Combined Linkage and Association Analysis Identifies Rare and Low
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Population Genetic Considerations for Using Biobanks As International
Carress et al. BMC Genomics (2021) 22:351 https://doi.org/10.1186/s12864-021-07618-x REVIEW Open Access Population genetic considerations for using biobanks as international resources in the pandemic era and beyond Hannah Carress1, Daniel John Lawson2 and Eran Elhaik1,3* Abstract The past years have seen the rise of genomic biobanks and mega-scale meta-analysis of genomic data, which promises to reveal the genetic underpinnings of health and disease. However, the over-representation of Europeans in genomic studies not only limits the global understanding of disease risk but also inhibits viable research into the genomic differences between carriers and patients. Whilst the community has agreed that more diverse samples are required, it is not enough to blindly increase diversity; the diversity must be quantified, compared and annotated to lead to insight. Genetic annotations from separate biobanks need to be comparable and computable and to operate without access to raw data due to privacy concerns. Comparability is key both for regular research and to allow international comparison in response to pandemics. Here, we evaluate the appropriateness of the most common genomic tools used to depict population structure in a standardized and comparable manner. The end goal is to reduce the effects of confounding and learn from genuine variation in genetic effects on phenotypes across populations, which will improve the value of biobanks (locally and internationally), increase the accuracy of association analyses and inform developmental efforts. Keywords: Bioinformatics, Population structure, Population stratification bias, Genomic medicine, Biobanks Background individuals, families, communities and populations, ne- Association studies aim to detect whether genetic vari- cessitated genomic biobanks. -
Gene Linkage and Genetic Mapping 4TH PAGES © Jones & Bartlett Learning, LLC
© Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION Gene Linkage and © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC 4NOTGenetic FOR SALE OR DISTRIBUTIONMapping NOT FOR SALE OR DISTRIBUTION CHAPTER ORGANIZATION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR4.1 SALELinked OR alleles DISTRIBUTION tend to stay 4.4NOT Polymorphic FOR SALE DNA ORsequences DISTRIBUTION are together in meiosis. 112 used in human genetic mapping. 128 The degree of linkage is measured by the Single-nucleotide polymorphisms (SNPs) frequency of recombination. 113 are abundant in the human genome. 129 The frequency of recombination is the same SNPs in restriction sites yield restriction for coupling and repulsion heterozygotes. 114 fragment length polymorphisms (RFLPs). 130 © Jones & Bartlett Learning,The frequency LLC of recombination differs © Jones & BartlettSimple-sequence Learning, repeats LLC (SSRs) often NOT FOR SALE OR DISTRIBUTIONfrom one gene pair to the next. NOT114 FOR SALEdiffer OR in copyDISTRIBUTION number. 131 Recombination does not occur in Gene dosage can differ owing to copy- Drosophila males. 115 number variation (CNV). 133 4.2 Recombination results from Copy-number variation has helped human populations adapt to a high-starch diet. 134 crossing-over between linked© Jones alleles. & Bartlett Learning,116 LLC 4.5 Tetrads contain© Jonesall & Bartlett Learning, LLC four products of meiosis. -
The Prognosis Analysis of RFWD2 Inhibiting the Expression of ETV1 in Colorectal Cancer
521 Original Article The prognosis analysis of RFWD2 inhibiting the expression of ETV1 in colorectal cancer Wei Huang1#, Xiumei Tian2,3#, Xiaoying Guan2,3 1Department of Pathology, The Affiliated Shunde Hospital of Guangzhou Medical University, Foshan 528315, China; 2Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510500, China; 3Department of Biomedical Engineering, Basic Medicine School, Guangzhou Medical University, Guangzhou 511436, China Contributions: (I) Conception and design: W Huang, X Guan; (II) Administrative support: Guangzhou Medical University; (III) Provision of study materials or patients: W Huang; (IV) Collection and assembly of data: X Tian; (V) Data analysis and interpretation: W Huang, X Guan; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. #These authors contributed equally to this work. Correspondence to: Xiaoying Guan. Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Huangsha Avenue 39#, Liwan District, Guangzhou 510500, China; Department of Biomedical Engineering, Basic Medicine School, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, China. Email: [email protected]. Background: The poor prognosis is partly due to the lack of efficient methods for early diagnosis on colorectal cancer (CRC). Methods: Bioinformatic analysis and Immunohistochemical analysis were used to evaluate E3 ubiquitin ligase Ring finger and WD domain 2 RFWD2( ) and ETS variant 1 (ETV1) mRNA and protein expression levels. Results: The abundance of RFWD2 and ETV1 proteins from 76 CRC patients were examined. The relationship between their expression levels and clinic pathological parameters including prognostic significances were also detected. -
