rivularis Dypsis robusta Dypsis rosea Dypsis saintluci Dypsis sp. "orange crush" Dypsis sp. bef Dypsis sp. bejofo Heterospathe glauca aka barfodii Heterospathe intermedia Hydriastele beguinii Obi Island form Hydriastele flabellate Hydriastele pinangoides Hyphorbe indica Iguanura wallichiana Iriartea deltoidea Itaya amicorum Johannesteijsmannia altifrons Johannesteijsmannia magnifica Kerridoxa elegans Lanonia dasyantha Latania loddigesii Lemurophoenix halleuxii Licuala elegans (L. peltata sumawongii) Licuala peltata var. peltata
    [Show full text]
  • Arizona Landscape Palms
    Cooperative Extension ARIZONA LANDSCAPE PALMS ELIZABETH D AVISON Department of Plant Sciences JOHN BEGEMAN Pima County Cooperative Extension AZ1021 • 12/2000 Issued in furtherance of Cooperative Extension work acts of May 8 and June 30, 1914, in cooperation with the U.S. Department of Agriculture, James A. Christenson, Director, Cooperative Extension, College of Agriculture and Life Sciences, The University of Arizona. The University of Arizona College of Agriculture and Life Sciences is an equal opportunity employer authorized to provide research, educational information and other services to individuals and institutions that function without regard to sex, race, religion, color, national origin, age, Vietnam Era Veteran's status, or disability. Contents Landscape Use ......................................... 3 Adaptation ................................................ 3 Planting Palms ......................................... 3 Care of Established Palms...................... 5 Diseases and Insect Pests ....................... 6 Palms for Arizona .................................... 6 Feather Palms ........................................... 8 Fan Palms................................................ 12 Palm-like Plants ..................................... 16 This information has been reviewed by university faculty. ag.arizona.edu/pubs/garden/az1121.pdf 2 The luxuriant tropical appearance and stately Adaptation silhouette of palms add much to the Arizona landscape. Palms generally can be grown below the 4000 ft level Few other plants are as striking in low and mid elevation in Arizona. However, microclimate may make the gardens. Although winter frosts and low humidity limit difference between success and failure in a given location. the choices somewhat, a good number of palms are Frost pockets, where nighttime cold air tends to collect, available, ranging from the dwarf Mediterranean Fan should be avoided, especially for the tender species. Palms palm to the massive Canary Island Date palm.
    [Show full text]
  • Winter-Fall Sale 2002 Palm Trees-Web
    Mailing Address: 3233 Brant St. San Diego Ca, 92103 Phone: (619) 291 4605 Fax: (619) 574 1595 E mail: [email protected] Fall/Winter 2002 Palm Price List Tree Citrus 25/+ Band$ 1 gal$ 2 gal$ 3/5 gal$ 7 gal$ 15 gal$ 20 gal$ Box$ Species Pot$ Pot$ gal$ Acanthophoenix crinita $ 30 $ 30-40 $ 35-45 $ 55-65 $ 95 $ 125+ Acanthophoenix rubra $ 35 Acanthophoenix sp. $ 25+ $ 35+ $ 55+ Acoelorrhaphe wrightii $ 15 $ 300 Acrocomia aculeata $ 25+ $ 35 $ 35-45 $ 65 $ 65 $ 100- $ 150+ Actinokentia divaricata 135 Actinorhytis calapparia $ 55 $ 125 Aiphanes acanthophylla $ 45-55 inquire $ 125 Aiphanes caryotaefolia $ 25 $ 55-65 $ 45-55 $ 85 $ 125 Aiphanes elegans $ 20 $ 35 Aiphanes erosa $ 45-55 $ 125 Aiphanes lindeniana $ 55 $ 125 Aiphanes vincentsiana $ 55 Allagoptera arenaria $ 25 $ 40 $ 55 $ 135 Allagoptera campestris $ 35 Alloschmidtia glabrata $ 35 $ 45 $ 55 $ 85 $ 150 $ 175 Alsmithia longipes $ 35+ $ 55 Aphandra natalia $ 35 $ 55 Archontophoenix Alexandrae $ 55 $ 85 $ 125 inquire Archontophoenix Beatricae $ 20 $ 35 $ 55 $ 125 Archontophoenix $ 25 $ 45 $ 65 $ 100 $ 150- $ 200+ $ 310- 175 350 cunninghamiana Archontophoenix maxima $ 25 $ 30 inquire Archontophoenix maxima (Wash River) Archontophoenix myolaensis $ 25+ $ 30 $ 50 $ 75 $ 125 Archontophoenix purpurea $ 30 $ 25 $ 35 $ 50 $ 85 $ 125 $ 300+ Archontophoenix sp. Archontophoenix tuckerii (peach $ 25+ $ 55 river) Areca alicae $ 45 Areca catechu $ 20 $ 35 $ 45 $ 125 Areca guppyana $ 30 $ 45 Areca ipot $ 45 Areca triandra $ 25 $ 30 $ 95 $ 125 Areca vestiaria $ 25 $ 30-35 $ 35-40 $ 55 $ 85-95 $ 125 Arecastrum romanzoffianum $ 125 Arenga australasica $ 20 $ 30 $ 35 $ 45-55 $ 85 $ 125 Arenga caudata $ 20 $ 30 $ 45 $ 55 $ 75 $ 100 Arenga engleri $ 20 $ 60 $ 35 $ 45 $ 85 $ 125 $ 200 $ 300+ Arenga hastata $ 25 www.junglemusic.net Page 1 of 22 Tree Citrus 25/+ Band$ 1 gal$ 2 gal$ 3/5 gal$ 7 gal$ 15 gal$ 20 gal$ Box$ Species Pot$ Pot$ gal$ Arenga hookeriana inquire Arenga micranthe 'Lhutan' $ 20 inquire Arenga pinnata $ 35 $ 50 $ 85 $ 125 Arenga sp.
