Integrative Zoology

The late Miocene/early vertebrate fauna from Mallorca (Balearic Islands, Western Mediterranean): an update

Journal:For Integrative Review Zoology Only Manuscript ID: INZ-2013-01-003.R1 Manuscript Type: Original Article Mallorca, late Miocene, early Pliocene, new fauna, Keywords: paleobiogeography Specialty: Paleontology, Evolution

http://mc03.manuscriptcentral.com/inz Page 37 of 77 Integrative Zoology

1 1 2 3 1 ABSTRACT 4 5 2 The vertebrate fossil record from the Balearic Islands (western Mediterranean) 6 7 3 has been widely improved in the last decade, especially in Mallorca and Menorca. In 8 9 10 4 Menorca, the Pliocene terrestrial fauna was updated by the discovery and description 11 12 5 of the largesized leporid Nuralagus and several reptiles and an amphibian. In 13 14 6 Mallorca, paleontological exploration yielded two deposits with a late Miocene/early 15 16 7 Pliocene chronology, Caló den Rafelino (CdR) and Na Burguesa1 (NB1). Up to four 17 18 For Review Only 19 8 new mammalian taxa and two new reptiles have been identified for the Caló den 20 21 9 Rafelino deposit so far, whereas the faunal assemblage from the recently discovered 22 23 10 deposit (April 2012) of Na Burguesa1 is currently composed of, at least, six 24 25 11 terrestrial , eight reptiles and an amphibian. Its faunal composition and some 26 27 12 primitive characteristics of the obtained taxa suggest that the chronology of this 28 29 30 13 deposit is slightly earlier than the Caló den Rafelino. The terrestrial vertebrates 31 32 14 recorded in these two Mallorcan deposits are changing the view of the paleofaunal 33 34 15 assemblage previously known for the PlioPleistocene of the island. Morphological 35 36 16 characteristics displayed by some of the taxa suggest that these faunas would be at the 37 38 39 17 beginning of an isolated evolution. In this paper we present a preliminary report on 40 41 18 the fossils recovered from Na Burguesa1 deposit, as well as some unpublished 42 43 19 material from Caló den Rafelino, and we analyze the whole fauna from both 44 45 20 Mallorcan deposits, focusing in taxonomical and paleobiogeographical aspects. 46 47 21 48 49 50 22 51 52 23 Keywords : Mallorca, late Miocene, early Pliocene, new fauna, paleobiogeography 53 54 55 56 57 58 59 60 http://mc03.manuscriptcentral.com/inz Integrative Zoology Page 38 of 77

2 1 2 3 24 INTRODUCTION 4 5 25 The Balearic Islands are an archipelago located at the Western Mediterranean 6 7 26 Sea. It is compound of two subarchipelagos, the Gymnesic Islands (Mallorca, 8 9 10 27 Menorca and surrounding islets) and the Pityusic Islands (Eivissa, Formentera and 11 12 28 surrounding islets) (Fig. 1). Although these islands are geographically close to each 13 14 29 other, remarkable differences in their Pliocene and Pleistocene fossil record exist. 15 16 30 Two different insular episodes can be identified in the Miocene to 17 18 For Review Only 19 31 fossil record of the Balearic Islands (e.g., Alcover et al. 1981; MoyàSolà et al. 1999; 20 21 32 Bover et al. 2008). A first episode has been related to the LanghianSerravalian 22 23 33 regression (middle Miocene). It has been only recorded in Mallorca and Menorca. The 24 25 34 two main Mallorcan sites representatives of this episode (Santa Margalida and Sant 26 27 35 Llorenç) yielded remains of a lagomorph ( Gymnesicolagus gelaberti Mein & 28 29 30 36 Adrover, 1982) and three glirids ( Carbomys sacaresi Mein & Adrover, 1982, 31 32 37 Margaritamys llulli Mein & Adrover, 1982 and Peridyromys ordinasi Mein & 33 34 38 Adrover, 1982) (Mein & Adrover 1982; Adrover et al. 1985). Other taxa found in pre 35 36 39 deposits (Cova des Coll and Cova de Cala Varques B; Gràcia et al. 1997, 37 38 39 40 2000) are a large terrestrial tortoise (Testudinidae), and a brackish softshell turtle 40 41 41 (Trionyx sp.) (Bover et al. 2008). A related fauna, also belonging to this episode, was 42 43 42 recovered from the Menorcan deposits of Punta Nati2 and Es Cul de sa Ferrada, with 44 45 43 G. aff. gelaberti , Margaritamys adroveri Quintana & Agustí, 2007, an undetermined 46 47 44 viperid, an undetermined greatsized tortoise, one or more smallsized reptiles, and a 48 49 50 45 bird (Bailon et al. 2002; Quintana & Agustí 2007). 51 52 46 The second episode started at the Messinian Salinity Crisis (MSC) and spreads 53 54 47 over all the PlioPleistocene. Until the end of the 90’s its record of terrestrial 55 56 48 vertebrates was mainly represented in Mallorca and Menorca by three mammalian 57 58 59 60 http://mc03.manuscriptcentral.com/inz Page 39 of 77 Integrative Zoology

3 1 2 3 49 evolutionary lineages: a bovid ( ), a glirid ( Hypnomys ) and a soricid 4 5 50 (Nesiotites ), together with a lacertid of the genus Podarcis (early Pleistocene to 6 7 51 Holocene), and the amphibians Alytes (early Pleistocene to Holocene) and 8 9 10 52 Discoglossus (early Pleistocene) (Alcover et al. 1981; Bover et al. 2008). The fossil 11 12 53 record of the three mammalian lineages was remarkably complete throughout the 13 14 54 Pliocene to Holocene on Mallorca and throughout the early Pleistocene to Holocene 15 16 55 on Menorca (see Alcover et al. 1981; Agustí & MoyàSolà 1990; MoyàSolà et al. 17 18 For Review Only 19 56 1999; Bover et al. 2008 for further detail on the fauna). Additionally, a peculiar 20 21 57 Pliocene fauna was known from Menorca, composed of the glirid Muscardinus 22 23 58 cyclopeus Agustí, MoyàSolà, PonsMoyà, 1982, the bat Rhinolophus cf. grivensis 24 25 59 Depéret, 1892 and the giant tortoise Cheirogaster gymnesica (Bate, 1914) (Bate 1914; 26 27 60 PonsMoyà et al. 1981; Agustí et al. 1982). 28 29 30 61 In Eivissa, a distinctive faunal succession was observed. The earliest fauna 31 32 62 recorded comes from the deposit of Ses Fontanelles. It includes two bovids (a caprine 33 34 63 and an antilopine), two rodents (the gerbillid Debruijnimys sp. and the glirid Eliomys 35 36 64 sp.), a leporid (identified as Hypolagus sp. by Quintana et al. 2010), an insectivore, a 37 38 39 65 lizard, and a tortoise (MoyàSolà et al. 1984, 1999; Agustí & MoyàSolà 1990). It was 40 41 66 attributed to the late Miocene (Messinian)/early Pliocene (MoyàSolà et al. 1999; 42 43 67 Bover et al. 2008). A single deposit from the late Pliocene/early Pleistocene of Eivissa 44 45 68 is known, Cova de Ca Na Reia, containing two glirids ( Eivissia canarreiensis Alcover 46 47 69 & Agustí, 1985 and Hypnomys sp.), a tortoise ( Cheirogaster sp.), a lizard ( Podarcis 48 49 50 70 sp.), bats and birds (Kotsakis 1981; Alcover & Agustí 1985; Bour 1985; Alcover 51 52 71 1989). Remains of giant tortoises are also known from other earlymiddle Pleistocene 53 54 72 deposits from Eivissa and Formentera (Bover et al. 2008). Finally, the late 55 56 73 PleistoceneHolocene deposits from the Pityusic Islands yielded birds, bats and a 57 58 59 60 http://mc03.manuscriptcentral.com/inz Integrative Zoology Page 40 of 77

