Oh Caecilian …. (On the Music of Simon and Garfunkel )
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Amphibians in Zootaxa: 20 Years Documenting the Global Diversity of Frogs, Salamanders, and Caecilians
Zootaxa 4979 (1): 057–069 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Review ZOOTAXA Copyright © 2021 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4979.1.9 http://zoobank.org/urn:lsid:zoobank.org:pub:972DCE44-4345-42E8-A3BC-9B8FD7F61E88 Amphibians in Zootaxa: 20 years documenting the global diversity of frogs, salamanders, and caecilians MAURICIO RIVERA-CORREA1*+, DIEGO BALDO2*+, FLORENCIA VERA CANDIOTI3, VICTOR GOYANNES DILL ORRICO4, DAVID C. BLACKBURN5, SANTIAGO CASTROVIEJO-FISHER6, KIN ONN CHAN7, PRISCILLA GAMBALE8, DAVID J. GOWER9, EVAN S.H. QUAH10, JODI J. L. ROWLEY11, EVAN TWOMEY12 & MIGUEL VENCES13 1Grupo Herpetológico de Antioquia - GHA and Semillero de Investigación en Biodiversidad - BIO, Universidad de Antioquia, Antioquia, Colombia [email protected]; https://orcid.org/0000-0001-5033-5480 2Laboratorio de Genética Evolutiva, Instituto de Biología Subtropical (CONICET-UNaM), Facultad de Ciencias Exactas Químicas y Naturales, Universidad Nacional de Misiones, Posadas, Misiones, Argentina [email protected]; https://orcid.org/0000-0003-2382-0872 3Unidad Ejecutora Lillo, Consejo Nacional de Investigaciones Científicas y Técnicas - Fundación Miguel Lillo, 4000 San Miguel de Tucumán, Argentina [email protected]; http://orcid.org/0000-0002-6133-9951 4Laboratório de Herpetologia Tropical, Universidade Estadual de Santa Cruz, Departamento de Ciências Biológicas, Rodovia Jorge Amado Km 16 45662-900 Ilhéus, Bahia, Brasil [email protected]; https://orcid.org/0000-0002-4560-4006 5Florida Museum of Natural History, University of Florida, 1659 Museum Road, Gainesville, Florida, 32611, USA [email protected]; https://orcid.org/0000-0002-1810-9886 6Laboratório de Sistemática de Vertebrados, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av. -
BOA2.1 Caecilian Biology and Natural History.Key
The Biology of Amphibians @ Agnes Scott College Mark Mandica Executive Director The Amphibian Foundation [email protected] 678 379 TOAD (8623) 2.1: Introduction to Caecilians Microcaecilia dermatophaga Synapomorphies of Lissamphibia There are more than 20 synapomorphies (shared characters) uniting the group Lissamphibia Synapomorphies of Lissamphibia Integumen is Glandular Synapomorphies of Lissamphibia Glandular Skin, with 2 main types of glands. Mucous Glands Aid in cutaneous respiration, reproduction, thermoregulation and defense. Granular Glands Secrete toxic and/or noxious compounds and aid in defense Synapomorphies of Lissamphibia Pedicellate Teeth crown (dentine, with enamel covering) gum line suture (fibrous connective tissue, where tooth can break off) basal element (dentine) Synapomorphies of Lissamphibia Sacral Vertebrae Sacral Vertebrae Connects pelvic girdle to The spine. Amphibians have no more than one sacral vertebrae (caecilians have none) Synapomorphies of Lissamphibia Amphicoelus Vertebrae Synapomorphies of Lissamphibia Opercular apparatus Unique to amphibians and Operculum part of the sound conducting mechanism Synapomorphies of Lissamphibia Fat Bodies Surrounding Gonads Fat Bodies Insulate gonads Evolution of Amphibians † † † † Actinopterygian Coelacanth, Tetrapodomorpha †Amniota *Gerobatrachus (Ray-fin Fishes) Lungfish (stem-tetrapods) (Reptiles, Mammals)Lepospondyls † (’frogomander’) Eocaecilia GymnophionaKaraurus Caudata Triadobatrachus Anura (including Apoda Urodela Prosalirus †) Salientia Batrachia Lissamphibia -
Amphibian Diversity in Shimba Hills National Reserve, Kenya: a Comprehensive List of Specimens and Species