    [Show full text]
  • WIAD CONSERVATION a Handbook of Traditional Knowledge and Biodiversity
    WIAD CONSERVATION A Handbook of Traditional Knowledge and Biodiversity WIAD CONSERVATION A Handbook of Traditional Knowledge and Biodiversity Table of Contents Acknowledgements ...................................................................................................................... 2 Ohu Map ...................................................................................................................................... 3 History of WIAD Conservation ...................................................................................................... 4 WIAD Legends .............................................................................................................................. 7 The Story of Julug and Tabalib ............................................................................................................... 7 Mou the Snake of A’at ........................................................................................................................... 8 The Place of Thunder ........................................................................................................................... 10 The Stone Mirror ................................................................................................................................. 11 The Weather Bird ................................................................................................................................ 12 The Story of Jelamanu Waterfall .........................................................................................................
    [Show full text]
  • Saving Tahina — You Can Help
    July 2020 NEWSLETTER SAVING TAHINA — YOU CAN HELP PalmTalk (the public forum of the International Palm Society) is initiating a pro- gram to preserve Tahina spectabilis, an endangered palm that PalmTalk brought to the world’s attention in 2007. The discovery of this enormous, new palm gen- erated worldwide interest, but now due to its extremely limited and fragile range in Madagascar, Tahina needs our help. Please visit PalmTalk (go to www. palms.org, and click on the PalmTalk Forums tab) to see how the IPS and the Roy- al Botanic Gardens, Kew are partnering with a local village in Madagascar to help save this amazing palm. You can make a donation to the pro- ject and be a part of this unique partnership in conser- vation. Please donate today! One of the first photos posted on PalmTalk of the mysterious palm that came to be known as Tahina spectabilis and the little girl (at the time) for whom it was named, Anne-Tahina Metz. Volume 8.06 · July 2020 · Newsletter of the International Palm Society | Editor: Andy Hurwitz [email protected] Virtual hiking on Reunion Island, lowlands editionby Andy Hurwitz This article continues the “virtual hike” and tour of Reunion’s palms that began in last month’s News- letter. This month, we explore the palms and landscapes of the low to middle elevations. We begin by traveling to the windward eastern coast of the island, just south of Piton-Sainte-Rose, to ramble in Anse des Cascades. This idyllic cove is situated among groves of palm trees. The park is cool and shady.
    [Show full text]
  • Hosts of Raoiella Indica Hirst (Acari: Tenuipalpidae) Native to the Brazilian Amazon
    Journal of Agricultural Science; Vol. 9, No. 4; 2017 ISSN 1916-9752 E-ISSN 1916-9760 Published by Canadian Center of Science and Education Hosts of Raoiella indica Hirst (Acari: Tenuipalpidae) Native to the Brazilian Amazon Cristina A. Gómez-Moya1, Talita P. S. Lima2, Elisângela G. F. Morais2, Manoel G. C. Gondim Jr.1 3 & Gilberto J. De Moraes 1 Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife, PE, Brazil 2 Embrapa Roraima, Boa Vista, RR, Brazil 3 Departamento de Entomologia e Acarologia, Escola Superior de Agricultura ‘Luiz de Queiroz’, Universidade de São Paulo, Piracicaba, SP, Brazil Correspondence: Cristina A. Gómez Moya, Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Av. Dom Manoel de Medeiros s/n, Dois Irmãos, 52171-900, Recife, PE, Brazil. Tel: 55-81-3320-6207. E-mail: [email protected] Received: January 30, 2017 Accepted: March 7, 2017 Online Published: March 15, 2017 doi:10.5539/jas.v9n4p86 URL: https://doi.org/10.5539/jas.v9n4p86 The research is financed by Coordination for the Improvement of Higher Education Personnel (CAPES)/ Program Student-Agreement Post-Graduate (PEC-PG) for the scholarship provided to the first author. Abstract The expansion of red palm mite (RPM), Raoiella indica (Acari: Tenuipalpidae) in Brazil could impact negatively the native plant species, especially of the family Arecaceae. To determine which species could be at risk, we investigated the development and reproductive potential of R. indica on 19 plant species including 13 native species to the Brazilian Amazon (12 Arecaceae and one Heliconiaceae), and six exotic species, four Arecaceae, a Musaceae and a Zingiberaceae.
    [Show full text]