4 1 2 3 74 lizard ( Podarcis pityusensis Boscá, 1883), but no other fossil terrestrial vertebrates 4 5 75 have been ever recorded from them (Florit et al. 1989). 6 7 76 The discovery of Pliocene deposits in Mallorca and Menorca during the last 8 9 10 77 fifteen years improved substantially the knowledge on the paleofauna of the second 11 12 78 faunal episode, and it shed light to the stock that arrived to the islands during MSC, an 13 14 79 event that has been situated between 5.6 and 5.32 Ma ago (Clauzon et al. 1996; 15 16 80 Gautier et al. 1994; Krijgsman et al. 1999). In Menorca, several deposits in the 17 18 For Review Only 19 81 Northwest coast of the island, in Punta Nati (municipality of Ciutadella, Quintana 20 21 82 1998), yielded a Pliocene fauna coeval to Muscardinus cyclopeus , Rhinolophus cf. 22 23 83 grivensis and Cheirogaster gymnesica . It includes Nuralagus rex Quintana, Moyà 24 25 84 Solà, Köhler, 2011, Vipera natiensis Bailon, GarciaPorta, Quintana, 2002, Vipera sp., 26 27 85 Coluber sp., Gekkonidae indet., Podarcis aff. lilfordi , Blanus sp., Latonia sp. (Bailon 28 29 30 86 2004; Bailon et al. 2002, 2005; GarciaPorta et al. 2002; Quintana et al. 2005, 2011), 31 32 87 and several bird species (such as Pterodromoides minoricensis Seguí, Quintana, 33 34 88 Fornós, Alcover, 2001, Scolopax carmesinae Seguí, 1999, Camusia quintanai Seguí, 35 36 89 2002, Tyto balearica MourerChauviré, Alcover, MoyàSolà, PonsMoyà, 1980, 37 38 39 90 Athene sp., Corvus sp. and an unidentified passeriform; Seguí 1998, 1999, 2002; 40 41 91 Seguí et al. 2001). 42 43 92 The early Pliocene fauna from Mallorca started to be known within the last 44 45 93 decade (Bover et al. 2007). In this paper we present an overview of the Mallorcan 46 47 94 vertebrate fauna from the late Miocene/early Pliocene interval based on the findings 48 49 50 95 from two sites, Caló den Rafelino (Manacor) and Na Burguesa1 (Palma). As the 51 52 96 work on the Na Burguesa1 breccia is now in progress, we only can present here a few 53 54 97 preliminary data on this site, based on the first extracted and identified bones. 55 56 98 57 58 59 60 http://mc03.manuscriptcentral.com/inz Page 41 of 77 Integrative Zoology

5 1 2 3 99 MATERIAL AND METHODS 4 5 100 6 7 101 DEPOSITS 8 9 10 102 Caló den Rafelino (from now on CdR) 11 12 103 This deposit (Fig. 1.b) is located at the eastern coast of Mallorca, at the North 13 14 104 of Caló den Rafelino (from where it takes its name) and at the South of Cala 15 16 105 Morlanda, in the municipality of Manacor. It was discovered by Josep Quintana and 17 18 For Review Only 19 106 Pere Bover in the spring of 2004 and it was excavated the same year. 20 21 107 The deposit, located at 5 meters above sea level, consists of consolidated red 22 23 108 silts of karstic origin which are the floor sediment of a collapsed cave in the Upper 24 25 109 Miocene limestone of the socalled Reef Complex (Pomar et al. 1990; GómezPujol et 26 27 110 al. 2007) of late TortonianMessinian chronology (Bizon et al. 1973). Just a small 28 29 2 30 111 portion of the sediments (around 1 m at the NorthEast extreme of the cave 31 32 112 sediments) has yielded fossil remains while the rest of the sediment seems to be 33 34 113 sterile. The thickness of these red silts is unknown but the structure of the fossil cave 35 36 114 and its proximity to the sea (around 6 m, and 5 m above sea level) suggest that it is 37 38 39 115 not very large. 40 41 116 The chronology of the deposit has been indirectly estimated. It postdates the 42 43 117 upper Miocene limestone and characters of some of the taxa, more primitive than 44 45 118 those of the fauna present in the later early Pliocene deposit of Cala Morlanda (Moyà 46 47 119 Solà & PonsMoyà 1982; PonsMoyà 1990), suggest that it should be considered as 48 49 50 120 an early Pliocene deposit, but a Messinian chronology cannot be completely 51 52 121 discarded. 53 54 122 The bones obtained from this breccia were mainly broken, worn and eroded. 55 56 123 57 58 59 60 http://mc03.manuscriptcentral.com/inz Integrative Zoology Page 42 of 77

6 1 2 3 124 Na Burguesa-1 (from now on NB-1) 4 5 125 It was discovered on April 2012 by the Mallorcan speleologists Damià Vicens, 6 7 126 Damià Crespí and Antelm Ginard from the Speleo Club Mallorca (SCM). The deposit 8 9 10 127 (Fig 1.a) is located at 160 meters above sea level and close to the road from the 11 12 128 neighborhood of Génova to the Mirador de Na Burguesa, at the municipality of 13 14 129 Palma. The original location of the breccia has not been found, as the findings are 15 16 130 blocks extracted from the original site and used to facilitate the access to a small 17 18 For Review Only 19 131 house, but it is probably close or under a small construction of the Mallorcan Water 20 21 132 Company (EMAYA) built in the slope of the mountain. 22 23 133 The breccia is constituted by brownred silts and, geologically, it was in a cave 24 25 134 or fissure excavated in the Lower Lias sediments present in the area. The obtained 26 27 135 fauna is related to that from CdR and both can be considered as chronologically close, 28 29 30 136 being CdR slightly more recent than NB1. Further study of the fauna will shed more 31 32 137 light on the NB1 deposit chronology. After obtaining the permits from the Mallorcan 33 34 138 Government, several large blocks have been recovered and the bones are being 35 36 139 extracted. The obtained bones are in better condition than those from CdR. 37 38 39 140 40 41 141 BONE EXTRACTION 42 43 142 The obtained breccias from CdR and NB1 were treated or are currently being 44 45 143 treated (NB1) with acetic acid to extract the bones. Cycles of consolidation of the 46 47 144 bones with ParaloidB67 (5%), treatment with acetic acid (10%, 48 h), and fresh 48 49 50 145 water immersion (7 days) have been used. The breccia from NB1 is much richer than 51 52 146 the CdR one. 53 54 147 55 56 148 GEOLOGICAL NOMENCLATURE 57 58 59 60 http://mc03.manuscriptcentral.com/inz Page 43 of 77 Integrative Zoology