Genetic Linkage Analysis
BASIC SCIENCE SEMINARS IN NEUROLOGY SECTION EDITOR: HASSAN M. FATHALLAH-SHAYKH, MD Genetic Linkage Analysis Stefan M. Pulst, MD enetic linkage analysis is a powerful tool to detect the chromosomal location of dis- ease genes. It is based on the observation that genes that reside physically close on a chromosome remain linked during meiosis. For most neurologic diseases for which the underlying biochemical defect was not known, the identification of the chromo- Gsomal location of the disease gene was the first step in its eventual isolation. By now, genes that have been isolated in this way include examples from all types of neurologic diseases, from neu- rodegenerative diseases such as Alzheimer, Parkinson, or ataxias, to diseases of ion channels lead- ing to periodic paralysis or hemiplegic migraine, to tumor syndromes such as neurofibromatosis types 1 and 2. Arch Neurol. 1999;56:667-672 With the advent of new genetic markers tin gene, diagnosis using flanking mark- and automated genotyping, genetic map- ers requires the analysis of several family ping can be conducted extremely rap- members. idly. Genetic linkage maps have been gen- erated for the human genome and for LINKAGE OF GENES model organisms and have provided the basis for the construction of physical maps When Mendel observed an “independent that permit the rapid mapping of disease assortment of traits” (Mendel’s second traits. law), he was fortunate to have chosen traits As soon as a chromosomal location that were not localized close to one an- for a disease phenotype has been estab- other on the same chromosome.1 Subse- lished, genetic linkage analysis helps quent studies revealed that many genes determine whether the disease pheno- were indeed linked, ie, that traits did not type is only caused by mutation in a assort or segregate independently, but that single gene or mutations in other genes traits encoded by these linked genes were can give rise to an identical or similar inherited together. -
Novel Protein RGPR-P117
a ular nd G ec en l e o t i M c f M o l e Journal of Molecular and Genetic d a i Yamaguchi, J Mol Genet Med 2013, 7:3 n c r i n u e o J Medicine DOI: 10.4172/1747-0862.1000072 ISSN: 1747-0862 MiniResearch Review Article OpenOpen Access Access Novel Protein RGPR-p117: New Aspects in Cell Regulation Masayoshi Yamaguchi* Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, USA Abstract RGPR-p117 was initially discovered as novel protein which binds to the nuclear factor I (NF1)-like motif TTGGC(N)6CC in the regucalcin gene promoter region (RGPR). RGPR-p117 is localized to the nucleus with stimulation of protein kinase C-related signaling process. Overexpression of RGPR-p117 has been shown to enhance regucalcin mRNA expression in the cloned normal rat kidney proximal tubular epithelial NRK52E cells in vitro. This process is mediated through phosphorylated RGPR-p117. Overexpression of RGPR-p117 was found to suppress apoptotic cell death induced after stimulation with various signaling factors in NRK52E cells, while it did not have an effect on cell proliferation. Moreover, RGPR-p117 was found to localize in the plasma membranes, mitochondria and microsomes, suggesting an involvement in the regulation of function of these organelles. After that, RGPR-p117 was renamed as Sec16B that is involved in the endoplasmic reticulum export. However, this is not suitable name with many findings of the role of RGPR-p117 in cell regulation. RGPR-p117 may play an essential role as transcription factor, and the elucidation of other roles in cell regulation will be expected. -
Analysis of the Indacaterol-Regulated Transcriptome in Human Airway
Supplemental material to this article can be found at: http://jpet.aspetjournals.org/content/suppl/2018/04/13/jpet.118.249292.DC1 1521-0103/366/1/220–236$35.00 https://doi.org/10.1124/jpet.118.249292 THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS J Pharmacol Exp Ther 366:220–236, July 2018 Copyright ª 2018 by The American Society for Pharmacology and Experimental Therapeutics Analysis of the Indacaterol-Regulated Transcriptome in Human Airway Epithelial Cells Implicates Gene Expression Changes in the s Adverse and Therapeutic Effects of b2-Adrenoceptor Agonists Dong Yan, Omar Hamed, Taruna Joshi,1 Mahmoud M. Mostafa, Kyla C. Jamieson, Radhika Joshi, Robert Newton, and Mark A. Giembycz Departments of Physiology and Pharmacology (D.Y., O.H., T.J., K.C.J., R.J., M.A.G.) and Cell Biology and Anatomy (M.M.M., R.N.), Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada Received March 22, 2018; accepted April 11, 2018 Downloaded from ABSTRACT