Journal of East African Natural History 106(1): 19–46 (2017) AMPHIBIAN DIVERSITY IN SHIMBA HILLS NATIONAL RESERVE, KENYA: A COMPREHENSIVE LIST OF SPECIMENS AND SPECIES Beryl A. Bwong Biogeography Research Group, Department of Environmental Sciences University of Basel, 4056 Basel , Switzerland & Herpetology Section, Zoology Department, National Museums of Kenya P.O Box 40658, 00100 Nairobi, Kenya [email protected] Joash O. Nyamache, Patrick K. Malonza, Domnick V. Wasonga, Jacob M. Ngwava Herpetology Section, Zoology Department, National Museums of Kenya P.O Box 40658, 00100 Nairobi, Kenya [email protected]; [email protected]; [email protected], [email protected] Christopher D. Barratt, Peter Nagel Biogeography Research Group, Department of Environmental Sciences University of Basel, 4056 Basel , Switzerland [email protected]; [email protected] Simon P. Loader Biogeography Research Group, Department of Environmental Sciences University of Basel, 4056 Basel , Switzerland & Life Sciences, The Natural History Museum, London SW7 5BD, UK [email protected] ABSTRACT We present the first annotated amphibian checklist of Shimba Hills National Reserve (SHNR). The list comprises of 30 currently known amphibians (28 anurans and two caecilians), which includes 11 families and 15 genera. In addition, individual records per species, distribution in the reserve and brief remarks about the species are presented. The checklist is based on information from museum collections, field guides, unpublished reports and newly collected field data. We are able to confirm the presence of two Eastern Afromontane species in the SHNR: Scolecomorphus cf. vittatus and Callulina cf. kreffti. The latter has not been recorded since the original collection of a single specimen over 50 years ago. -
Bioseries12-Amphibians-Taita-English
0c m 12 Symbol key 3456 habitat pond puddle river stream 78 underground day / night day 9101112131415161718 night altitude high low vegetation types shamba forest plantation prelim pages ENGLISH.indd ii 2009/10/22 02:03:47 PM SANBI Biodiversity Series Amphibians of the Taita Hills by G.J. Measey, P.K. Malonza and V. Muchai 2009 prelim pages ENGLISH.indd Sec1:i 2009/10/27 07:51:49 AM SANBI Biodiversity Series The South African National Biodiversity Institute (SANBI) was established on 1 September 2004 through the signing into force of the National Environmental Management: Biodiversity Act (NEMBA) No. 10 of 2004 by President Thabo Mbeki. The Act expands the mandate of the former National Botanical Institute to include responsibilities relating to the full diversity of South Africa’s fauna and ora, and builds on the internationally respected programmes in conservation, research, education and visitor services developed by the National Botanical Institute and its predecessors over the past century. The vision of SANBI: Biodiversity richness for all South Africans. SANBI’s mission is to champion the exploration, conservation, sustainable use, appreciation and enjoyment of South Africa’s exceptionally rich biodiversity for all people. SANBI Biodiversity Series publishes occasional reports on projects, technologies, workshops, symposia and other activities initiated by or executed in partnership with SANBI. Technical editor: Gerrit Germishuizen Design & layout: Elizma Fouché Cover design: Elizma Fouché How to cite this publication MEASEY, G.J., MALONZA, P.K. & MUCHAI, V. 2009. Amphibians of the Taita Hills / Am bia wa milima ya Taita. SANBI Biodiversity Series 12. South African National Biodiversity Institute, Pretoria. -
Care and Parentage in a Skin-Feeding Caecilian Amphibian ALEXANDER KUPFER1,2Ã, MARK WILKINSON2, DAVID J