7 1 2 3 149 In this paper we use the nomenclature for the Pliocene and Pleistocene 4 5 150 presented by Gibbard et al. (2010), following the IUGS updated chronology of the 6 7 151 base of the . 8 9 10 152 11 12 153 MEASUREMENTS/NOMENCLATURE 13 14 154 Teeth nomenclature: lowercase letters (‘m’ for molar, ‘p’ for premolar) for 15 16 155 lower teeth and uppercase letters for upper teeth. 17 18 For Review Only 19 156 Measurements of reptile bones were taken with an electronic digital calliper 20 21 157 (accuracy 0.01 mm) on bone projections using a camera lucida. 22 23 158 24 25 159 SYSTEMATIC PALEONTOLOGY 26 27 160 In this section, a complete list of the fauna so far obtained from Caló den 28 29 30 161 Rafelino (CdR) is presented. For Na Burguesa (NB1), just some preliminary remarks 31 32 162 on the fauna of the deposit will be furnished because it is currently being processed, 33 34 163 and additional taxa could be obtained. Furthermore, only a small sample of 35 36 164 amphibians/reptiles from NB1 has been currently analysed. 37 38 39 165 40 41 166 FISHES 42 43 167 Several fish teeth have been recovered from the CdR deposit. The taxonomical 44 45 168 composition of this fish fauna is being currently studied (Vicens & Bover in prep.). 46 47 169 The presence of fish teeth in a mainly terrestrial faunal deposit is intriguing. Their 48 49 50 170 incorporation at the site deposition may be related to some bioaccumulator agent 51 52 171 (such as some seabird). 53 54 172 55 56 173 BIRDS 57 58 59 60 http://mc03.manuscriptcentral.com/inz Integrative Zoology Page 44 of 77

8 1 2 3 174 A single bird bone (proximal fragment of a humerus) has been obtained from 4 5 175 the CdR (unidentified bird), whereas bird bones are also present in NB1. 6 7 176 8 9 10 177 AMPHIBIANS 11 12 178 Order Anura Fischer von Waldheim, 1813 13 14 179 Family Bufonidae (?) Gray, 1825 15 16 180 Material: 1 sacral vertebra (NB1). 17 18 For Review Only 19 181 The vertebra is procoelous and it bears an anterior cotyle and two clearly 20 21 182 separated posterior condyles. The sacral processes are only moderately widened 22 23 183 anteroporteriorly. The centrum is relatively short and, in dorsal view, a small pit 24 25 184 occurs at the base of each sacral process. This combination of characters suggests 26 27 185 referral to the Bufonidae (see, e.g., Sanchiz 1977; Bailon & Hossini 1990; Bailon 28 29 30 186 1999), but such an attribution cannot be made without reservation. If recovery of 31 32 187 further material shows that assignment to the Bufonidae is accurate, then this anuran 33 34 188 would be the first fossil record of the family in the Balearic Islands, as the presence of 35 36 189 the extant species Bufo balearicus (Boettger, 1880) in these islands is the consequence 37 38 39 190 of a recent human introduction (Hemmer et al. 1981; Pinya & Carretero 2011). 40 41 191 42 43 192 REPTILES 44 45 193 Order Chelonii Linnaeus, 1758 46 47 194 Material: 2 terminal phalanges (IMEDEA 90102, 90103) (CdR), 1 phalange and shell 48 49 50 195 plates (NB1). 51 52 196 Two terminal phalanges probably belonging to a largesized terrestrial tortoise 53 54 197 (Testudinidae) have been recovered from CdR. A phalange and shell fragments of a 55 56 198 tortoise have been obtained from NB1. 57 58 59 60 http://mc03.manuscriptcentral.com/inz Page 45 of 77 Integrative Zoology

9 1 2 3 199 4 5 200 6 7 201 Order Squamata Opell, 1811 8 9 10 202 Family Gekkonidae Gray, 1825 11 12 203 13 14 204 Material: 1 fragment of right dentary (NB1). 15 16 205 The presence of a Meckel’s groove entirely surrounded by the dentary and of 17 18 For Review Only 19 206 numerous pleurodont, cylindrical and monocuspid teeth allows the attribution of this 20 21 207 dentary to the Gekkonidae. However, a more precise identification is not possible. 22 23 208 Bailon et al. (2005) described remains of gekkonids from the Pliocene of Menorca. 24 25 209 26 27 210 Family Lacertidae Batsch, 1788 28 29 30 211 Lacertidae, new genus and species 31 32 212 33 34 213 Material: 1 left fragmented dentary (IMEDEA 90107), 1 right dentary fragment 35 36 214 (IMEDEA 90109), 2 left maxilla fragments (IMEDEA 90105, 90106), 1 37 38 39 215 caudal vertebra (IMEDEA 90260) (CdR). 40 41 216 Remains of a largesized lacertid were recovered from the CdR deposit. This 42 43 217 lizard displays short and robust dentaries having a thick lateral wall, a reduced 44 45 218 number of tooth positions (13) and amblyodont teeth. It has been proposed as a new 46 47 219 genus and species (Bailon et al. submitted). 48 49 50 220 51 52 221 Lacertidae, unidentified genus and species 53 54 222 Material: 1 left fragmentary maxillary (NB1). 55 56 57 58 59 60 http://mc03.manuscriptcentral.com/inz Integrative Zoology Page 46 of 77

10 1 2 3 223 The presence of cylindrical, pleurodont and bicuspid teeth, with a well 4 5 224 developed central cusp and a small anterior cusp, permits attribution of this maxilla to 6 7 225 the Lacertidae (Barahona & Barbadillo 1997). This family is known in the Balearic 8 9 10 226 Islands since the middle Miocene of Menorca (Bailon 2004). 11 12 227 13 14 228 Family Scincidae Gray, 1825 15 16 229 cf. Chalcides Laurenti, 1768. 17 18 For Review Only 19 230 Material: 1 right dentary (NB1) (Fig. 2.g). 20 21 231 The dentary, comprised of two fragments, has an approximate length of 4.7 22 23 232 mm, thus belonging to a smallsized individual. In medial view, Meckel’s canal is 24 25 233 open throughout the dentary, but in its anterior half it narrows and it is located medio 26 27 234 ventrally. The mandibular symphysis is reduced. The subdental table, the ventral 28 29 30 235 margin of the bone and the dental crest are slighltly curved and they give an elongated 31 32 236 appearance to the dentary. In laterat view, six dental foramina can be observed and, 33 34 237 posterodorsally, there is no coronoid impression on the lateral wall of the dentary. 35 36 238 Teeth are pleurodont, monocuspid, cylindrical and they have blunt apexes. Medially, 37 38 39 239 each apex displays a series of small vertical ridges. The dentary has 19 teeth. The 40 41 240 morphology of this dentary fits into the general morphological pattern observed in the 42 43 241 smallsized individuals of Chalcides (Barbadillo 1989; Bailon 2000; Blain et al. 2007, 44 45 242 2008; Blain 2009). 46 47 243 In the fossil record of the Balearic Islands, Boulenger (in Bate 1918) 48 49 50 244 mentioned Chalcides sp. from a currently unknown deposit from Menorca. Thus, the 51 52 245 identification of Chalcides in NB1 deposit could confirm the presence of skinks on 53 54 246 these islands during the late Miocene/early Pliocene interval. 55 56 247 57 58 59 60 http://mc03.manuscriptcentral.com/inz Page 47 of 77 Integrative Zoology