The contribution of gene expression changes to the adverse and activity, and positive regulation of neutrophil chemotaxis. The therapeutic effects of b2-adrenoceptor agonists in asthma was general enriched GO term extracellular space was also associ- investigated using human airway epithelial cells as a therapeu- ated with indacaterol-induced genes, and many of those, in- tically relevant target. Operational model-fitting established that cluding CRISPLD2, DMBT1, GAS1, and SOCS3, have putative jpet.aspetjournals.org the long-acting b2-adrenoceptor agonists (LABA) indacaterol, anti-inflammatory, antibacterial, and/or antiviral activity. Numer- salmeterol, formoterol, and picumeterol were full agonists on ous indacaterol-regulated genes were also induced or repressed BEAS-2B cells transfected with a cAMP-response element in BEAS-2B cells and human primary bronchial epithelial cells by reporter but differed in efficacy (indacaterol $ formoterol . -
Genetic Linkage of the Huntington's Disease Gene to a DNA Marker James F
LE JOURNAL CANADIEN DES SCIENCES NEUROLOG1QUES SPECIAL FEATURE Genetic Linkage of the Huntington's Disease Gene to a DNA Marker James F. Gusella ABSTRACT: Recombinant DNA techniques have provided the means to generate large numbers of new genetic linkage markers. This technology has been used to identify a DNA marker that coinherits with the Huntington's Disease (HD) gene in family studies. The HD locus has thereby been mapped to human chromosome 4. The discovery of a genetic marker for the inheritance of HD has implications both for patient care and future research. The same approach holds considerable promise for the investigation of other genetic diseases, including Dystonia Musculorum Deformans. RESUME: Les techniques d'ADN recombine ont fourni le moyen de g£nerer un grand nombre de nouveux marqueurs a liason g6n£tique. Cette technologie a He employe" afin d'identifier un marqueur d'ADN qui co-herite avec le gene de la maladie de Huntington (MH) dans les etudes familiales. Le lieu du gene de la MH a ainsi 6te localise sur le chromosome humain numero 4. La d6couverte d'un marqueur g6n6tique pour I'her6dit6 de MH a des implications pour la soin de patients ainsi que pour la recherche dans le futur. La meme approche semble pleine de promesses pour l'investigation d'autres maladies g6ndtiques, incluant la dystonie musculaire deTormante. Can. J. Neurol. Sci. 1984; 11:421-425 Huntington's Disease currently no effective therapy to cure this devastating disease, Huntington's disease (HD) is a genetic neurodegenerative or to slow its inexorable progression. disorder first described by George Huntington in 1873 (Hunting ton, 1972;Hayden, 1981;Chaseetal., 1979). -
Linkage & Genetic Mapping in Eukaryotes
LinLinkkaaggee && GGeenneetticic MMaappppiningg inin EEuukkaarryyootteess CChh.. 66 1 LLIINNKKAAGGEE AANNDD CCRROOSSSSIINNGG OOVVEERR ! IInn eeuukkaarryyoottiicc ssppeecciieess,, eeaacchh lliinneeaarr cchhrroommoossoommee ccoonnttaaiinnss aa lloonngg ppiieeccee ooff DDNNAA – A typical chromosome contains many hundred or even a few thousand different genes ! TThhee tteerrmm lliinnkkaaggee hhaass ttwwoo rreellaatteedd mmeeaanniinnggss – 1. Two or more genes can be located on the same chromosome – 2. Genes that are close together tend to be transmitted as a unit Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display 2 LinkageLinkage GroupsGroups ! Chromosomes are called linkage groups – They contain a group of genes that are linked together ! The number of linkage groups is the number of types of chromosomes of the species – For example, in humans " 22 autosomal linkage groups " An X chromosome linkage group " A Y chromosome linkage group ! Genes that are far apart on the same chromosome can independently assort from each other – This is due to crossing-over or recombination Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display 3 LLiinnkkaaggee aanndd RRecombinationecombination Genes nearby on the same chromosome tend to stay together during the formation of gametes; this is linkage. The breakage of the chromosome, the separation of the genes, and the exchange of genes between chromatids is known as recombination. (we call it crossing over) 4 IndependentIndependent assortment:assortment: -
Sec16 As an Integrator of Signaling to the Endoplasmic Reticulum