JOURNAL OF EXPERIMENTAL ZOOLOGY 309A:460–467 (2008) A Journal of Integrative Biology Care and Parentage in a Skin-Feeding Caecilian Amphibian ALEXANDER KUPFER1,2Ã, MARK WILKINSON2, DAVID J. GOWER2, 1–3 4,5 HENDRIK MU¨ LLER , AND ROBERT JEHLE 1Institut fu¨r Spezielle Zoologie und Evolutionsbiologie mit Phyletischem Museum, Friedrich-Schiller-Universita¨t Jena, Jena, Germany 2Department of Zoology, The Natural History Museum, London, United Kingdom 3Institute of Biology, Leiden University, Leiden, The Netherlands 4School of Environment and Life Sciences, Centre for Environmental Systems Research, University of Salford, Salford, Greater Manchester, United Kingdom 5Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom ABSTRACT An exceptional form of parental care has recently been discovered in a poorly known caecilian amphibian. Mothers of the Taita Hills (Kenya) endemic Boulengerula taitanus provide their own skin as a food source for their offspring. Field data suggest that nursing is costly. Females found attending young had a lower body condition and fat body volume than nonbrooding and egg-incubating females, and the female condition decreased substantially during parental care. Most mothers and their eggs or offspring were found in close proximity to other nesting females, in high-density nest sites that enhance the potential for social interactions and highlighting the possibility of communal breeding. Parentage was investigated using Amplified Fragment Length Polymorphism (AFLP) genetic markers in 29 offspring from six litters guarded by putative mothers. Our data provide the first evidence of multiple paternity in a caecilian, implying that two fathers sired one litter. Some young from two litters had genotypes not matching the guarding female suggesting that not all offspring are cared for by their biological mothers. -
What Is Driving Declines of Montane Endemic Amphibians? New Insights from Mount Bamboutos, Cameroon
What is driving declines of montane endemic amphibians? New insights from Mount Bamboutos, Cameroon A. M. TCHASSEM F., T. M. DOHERTY-B ONE,M.M.KAMENI N. W. P. TAPONDJOU N.,J.L.TAMESSE and L . N . G ONWOUO Abstract Amphibians on African mountains are threatened Preserving a network of connected forest patches is there- by habitat loss and fragmentation, pollution, disease and fore critical to save the endemic amphibians of Mount climate change. In particular, there have been recent reports Bamboutos. of declines of montane endemic frogs in Cameroon. Mount Keywords Africa, amphibians, anurans, Cameroon, caeci- Bamboutos, although home to numerous species of endemic lians, endemic species, forest degradation, mountains amphibians, has no official protection and its amphibian populations have so far not been studied quantitatively. Supplementary material for this article is available at We surveyed frog assemblages on this mountain along a https://doi.org/./S gradient of forest modification over a -year period. Through visual encounter surveys stratified across forest and farm- land, we found that threatened montane amphibian species Introduction are closely associated with forested areas, particularly the Critically Endangered Leptodactylodon axillaris and mphibians are threatened globally, with over one-third Endangered Leptodactylodon perreti, Astylosternus ranoides Aof all known species at risk of extinction and half show- and Cardioglossa oreas. Using the updated inventory of ing population declines (Stuart et al., ; IUCN, ). amphibians, which includes species with broader ranges Threats include habitat alteration, loss and fragmenta- across Africa, we found % of amphibian species on tion, pollution, overexploitation, disease, invasive species, Mount Bamboutos to be threatened. We did not record climate change and combinations of these factors (Beebee several species present in historical records, which suggests & Griffiths, ). -