11 1 2 3 248 Family Anguidae Gray, 1825 4 5 249 Dopasia Gray, 1853 6 7 250 Material: 1 trunk vertebra, IMEDEA 90115 (CdR, Fig. 2.ac); 1 fragment of dentary, 8 9 10 251 1 trunk vertebra, 3 caudal vertebrae and 2 osteoderms (NB1, Fig. 2.d). 11 12 252 A mediumsized vertebra (centrum length = 4.3 mm) from CdR displays a 13 14 253 characteristic anguid morphology and it is tentatively attributed to Dopasia . It is 15 16 254 procoelous, depressed, moderately elongated and its cotyle and condyle are dorso 17 18 For Review Only 19 255 ventrally flattened. The ventral surface of the centrum is subtriangular and slightly 20 21 256 convex in transverse section; the lateral margins of the centrum diverge anteriorly and 22 23 257 are slightly concave laterally. The neural spine, partially broken, is moderately robust 24 25 258 in its posterior half. No zygosphenezygantrum, precondylar constriction and haemal 26 27 259 keel can be observed on the vertebra. 28 29 30 260 When compared with the different anguids known from the Neogene of 31 32 261 mainland Europe, the CdR vertebra displays size and morphological characteristics 33 34 262 observed in Dopasia (sensu Augé 2005, i.e., European species formerly included in 35 36 263 Ophisaurus s.l. and Pseudopus excluded), but a more precise attribution cannot be 37 38 39 264 done. In Anguis , the lateral margins of the centrum are mainly parallel and vertebrae 40 41 265 are slightly smaller, whereas in Pseudopus the size of the vertebrae is greater and the 42 43 266 lateral margins of the centrum are markedly more divergent than in the CdR vertebra 44 45 267 (Estes 1983; Roček 1984; Bailon 1989, 1991; Augé 2005; Blain 2009; Delfino et al. 46 47 268 2011). 48 49 50 269 To our knowledge, this is the first record of a member of the Anguidae in the 51 52 270 Balearic Islands. In islands, Dopasia was only known from the late Pliocene (MN16) 53 54 271 of Sardinia (Delfino et al. 2011), whereas in the European continent the genus has 55 56 272 been recorded from the Oligocene to the early Pleistocene (Augé 2005; Blain 2009; 57 58 59 60 http://mc03.manuscriptcentral.com/inz Integrative Zoology Page 48 of 77

12 1 2 3 273 Blain & Bailon 2010). Today, the genus is restricted to Asia. No extant anguids 4 5 274 currently live in the Balearic Islands. 6 7 275 The material obtained from NB1 deposit confirms the presence of Dopasia 8 9 10 276 (sensu Augé 2005), in the Mallorcan Pliocene. The studied dentary fragment displays 11 12 277 a tooth that is subpleurodont, slightly hookshaped and unicuspid; the apex lacks 13 14 278 ridges and it is directed posteromedially. The trunk vertebra is procoelous, with 15 16 279 dorsoventrally depressed cotyle and condyle. Its centrum is subtriangular, with a 17 18 For Review Only 19 280 smooth ventral surface that is slightly convex in transverse section, and with slightly 20 21 281 concave and anteriorly divergent lateral margins. The caudal vertebrae display two 22 23 282 pairs of transverse processes, each being partly subdivided longitudinally by an 24 25 283 autotomic septum and, in the posterior third of the vertebra, haemapophyses fused to 26 27 284 the centrum. The osteoderms are simple, with a smooth basal area and with an 28 29 30 285 external area displaying vermicular ornamentation. One of the osteoderms has lateral 31 32 286 margins that are slightly bevelled and a longitudinal keel typical of the mediodorsal 33 34 287 osteoderms. All these characteristics allow the attribution of this fossil material to 35 36 288 Dopasia and also to differentiate it from the other anguids known for the European 37 38 39 289 fossil record (Estes 1983; Roček 1984; Bailon 1989, 1991; Augé 2005; Blain 2009). 40 41 290 42 43 291 Infraorder Scolecophidia Dumeril & Bibron, 1844 44 45 292 Material: 1 vertebral trunk (NB1) (Fig. 2.ef) 46 47 293 The vertebra is very small with a centrum length slightly longer than 1mm. It 48 49 50 294 is dorsoventrally compressed and with a simple morphology typical of this group of 51 52 295 snakes (flattened neural arch, without neural spine and posterior medial notch; narrow 53 54 296 centrum without haemal keel; dorsoventrally flattened cotyle and condyle; well 55 56 57 58 59 60 http://mc03.manuscriptcentral.com/inz Page 49 of 77 Integrative Zoology

13 1 2 3 297 developed subcentral foramina, but paracotylar foramina absent; prezygapophyseal 4 5 298 processes present and synapophyses not divided) (Rage 1984; McDowell 1987). 6 7 299 Within this group of snakes, the morphology of the vertebrae is highly 8 9 10 300 homogeneous and the taxonomical identification, even at family level, is particularly 11 12 301 difficult. Scolecophidia have been recorded in the early Paleocene from Hainin 13 14 302 (Belgium; Vidal et al. 2009), and in the early Pleistocene of the Illes Medes (Spain; 15 16 303 Bailon 1991). The vertebra from NB1 deposit is the first and sole record of this group 17 18 For Review Only 19 304 in the Balearic Islands. Typhlops vermicularis Merrem, 1820 is the only known extant 20 21 305 Scolecophidia in Europe (Montenegro, Greece, Albania, Macedonia and Bulgaria; 22 23 306 Gasc et al. 1997). 24 25 307 26 27 308 Family Colubridae Opell, 1811 28 29 30 309 “Colubrinae” type 31 32 310 Material: 2 vertebral trunks (IMEDEA 90114 and 90261), 3 fragments of centra 33 34 311 (IMEDEA 90267, 90269 and 90270) (CdR); 1 vertebral trunk (NB1). 35 36 312 The vertebrae from CdR belong to smallsized individuals, with a centrum 37 38 39 313 length less than 4 mm. The vertebrae are slightly longer than wide; their neural spine 40 41 314 and posterior notch are well developed. They display rounded cotyle and condyle; 42 43 315 paracotylar foramina are present and the centrum is subtriangular and bears a well 44 45 316 marked off haemal keel. These characteristics allow the attribution of these vertebrae 46 47 317 to a Colubridae of “colubrinae” type ( sensu Szyndlar 1991). The preservation of the 48 49 50 318 vertebrae (partly fragmented and eroded) does not allow further identification. 51 52 319 The sole vertebra from NB1 studied here is from a mediumsized individual 53 54 320 (centrum length = 4.5mm). It is slightly longer than wide (ratio centrun length / 55 56 321 interzygapophyseal width = 1.3) and it does not display a hypapophysis. These two 57 58 59 60 http://mc03.manuscriptcentral.com/inz Integrative Zoology Page 50 of 77

14 1 2 3 322 characters allow to refer this vertebra to a colubrid of “Colubrinae” type ( sensu 4 5 323 Szyndlar 1991). The centrum is narrow, with welldefined subcentral ridges and a 6 7 324 well developed haemal keel. The zygapophyses are rectangular and arranged on the 8 9 10 325 horizontal plane. The prezygapophyseal processes are cylindrical, blunt and shorter 11 12 326 than the prezygapophyses. The cotyle and condyle are small and rounded. The 13 14 327 diapophyses are located more posteriorly than the parapophyses. In posterior view, the 15 16 328 neural arch is vaulted, its dorsal edges being slightly convex. Together with the 17 18 For Review Only 19 329 vertebrae from CdR, the colubrid from NB1 deposit displays a vertebral morphology 20 21 330 similar to that of the material described from the Menorcan Pliocene, and attributed to 22 23 331 “Coluber” sp. [Coluber dolnicensis Szyndlar, 1987 -C. pouchetii (Rochebrune, 1880) 24 25 332 group] (Bailon et al . 2005), therefore they probably represents the same taxon. 26 27 333 28 29 30 334 Family Viperidae Laurenti, 1768 31 32 335 Vipera Laurenti, 1768 (Oriental Vipers Complex) 33 34 336 Material: 1 middle trunk vertebra (IMEDEA 90113), 1 cervical vertebra (IMEDEA 35 36 337 90116) (CdR). Tentatively, 2 vertebrae from NB1. 37 38 39 338 Bailon et al. (2010) studied two vertebrae of a large snake obtained from the 40 41 339 CdR deposit. The combination of characters such as straight hypapophysis, 42 43 340 posteriorly depressed neural arches, zygapophyseal articular facets inclined dorsally, 44 45 341 parapophyseal processes directed anteroventrally, large condyles and cotyles, 46 47 342 relatively short centrum and condyle ventrally attached to the hypapophysis basis 48 49 50 343 allowed these authors to assign these vertebrae to a member of the Viperidae, more 51 52 344 specifically to the ‘Oriental Vipers Complex’ (according to the classification 53 54 345 suggested by Szyndlar & Rage 1999). Based on the size of the centrum, a body length 55 56 346 close or even greater than 200 cm was estimated for this viper; it may be considered 57 58 59 60 http://mc03.manuscriptcentral.com/inz Page 51 of 77 Integrative Zoology