Sec16 as an integrator of signaling to the endoplasmic reticulum Dissertation submitted for the degree of Doctor of Natural Sciences (Dr. rer. nat.) Presented by Kerstin Tillmann at the Faculty of Sciences Department of Biology University of Konstanz Date of the oral examination: September 11th, 2015 First referee: Prof. Dr. Daniel Legler Second referee: PD Dr. Hesso Farhan Third referee: Prof. Dr. Sebastian Springer Konstanzer Online-Publikations-System (KOPS) URL: http://nbn-resolving.de/urn:nbn:de:bsz:352-0-305723 Table of Contents Summary ........................................................................................ 1 Zusammenfassung ........................................................................ 2 Introduction .................................................................................... 3 The Secretory Pathway ........................................................................................... 4 1 Structure of the Secretory Pathway ..............................................................................4 2 Endoplasmic reticulum ...................................................................................................9 2.1 Protein translocation into the ER ...............................................................................9 2.2 Protein maturation in the ER lumen ....................................................................... 10 2.3 Quality control and ERAD ...................................................................................... 11 3 ER exit sites ................................................................................................................. -
1 the TRAPP Complex Mediates Secretion Arrest Induced by Stress Granule Assembly Francesca Zappa1, Cathal Wilson1, Giusepp
bioRxiv preprint doi: https://doi.org/10.1101/528380; this version posted February 5, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. The TRAPP complex mediates secretion arrest induced by stress granule assembly Francesca Zappa1, Cathal Wilson1, Giuseppe Di Tullio1, Michele Santoro1, Piero Pucci2, Maria Monti2, Davide D’Amico1, Sandra Pisonero Vaquero1, Rossella De Cegli1, Alessia Romano1, Moin A. Saleem3, Elena Polishchuk1, Mario Failli1, Laura Giaquinto1, Maria Antonietta De Matteis1, 2 1 Telethon Institute of Genetics and Medicine, Pozzuoli (Naples), Italy 2 Federico II University, Naples, Italy 3 Bristol Renal, Bristol Medical School, University of Bristol, UK Correspondence to: [email protected], [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/528380; this version posted February 5, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. The TRAnsport-Protein-Particle (TRAPP) complex controls multiple membrane trafficking steps and is thus strategically positioned to mediate cell adaptation to diverse environmental conditions, including acute stress. We have identified TRAPP as a key component of a branch of the integrated stress response that impinges on the early secretory pathway. TRAPP associates with and drives the recruitment of the COPII coat to stress granules (SGs) leading to vesiculation of the Golgi complex and an arrest of ER export. -
ADHD) Gene Networks in Children of Both African American and European American Ancestry
G C A T T A C G G C A T genes Article Rare Recurrent Variants in Noncoding Regions Impact Attention-Deficit Hyperactivity Disorder (ADHD) Gene Networks in Children of both African American and European American Ancestry Yichuan Liu 1 , Xiao Chang 1, Hui-Qi Qu 1 , Lifeng Tian 1 , Joseph Glessner 1, Jingchun Qu 1, Dong Li 1, Haijun Qiu 1, Patrick Sleiman 1,2 and Hakon Hakonarson 1,2,3,* 1 Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; [email protected] (Y.L.); [email protected] (X.C.); [email protected] (H.-Q.Q.); [email protected] (L.T.); [email protected] (J.G.); [email protected] (J.Q.); [email protected] (D.L.); [email protected] (H.Q.); [email protected] (P.S.) 2 Division of Human Genetics, Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA 3 Department of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA * Correspondence: [email protected]; Tel.: +1-267-426-0088 Abstract: Attention-deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder with poorly understood molecular mechanisms that results in significant impairment in children. In this study, we sought to assess the role of rare recurrent variants in non-European populations and outside of coding regions. We generated whole genome sequence (WGS) data on 875 individuals, Citation: Liu, Y.; Chang, X.; Qu, including 205 ADHD cases and 670 non-ADHD controls. The cases included 116 African Americans H.-Q.; Tian, L.; Glessner, J.; Qu, J.; Li, (AA) and 89 European Americans (EA), and the controls included 408 AA and 262 EA. -
A Guide to Obesity and the Metabolic Syndrome
A GUIDE TO OBESITY AND THE METABOLIC SYNDROME ORIGINS AND TREAT MENT GEORG E A. BRA Y Louisiana State University, Baton Rouge, USA Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Group, an informa business © 2011 by Taylor and Francis Group, LLC CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2011 by Taylor and Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed in the United States of America on acid-free paper 10 9 8 7 6 5 4 3 2 1 International Standard Book Number: 978-1-4398-1457-4 (Hardback) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the valid- ity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or uti- lized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopy- ing, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.