Morphological Evolution and Modularity of the Caecilian Skull Carla Bardua1,2* , Mark Wilkinson1, David J
Bardua et al. BMC Evolutionary Biology (2019) 19:30 https://doi.org/10.1186/s12862-018-1342-7 RESEARCH ARTICLE Open Access Morphological evolution and modularity of the caecilian skull Carla Bardua1,2* , Mark Wilkinson1, David J. Gower1, Emma Sherratt3 and Anjali Goswami1,2 Abstract Background: Caecilians (Gymnophiona) are the least speciose extant lissamphibian order, yet living forms capture approximately 250 million years of evolution since their earliest divergences. This long history is reflected in the broad range of skull morphologies exhibited by this largely fossorial, but developmentally diverse, clade. However, this diversity of form makes quantification of caecilian cranial morphology challenging, with highly variable presence or absence of many structures. Consequently, few studies have examined morphological evolution across caecilians. This extensive variation also raises the question of degree of conservation of cranial modules (semi-autonomous subsets of highly-integrated traits) within this clade, allowing us to assess the importance of modular organisation in shaping morphological evolution. We used an intensive surface geometric morphometric approach to quantify cranial morphological variation across all 32 extant caecilian genera. We defined 16 cranial regions using 53 landmarks and 687 curve and 729 surface sliding semilandmarks. With these unprecedented high-dimensional data, we analysed cranial shape and modularity across caecilians assessing phylogenetic, allometric and ecological influences on cranial evolution, as well as investigating the relationships among integration, evolutionary rate, and morphological disparity. Results: We found highest support for a ten-module model, with greater integration of the posterior skull. Phylogenetic signal was significant (Kmult =0.87,p < 0.01), but stronger in anterior modules, while allometric influences were also significant (R2 =0.16,p < 0.01), but stronger posteriorly. -
Amphibia: Gymnophiona: Ichthyophiidae) from Myanmar
Zootaxa 3785 (1): 045–058 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3785.1.4 http://zoobank.org/urn:lsid:zoobank.org:pub:7EF35A95-5C75-4D16-8EE4-F84934A80C2A A new species of striped Ichthyophis Fitzinger, 1826 (Amphibia: Gymnophiona: Ichthyophiidae) from Myanmar MARK WILKINSON1,5, BRONWEN PRESSWELL1,2, EMMA SHERRATT1,3, ANNA PAPADOPOULOU1,4 & DAVID J. GOWER1 1Department of Zoology!, The Natural History Museum, London SW7 5BD, UK 2Department of Zoology, University of Otago, PO Box 56, Dunedin New Zealand 3Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, 26 Oxford St., Cam- bridge, MA 02138, USA 4Department of Ecology and Evolutionary Biology, The University of Michigan, Ann Arbor MI 41809, USA 5Corresponding author. E-mail: [email protected] ! Currently the Department of Life Sciences Abstract A new species of striped ichthyophiid caecilian, Ichthyophis multicolor sp. nov., is described on the basis of morpholog- ical and molecular data from a sample of 14 specimens from Ayeyarwady Region, Myanmar. The new species resembles superficially the Indian I. tricolor Annandale, 1909 in having both a pale lateral stripe and an adjacent dark ventrolateral stripe contrasting with a paler venter. It differs from I. tricolor in having many more annuli, and in many details of cranial osteology, and molecular data indicate that it is more closely related to other Southeast Asian Ichthyophis than to those of South Asia. The caecilian fauna of Myanmar is exceptionally poorly known but is likely to include chikilids as well as multiple species of Ichthyophis. -