15 1 2 3 347 the largest European viper belonging to this complex. Two viperid vertebrae obtained 4 5 348 in NB1 could belong to the same or to a related taxon. 6 7 349 8 9 10 350 cf. Vipera natiensis Bailon, Garcia Porta & Quintana, 2002 11 12 351 Material: 1 anterior trunkal vertebra or cervical vertebra (IMEDEA 90264) (CdR). 13 14 352 The vertebra belongs to a smallsized individual, with a centrum slightly 15 16 353 longer than 2 mm. In posterior view, the neural arch is dorsoventrally flattened. The 17 18 For Review Only 19 354 articular surfaces of the zygapophyses are inclined laterodorsally, and the 20 21 355 prezygapophyseal processes are short and blunt. The vertebral centrum is markedly 22 23 356 convex ventrally in transverse section; it bears a hypapophysis and its subcentral 24 25 357 ridges are somewhat indistinct. These characters suggest that this vertebra could 26 27 358 belong to a viper close to Vipera natiensis that was described by Bailon et al. (2002) 28 29 30 359 from the Pliocene of Menorca. 31 32 360 33 34 361 MAMMALS 35 36 362 Order Eulipotyphla Waddell, Okada & Hasegawa, 1999 37 38 39 363 Family Soricidae Fischer von Waldheim, 1817 40 41 364 Subfamily Soricinae Fischer von Waldheim, 1817 42 43 365 Nesiotites rafelinensis Rofes, Bover, CuencaBescós & Alcover, 2012 44 45 366 Material: 1 incomplete left mandible with p4, m1, m2, and m3 (IMEDEA 91950) 46 47 367 (CdR). 48 49 50 368 The material obtained from CdR was used by Rofes et al. (2012) to describe a 51 52 369 new species of Nesiotites , N. rafelinensis . Although the species is based on a single 53 54 370 mandible, it displays enough diagnostic features to be distinguished from the other 55 56 371 remaining Nesiotites species. A combination of characters as teeth size, mandible size, 57 58 59 60 http://mc03.manuscriptcentral.com/inz Integrative Zoology Page 52 of 77

16 1 2 3 372 absence of accessory cusps on the oblique crest of the first and second lower molars, 4 5 373 inconspicuous cuspule and lingual crest on the lingual basin of the p4, broad and 6 7 374 pronounced buccal and lingual cingula of the lower teeth, slightly undulated buccal 8 9 10 375 cingulum and slightly forward placement of the mental foramen allowed the 11 12 376 description of N. rafelinensis as a new species. Thus, this species combines primitive 13 14 377 dental traits with a relatively large size. 15 16 378 17 18 For Review Only 19 379 Soricinae unidentified 20 21 380 Material: 2 fragmented skulls, 2 mandibles, and some postcranial bones (NB1). 22 23 381 The insectivore remains are here provisionally attributed to 24 25 382 Nesiotites/Asoriculus (Fig. 3.a). The absence of accessory cusps in m1m2, the almost 26 27 383 straight buccal cingulum, and the forward position of the mental foramen are typical 28 29 30 384 of both groups (i.e., Nesiotites rafelinensis and Asoriculus gibberodon Petényi, 1864). 31 32 385 33 34 386 Order Rodentia Bowdich, 1821 35 36 387 Family Cricetidae Fischer von Waldheim, 1817 37 38 39 388 Tragomys macpheei Agustí, Bover & Alcover, 2012 40 41 389 Material: 1 right m1 (IMEDEA 90614, holotype), 17 cheek teeth, 2 incisors, 3 42 43 390 mandible fragments, 2 maxillae fragments, 9 fragments of postcranial long bones, 1 44 45 391 calcaneum, and 1 astragalus [See Agustí et al. (2012) for an extensive list of material] 46 47 392 (CdR). 48 49 50 393 Agustí et al. (2012) recently described a new genus and a new species of 51 52 394 Cricetidae based on the material obtained from CdR, Tragomys macpheei . It displays 53 54 395 a large size, and a distinctive selenodont pattern and hypsodont teeth. 55 56 396 57 58 59 60 http://mc03.manuscriptcentral.com/inz Page 53 of 77 Integrative Zoology

17 1 2 3 397 4 5 398 Cricetinae unidentified 6 7 399 Material: Currently, circa 200 bones, complete or fragmented, including 10 8 9 10 400 mandibles, 3 maxillae, complete femora, humerus, radius, tibia, a partial skull, etc, 11 12 401 representing most of the elements of the skeleton (NB1). 13 14 402 Remains of a largesized cricetine with slightly selenodont and hypsodont 15 16 403 dentition have been recovered in the NB1 (Fig. 3.b). Most probably, it corresponds to 17 18 For Review Only 19 404 the putative ancestor of Tragomys macpheei . 20 21 405 22 23 406 Family Muridae Illiger, 1811 24 25 407 Muridae unidentified 26 27 408 Material: 3 mandibles, 1 maxillar, 1 humerus and 1 femur (NB1). 28 29 30 409 Another slightly hypsodont small rodent has been recorded in NB1 deposit 31 32 410 (Fig. 3.c). The absence of the anterior accessory cusp (tma) and the poorly marked 33 34 411 stephanodonty in the teeth studied allows the attribution of these remains to a derived 35 36 412 species of Occitanomys or Castillomys , but additional analysis is needed to go further 37 38 39 413 in the identification. 40 41 414 42 43 415 Family Gliridae Thomas, 1897 44 45 416 Hypnomys sp. 46 47 417 Material: 1 m1 (IMEDEA 90622) and 1 M1 (IMEDEA 90623) (CdR). 48 49 50 418 In addition to Tragomys macpheei , a second rodent species is present at CdR. 51 52 419 This second species corresponds to a very early member of the dormice genus 53 54 420 Hypnomys . Since the scanty material does not permit to make inferences about its 55 56 421 specific identity, we will refer to as Hypnomys sp. (Fig. 4). In the upper first molar, a 57 58 59 60 http://mc03.manuscriptcentral.com/inz Integrative Zoology Page 54 of 77

18 1 2 3 422 continuous endoloph connects anteroloph, protoloph, metaloph and posteroloph (Fig. 4 5 423 4.b). The anterior centroloph is labially fused to the protoloph. The paracone is not 6 7 424 individualized as a cusp, nor is the metacone. An anterior extraridge is present 8 9 10 425 between the protoloph and the anterior centroloph. The posterior centroloph is fused 11 12 426 to the metaloph. The lingual ends of the anterior and posterior centrolophs are fused. 13 14 427 It presents three roots, two labials and one very wide lingual one. In this way, 15 16 428 Hypnomys sp. from CdR looks very much as the oldest species of the Hypnomys 17 18 For Review Only 19 429 described from Mallorca and Menorca, such as Hypnomys waldreni Reumer, 1979, 20 21 430 Hypnomys onicensis (Reumer, 1994) and Hypnomys eliomyoides Agustí, 1980 22 23 431 (Reumer 1979, 1981; Agustí 1980). However, it differs from these old Hypnomys 24 25 432 species by the still Eliomys like, narrow M1 and m1. Its dimensions (first m1: 1.82 x 26 27 433 1.96 mm; first M1: 1.62 x 1.64 mm) are also lower than those of other Hypnomys 28 29 30 434 species, and closer to those of the late Miocene Eliomys , such as E. intermedius 31 32 435 Friant, 1953 and E. truci Mein & Michaux, 1970 . However, the dormouse from CdR 33 34 436 differs significantly from Eliomys since the upper molar presents much less prominent 35 36 437 labial cusps, as it is also the case in Hypnomys . 37 38 39 438 40 41 439 Eliomys /Hypnomys sp. 42 43 440 Material: Abundant material, including currently c. 300 bones representing most of 44 45 441 the elements of the skeleton (NB1). 46 47 442 The glirid present in NB1 (Fig. 3.d) displays small size. It most probably 48 49 50 443 represents the ancestor of, or an ancestral species inside, the Hypnomys lineage. 51 52 444 53 54 445 Order Brandt, 1855 55 56 446 Family Gray, 1821 57 58 59 60 http://mc03.manuscriptcentral.com/inz Page 55 of 77 Integrative Zoology

19 1 2 3 447 Hypolagus balearicus Quintana, Bover, Alcover, Agustí & Bailon, 2010 4 5 448 Material: 1 left p3 (IMEDEA 90123, Holotype), 10 cheek teeth, 1 incisor, 5 6 7 449 postcranial bones [See Quintana et al. (2010) for an extensive list of material] (CdR). 8 9 10 450 Twenty juvenile bones (NB1) are here tentatively attributed to Hypolagus , as cf. 11 12 451 Hypolagus . 13 14 452 The first record of Hypolagus in the Balearic Islands was reported by Quintana 15 16 453 et al. (2010). These authors described a new species, H. balearicus , based on tooth 17 18 For Review Only 19 454 characteristics and some postcranial features. The p3 of H. balearicus displays a small 20 21 455 size, trapezoidal outline, with a shallow and wellmarked anteroflexid, shallow 22 23 456 protoflexid, deep hypoflexid and lack of paraflexid. All these characteristics allow the 24 25 457 differentiation of the Mallorca species from the other species of Hypolagus . 26 27 458 Additionally, more robust postcranial bones were also observed in this species. The 28 29 30 459 presence of Hypolagus in the Balearic Islands represents one of the westernmost 31 32 460 European records of the genus. The fossils obtained in NB1 (Fig. 3.e) include 33 34 461 complete bones of juveniles that are here tentatively attributed to Hypolagus . 35 36 462 37 38 39 463 Order Artiodactyla Owen, 1848 40 41 464 Family Bovidae Gray, 1821 42 43 465 Myotragus palomboi Bover, Quintana & Alcover, 2010 44 45 466 Material: 1 right metatarsal (IMEDEA 90140, Holotype), 4 cheek teeth, 2 incisiforms, 46 47 467 12 postcranial bones [See Bover et al. (2010) for an extensive list of material] (CdR); 48 49 50 468 2 bones and one tooth of a juvenile bovid (NB1) are here tentatively attributed to 51 52 469 Myotragus , as cf. Myotragus (Fig. 3.f). 53 54 470 The earliest representative of Myotragus , M. palomboi , was described by 55 56 471 Bover et al. (2010). It displays relevant similarities that allow its attribution to 57 58 59 60 http://mc03.manuscriptcentral.com/inz Integrative Zoology Page 56 of 77

20 1 2 3 472 Myotragus , but there are remarkable differences between M. palomboi and the former 4 5 473 earliest species of Myotragus , M. pepgonellae MoyàSolà & PonsMoyà, 1982. The 6 7 474 CdR Myotragus has a larger p2, not hypsodont nor evergrowing incisors with more 8 9 10 475 rectangular wear surface and with enamel surrounding the whole crown (and not 11 12 476 elongated incisors as the other Myotragus species), and a lower robustness index of 13 14 477 the studied postcranial bones than in M. pepgonellae . Specifically, the metatarsal bone 15 16 478 is longer than the other representatives of the genus and its morphology seems to be 17 18 For Review Only 19 479 intermediate between M. pepgonellae and the putative mainland ancestors Aragoral 20 21 480 and Norbertia . 22 23 481 24 25 482 DISCUSSION 26 27 483 Insular environments are characterized by unbalanced faunas with a reduced 28 29 30 484 number of endemic species displaying morphological traits that follow welldescribed 31 32 485 patterns (the socalled “insularity syndrome”). The faunal record of the two Mallorcan 33 34 486 deposits here presented partially agrees with this insular pattern. So far, in none of 35 36 487 these deposits carnivores have been obtained and the number of recorded species is 37 38 39 488 reduced (5 mammals and 6 reptiles in CdR and 6 mammals, at least 8 reptiles and 1 40 41 489 amphibian in NB1). 42 43 490 Morphological traits observed in some taxa suggest that the fauna from CdR 44 45 491 and NB1 would be in a first stage of its isolated evolution. The species of the fauna 46 47 492 from CdR displays more derived characters than that from NB1. In this sense, the 48 49 50 493 large size of Tragomys , the reduction of premolar size observed in M. palomboi (a 51 52 494 progressive loss of teeth has been considered as an insular evolutionary effect in the 53 54 495 Myotragus lineage, Alcover et al. 1981) and the characteristic selenodont teeth pattern 55 56 496 of T. macpheei points out to be at the beginning of an isolated evolution. The glirid, 57 58 59 60 http://mc03.manuscriptcentral.com/inz Page 57 of 77 Integrative Zoology

21 1 2 3 497 the soricid and the murid are only slightly modified, suggesting also a proximity to the 4 5 498 isolation event. On the other hand, although Hypolagus balearicus displays a 6 7 499 relatively smaller size of the p3 when compared to other species of Hypolagus , the 8 9 10 500 scarce postcranial bones available do not allow determining whether insular 11 12 501 evolutionary effects occurred in the species. 13 14 502 According to Bailon et al. (2010), the large size of Vipera sp. (‘Oriental 15 16 503 Vipers Complex’) from CdR cannot be explained in terms of insular evolution itself 17 18 For Review Only 19 504 but also as the result of a coevolutionary process between this group of snakes and 20 21 505 the size of the preys. Additionally, as the mainland ancestor of this snake is unknown 22 23 506 no definitive inferences on dwarfism or gigantism can be done. The same accounts for 24 25 507 the remaining reptiles and for the amphibian. 26 27 508 The faunal composition of NB1 and CdR represents a faunal assemblage that 28 29 30 509 could be related to the colonization pattern. It has been widely accepted that the 31 32 510 arrival of the faunal stock recorded for the PlioPleistocene in the Balearic Islands 33 34 511 occurred during the MSC (Agustí et al. 2006; van der Made et al. 2006: Bover et al. 35 36 512 2008 and references therein), around 5.65.32 Ma ago (Clauzon et al. 1996; Gautier et 37 38 39 513 al. 1994; Krijgsman et al. 1999). While the founder stock of terrestrial vertebrates was 40 41 514 initially thought to be composed in Mallorca of the ancestors of Myotragus , 42 43 515 Hypnomys , and Nesiotites lineages together with a reptile ( Podarcis ) and two 44 45 516 amphibians ( Alytes and Discoglossus ), the discovery of the two deposits studied in 46 47 517 this paper allows reporting a different scenario, and additionally it sheds light in the 48 49 50 518 understanding of the late Miocene/early Pliocene faunal assemblage from the Eivissan 51 52 519 deposit of Ses Fontanelles. 53 54 520 In Fig. 5, a schematic view of the faunal succession of terrestrial vertebrates 55 56 521 from the Balearic Islands throughout late Miocene/early Pliocene to Holocene is 57 58 59 60 http://mc03.manuscriptcentral.com/inz Integrative Zoology Page 58 of 77