Biogeographic Analysis Reveals Ancient Continental Vicariance and Recent Oceanic Dispersal in Amphibians ∗ R
Syst. Biol. 63(5):779–797, 2014 © The Author(s) 2014. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: [email protected] DOI:10.1093/sysbio/syu042 Advance Access publication June 19, 2014 Biogeographic Analysis Reveals Ancient Continental Vicariance and Recent Oceanic Dispersal in Amphibians ∗ R. ALEXANDER PYRON Department of Biological Sciences, The George Washington University, 2023 G Street NW, Washington, DC 20052, USA; ∗ Correspondence to be sent to: Department of Biological Sciences, The George Washington University, 2023 G Street NW, Washington, DC 20052, USA; E-mail: [email protected]. Received 13 February 2014; reviews returned 17 April 2014; accepted 13 June 2014 Downloaded from Associate Editor: Adrian Paterson Abstract.—Amphibia comprises over 7000 extant species distributed in almost every ecosystem on every continent except Antarctica. Most species also show high specificity for particular habitats, biomes, or climatic niches, seemingly rendering long-distance dispersal unlikely. Indeed, many lineages still seem to show the signature of their Pangaean origin, approximately 300 Ma later. To date, no study has attempted a large-scale historical-biogeographic analysis of the group to understand the distribution of extant lineages. Here, I use an updated chronogram containing 3309 species (~45% of http://sysbio.oxfordjournals.org/ extant diversity) to reconstruct their movement between 12 global ecoregions. I find that Pangaean origin and subsequent Laurasian and Gondwanan fragmentation explain a large proportion of patterns in the distribution of extant species. However, dispersal during the Cenozoic, likely across land bridges or short distances across oceans, has also exerted a strong influence. -
80-80-1-PB.Pdf (1.515Mb)
Muñoz-QuesadaBiota Colombiana 1 (3) 289 - 319, 2000 Trichoptera of Colombia - 289 Ranas, Salamandras y Caecilias (Tetrapoda: Amphibia) de Colombia Andrés Rymel Acosta-Galvis Pontificia Universidad Javeriana. Apartado Aéreo 15098, Bogotá D.C. - Colombia. [email protected] Palabras Clave: Colombia, Amphibia, Diversidad, Distribución, Lista de Especies Con una amplia variedad de ambientes producto de la factores como la existencia de colecciones que hasta el pre- interacción de procesos bióticos y abióticos, Colombia es sente no han sido reportadas en la literatura y la ausencia uno de los países neotropicales con mayor número de de inventarios sistematizados en zonas inexploradas cientí- vertebrados en el ámbito global, ocupando el primer lugar ficamente. Entre éstas podemos enumerar: las zonas altas y en cuanto al número de especies de aves y anfibios presen- medias del norte y centro de las Cordilleras Occidental y tes en su territorio; para el caso específico de los anfibios, Oriental, en particular las vertientes oriental y occidental de algunos autores sugieren que tal diversidad es una res- la Cordillera Occidental; la Serranía de Los Paraguas, Tatamá puesta ante factores como la posición geográfica, la y el Páramo de Frontino (en el Valle del Cauca, Risaralda y pluviosidad y la complejidad orográfica del país, y los cua- Antioquia, respectivamente); a lo largo de las partes altas les han generado una amplia gama de hábitats óptimos para Serranía del Perijá en el Departamento del Cesar, y los pára- el desarrollo de esta fauna (Ruiz et al.1996). mos y subpáramos del sur de Cundinamarca y Tolima en la Cordillera Oriental; y el norte de la Cordillera Central (en Durante la última mitad del siglo XX, el reporte de nuevas Antioquia). -
Taxonomia Dos Anfíbios Da Ordem Gymnophiona Da Amazônia Brasileira