22 1 2 3 522 presented. Although further analysis of the NB1 fauna is needed, if we roughly 4 5 523 compare the taxonomical groups (rather than taxa at genus/species level) recorded in 6 7 524 the several Pliocene deposits from these islands, the Mallorcan deposits of NB1 and 8 9 10 525 CdR share five species or close relatives of the six mammals and at least four reptiles 11 12 526 (a tortoise, Dopasia , Vipera sp. OVC, and a colubrine), and it seems adequate to 13 14 527 consider them as deeply related. Additionally, also four of the mammalian taxa and 15 16 528 probably two reptiles are shared by the Mallorcan and Eivissan deposits, suggesting 17 18 For Review Only 19 529 that the fauna from Ses Fontanelles is also related to the same colonizer stock. The 20 21 530 differences in taxa composition may be related to an insufficient fossil record or/and 22 23 531 to taphonomical reasons. Nevertheless, a more extensive study of the Mallorcan and 24 25 532 Eivissan Pliocene fauna is needed in order to confirm the relationship between these 26 27 533 deposits. 28 29 30 534 On the other hand, a clear relationship cannot be established between the late 31 32 535 Miocene/early Pliocene Mallorcan fauna and the Pliocene ( sensu lato ) Menorcan one. 33 34 536 The mammals present in the Pliocene deposits from Menorca, Nuralagus rex and 35 36 537 Muscardinus cyclopeus , can be clearly distinguished from the lagomorph and glirid, 37 38 39 538 respectively, present in NB1, CdR and Ses Fontanelles deposits, and although some 40 41 539 of the reptiles could be similar (Gekkonidae, small Lacertidae) or may even be the 42 43 540 same taxa ( Vipera natiensis , Colubrinae), further discoveries and analyses are needed 44 45 541 to definitively establish or reject a relationship among these faunas. 46 47 542 The knowledge on the Pliocene vertebrate fauna from Mallorca has been 48 49 50 543 improved thanks to the discovery of the deposits of NB1 and CdR (Fig. 5). More 51 52 544 species than previously thought arrived to the Balearic Islands during the MSC. At 53 54 545 least six mammals and eight reptiles colonized Mallorca at this period. Most of them 55 56 546 became extinct during the Pliocene. In Mallorca, just three mammalian species have 57 58 59 60 http://mc03.manuscriptcentral.com/inz Page 59 of 77 Integrative Zoology

23 1 2 3 547 been recorded in the later early Pliocene deposits ( Myotragus pepgonellae, Hypnomys 4 5 548 sp. and Nesiotites sp., MoyàSolà & PonsMoyà 1982; PonsMoyà 1990). Remains of 6 7 549 a Vipera related to V. natiensis (Bailon & Bover unpublished) and of Podarcis have 8 9 10 550 been recovered in the late Pliocene deposit of Crulls de Cap Farrutx (in addition to the 11 12 551 three mammalian lineages with the species M. antiquus PonsMoyà, 1977, H. 13 14 552 waldreni , and N. ponsi Reumer, 1979). 15 16 553 The presence of a remarkable number of reptiles in the Messinianearly 17 18 For Review Only 19 554 Pliocene fossil record of the Balearic Islands seems to agree with the subtropical 20 21 555 climate conditions, as recorded over the Mediterranean area (see Fauquette et al. 22 23 556 1999; JiménezMoreno et al. 2010 and references therein). Although an increase in 24 25 557 hypsodonty has been recorded in insular species and it is considered as part of an 26 27 558 ‘island syndrome’ (e.g., Jordana et al. 2012) the very hypsodont dentition of 28 29 30 559 Myotragus palomboi and the hypsodont and selenodont dentition of Tragomys 31 32 560 macpheei might point out to the consumption of sclerophyll plants. The amblyodont 33 34 561 dentition of the Lacertidae nov. gen. et sp. from CdR could have also been an 35 36 562 important selective advantage to feed on particularly hard shell molluscs in the warm 37 38 39 563 and dry climate during the earlier early Pliocene, as the shell of molluscs is known to 40 41 564 be harder and wider in arid conditions (Sacchi & Testard 1971). 42 43 565 The absence of carnivores in this fauna leaves the large Vipera sp. (‘Oriental 44 45 566 Vipers Complex’), together with birds of prey, as a main predator for the Mallorcan 46 47 567 Pliocene fauna. 48 49 50 568 51 52 569 REFERENCES 53 54 55 56 57 58 59 60 http://mc03.manuscriptcentral.com/inz Integrative Zoology Page 60 of 77

24 1 2 3 570 Adrover R, Agustí J, MoyàSolà S, PonsMoyà J (1985). Nueva localidad de 4 5 571 micromamíferos insulares del Mioceno medio en las proximidades de San 6 7 572 Lorenzo en la isla de Mallorca. Paleontologia i Evolució 18 , 121–9. 8 9 10 573 Agustí J (1980). Hypnomys eliomyoides n. sp., nuevo glírido (Rodentia, Mammalia) 11 12 574 del Pleistoceno de Menorca (Islas Baleares). Endins 7, 49–52. 13 14 575 Agustí, J, Bover P, Alcover JA (2012). A new genus of endemic cricetid (Mammalia, 15 16 576 Rodentia) from the late Neogene of Mallorca (Balearic Islands, Spain). 17 18 For Review Only 19 577 Journal of Vertebrate Paleontology 32 , 722–6. 20 21 578 Agustí J, Garcés M, Krijgsman W (2006). Evidence for African–Iberian exchanges 22 23 579 during the Messinian in the Spanish mammalian record. Palaeogeography, 24 25 580 Palaeoclimatology, Palaeoecology 238 , 5–14. 26 27 581 Agustí J, MoyàSolà S (1990). NeogeneQuaternary Mammalian faunas of the 28 29 30 582 Balearics. In: Azzaroli A, ed. International Symposium “Biogeographical 31 32 583 aspects of insularity”. Atti dei Convegni dei Lincei 85 . Accademia Nazionale 33 34 584 dei Linzei, Roma, pp. 459–68. 35 36 585 Agustí J, MoyàSolà S, PonsMoyà J (1982). Une espèce géante de Muscardinus 37 38 39 586 Kaup, 1829 (Gliridae, Rodentia, Mammalia) dans le gisement karstique de 40 41 587 Cala Es Pou (Miocène supérieur de Minorque, Baléares). Geobios 15 , 783–9. 42 43 588 Alcover JA (1989). Les aus fòssils de la cova de ca na Reia. Endins 14–15 , 95–100. 44 45 589 Alcover JA, Agustí J (1985). Eivissia canarreiensis n. gen., n. sp., nou glírid del 46 47 590 Pleistocè de les Pitiüses. Endins 10–11 , 51–6. 48 49 50 591 Alcover JA, MoyàSolà S, PonsMoyà J (1981). Les quimeres del passat. Els 51 52 592 vertebrats fòssils del Plio-Quaternari de les Balears i Pitiüses. Monografies 53 54 593 Científiques 1. Editorial Moll, Palma de Mallorca. 55 56 57 58 59 60 http://mc03.manuscriptcentral.com/inz Page 61 of 77 Integrative Zoology