TAXONOMIA DOS ANFÍBIOS DA ORDEM GYMNOPHIONA DA AMAZÔNIA BRASILEIRA ADRIANO OLIVEIRA MACIEL Belém, Pará 2009 MUSEU PARAENSE EMÍLIO GOELDI UNIVERSIDADE FEDERAL DO PARÁ PROGRAMA DE PÓS-GRADUAÇÃO EM ZOOLOGIA MESTRADO EM ZOOLOGIA Taxonomia Dos Anfíbios Da Ordem Gymnophiona Da Amazônia Brasileira Adriano Oliveira Maciel Dissertação apresentada ao Programa de Pós-graduação em Zoologia, Curso de Mestrado, do Museu Paraense Emílio Goeldi e Universidade Federal do Pará como requisito parcial para obtenção do grau de mestre em Zoologia. Orientador: Marinus Steven Hoogmoed BELÉM-PA 2009 MUSEU PARAENSE EMÍLIO GOELDI UNIVERSIDADE FEDERAL DO PARÁ PROGRAMA DE PÓS-GRADUAÇÃO EM ZOOLOGIA MESTRADO EM ZOOLOGIA TAXONOMIA DOS ANFÍBIOS DA ORDEM GYMNOPHIONA DA AMAZÔNIA BRASILEIRA Adriano Oliveira Maciel Dissertação apresentada ao Programa de Pós-graduação em Zoologia, Curso de Mestrado, do Museu Paraense Emílio Goeldi e Universidade Federal do Pará como requisito parcial para obtenção do grau de mestre em Zoologia. Orientador: Marinus Steven Hoogmoed BELÉM-PA 2009 Com os seres vivos, parece que a natureza se exercita no artificialismo. A vida destila e filtra. Gaston Bachelard “De que o mel é doce é coisa que me nego a afirmar, mas que parece doce eu afirmo plenamente.” Raul Seixas iii À MINHA FAMÍLIA iv AGRADECIMENTOS Primeiramente agradeço aos meus pais, a Teté e outros familiares que sempre apoiaram e de alguma forma contribuíram para minha vinda a Belém para cursar o mestrado. À Marina Ramos, com a qual acreditei e segui os passos da formação acadêmica desde a graduação até quase a conclusão destes tempos de mestrado, pelo amor que foi importante. A todos os amigos da turma de mestrado pelos bons momentos vividos durante o curso. -
Towards Evidence-Based Husbandry for Caecilian Amphibians: Substrate Preference in Geotrypetes Seraphini (Amphibia: Gymnophiona: Dermophiidae)
RESEARCH ARTICLE The Herpetological Bulletin 129, 2014: 15-18 Towards evidence-based husbandry for caecilian amphibians: Substrate preference in Geotrypetes seraphini (Amphibia: Gymnophiona: Dermophiidae) BENJAMIN TAPLEY1*, ZOE BRYANT1, SEBASTIAN GRANT1, GRANT KOTHER1, YEDRA FEL- TRER1, NIC MASTERS1, TAINA STRIKE1, IRI GILL1, MARK WILKINSON2 & DAVID J GOWER2 1Zoological Society of London, Regents Park, London NW1 4RY 2Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD *Corresponding author email: [email protected] ABSTRACT - Maintaining caecilians in captivity provides opportunities to study life-history, behaviour and reproductive biology and to investigate and to develop treatment protocols for amphibian chytridiomycosis. Few species of caecilians are maintained in captivity and little has been published on their husbandry. We present data on substrate preference in a group of eight Central African Geotrypetes seraphini (Duméril, 1859). Two substrates were trialled; coir and Megazorb (a waste product from the paper making industry). G. seraphini showed a strong preference for the Megazorb. We anticipate this finding will improve the captive management of this and perhaps also other species of fossorial caecilians, and stimulate evidence-based husbandry practices. INTRODUCTION (Gower & Wilkinson, 2005) and little has been published on the captive husbandry of terrestrial caecilians (Wake, 1994; O’ Reilly, 1996). A basic parameter in terrestrial The paucity of information on caecilian ecology and caecilian husbandry is substrate, but data on tolerances and general neglect of their conservation needs should be of preferences in the wild or in captivity are mostly lacking. concern in light of global amphibian declines (Alford & Terrestrial caecilians are reported from a wide range of Richards 1999; Stuart et al., 2004; Gower & Wilkinson, soil pH (Gundappa et al., 1981; Wake, 1994; Kupfer et 2005).