25 1 2 3 594 Augé M (2005). Evolution des lézards du Paléogène en Europe . Mémoires du 4 5 595 Muséum National d’Histoire Naturelle 192 . Publications Scientifiques du 6 7 596 Muséum, Paris. 8 9 10 597 Bailon S (1989). Les Amphibiens et les Reptiles du Plioc ène sup érieur de Balaruc II 11 12 598 (H érault, France). Palaeovertebrata 19 , 7–28. 13 14 599 Bailon S (1991). Les amphibiens et les reptiles du Pliocène et du Quaternaire de 15 16 600 France et Espagne: mise en place et évolution des faunes (PhD thesis). 17 18 For Review Only 19 601 Université de Paris7, Paris, France. 20 21 602 Bailon S (1999). Clés de détermination ostéologique des amphibiens anoures de 22 23 603 France. In: Desse J, DesseBerset N, eds. Fiches d’ostéologie animale pour 24 25 604 l’Archéologie, Série C : varia . Centre de Recherches ArchéologiquesCNRS, 26 27 605 Valbonne, pp. 1–38. 28 29 30 606 Bailon S (2000). Amphibiens et reptiles du Plioc ène terminal d’Ahl al Oughlam 31 32 607 (Casablanca, Maroc). Geodiversitas 22 , 539 –58. 33 34 608 Bailon S (2004). Fossil records of Lacertidae in Mediterranean islands: the state of the 35 36 609 art. In: PérezMellado V, Riera N, Perera A, eds. Proceedings of the Fourth 37 38 39 610 International Symposium of the Lacertids of the Mediterranean Basin . Institut 40 41 611 Menorquí d’Estudis, Maó, pp. 37–62. 42 43 612 Bailon S, Hossini S (1990). Les plus ancien Bufonidae (Amphibia, Anura) d’Europe: 44 45 613 les espèces du Miocène français. Annales de Paléontologie (Vertébré- 46 47 614 Invertébré) 76 , 121 –32. 48 49 50 615 Bailon S, Bover P, Quintana J, Alcover JA (2010). First fossil record of Vipera 51 52 616 Laurenti 1768 “Oriental vipers complex” (Serpentes: Viperidae) from the 53 54 617 Early Pliocene of the Western Mediterranean islands. Comptes Rendus Palevol 55 56 618 9, 147–54. 57 58 59 60 http://mc03.manuscriptcentral.com/inz Integrative Zoology Page 62 of 77

26 1 2 3 619 Bailon S, GarciaPorta J, Quintana J (2002). Première découverte de Viperidae 4 5 620 (Reptilia, Serpentes) dans les Îles Baléares (Espagne): des vipères du Néogène 6 7 621 de Minorque. Description d’une nouvelle espèce du Pliocène. Comptes Rendus 8 9 10 622 Palevol 1, 227–34. 11 12 623 Bailon S, Quintana J, Garcia Porta J (2005). Primer registro fósil de las familias 13 14 624 Gekkonidae (Lacertilia) y Colubridae (Serpentes) en el Plioceno de Punta Nati 15 16 625 (Menorca, Islas Baleares). In: Alcover JA, Bover P, eds. Proceedings of the 17 18 For Review Only 19 626 International Symposium “Insular Vertebrate Evolution: The Palaeontological 20 21 627 Approach” . Monografies de la Societat d’Història Natural de les Balears 12 . 22 23 628 Societat d’Història Natural de les Balears, Palma de Mallorca, pp. 27–32. 24 25 629 Barahona F, Barbadillo LJ (1997). Identification of some Iberian lacertids using skull 26 27 630 characters. Revista Española de Herpetología 11 , 47–62. 28 29 30 631 Barbadillo LJ (1989). Los Reptilia (Sauria y Amphisbaenia) de los yacimientos Plio 31 32 632 Pleistocénicos de la Cuenca de GuadixBaza. In: Alberdi MT, Bonadonna FB, 33 34 633 eds. Geología y Paleontología de la Cuenca de Guadix-Baza. Trabajos 35 36 634 Neogeno/Quaternario 11 . Museo Nacional de Ciencias Naturales, Madrid, pp. 37 38 39 635 151 –65. 40 41 636 Bate DMA (1914). A gigantic land tortoise from the Pleistocene of Menorca, 42 43 637 Geological Magazine 6, 100–7. 44 45 638 Bate DMA (1918). On a new genus of extinct muscardine rodent from the Balearic 46 47 639 Islands. Proceedings of the Zoological Society of London 1918 , 209–22. 48 49 50 640 Bizon G, Bizon JJ, Bourrouilh R, Massa D (1973). Présence aux iles Baléares 51 52 641 (Méditerranée Occidentale) de sédiments "messiniens" déposés dans une mer 53 54 642 ouverte, à salinité normale. Comptes Rendus de l’Académie des Sciences 55 56 643 Naturelles de Paris 277 , 985–988. 57 58 59 60 http://mc03.manuscriptcentral.com/inz Page 63 of 77 Integrative Zoology

27 1 2 3 644 Blain HA (2009). Contribution de la paléoherpétofaune (Amphibia & Squamata) à la 4 5 645 connaissance de l’évolution du climat et du paysage du Pliocène supérieur au 6 7 646 Pléistocène moyen d’Espagne. Treballs del Museu de Geologia de Barcelona 8 9 10 647 16 , 39–170. 11 12 648 Blain HA, Bailon S (2010). Anfibios y escamosos del Pleistoceno Inferior de 13 14 649 Barranco León y de Fuente Nueva 3 (Orce, Andalucía, España). In: Toro I, 15 16 650 MartínezNavarro B, Agustí J, eds. Ocupaciones humanas en el Pleistoceno 17 18 For Review Only 19 651 Inferior y Medio de la Cuenca de Guadix-Baza . Junta de Andalucía, 20 21 652 Consejería de Cultura, Sevilla, pp. 165–83. 22 23 653 Blain HA, Bailon S, Agustí J (2007). Anurans and squamate reptiles from the final 24 25 654 Early Pleistocene of AlmenaraCasablanca3 (Castellón, East of Spain). 26 27 655 Systematic, climatic and environmental considerations. Geodiversitas 29 , 269 – 28 29 30 656 95. 31 32 657 Blain HA, Bailon S, Agustí J (2008). Amphibians and squamate reptiles from the 33 34 658 latest early Pleistocene of Cueva Victoria (Murcia, southeastern Spain, SW 35 36 659 Mediterranean): Paleobiogeographic and paleoclimatic implications. 37 38 39 660 Geologica Acta 6, 345–61. 40 41 661 Bour R (1985). Una nova tortuga terrestre del Pleistocè d’Eivissa: la tortuga de la 42 43 662 cova de ca na Reia. Endins 10–11 , 57–62. 44 45 663 Bover P, Alcover JA (2000). La identitat taxonomica de Myotragus binigausensis 46 47 664 MoyàSolà i PonsMoyà 1980. Endins 23 , 83–8. 48 49 50 665 Bover P, Quintana J, Agustí J, Bailon S, Alcover JA (2007). Caló den Rafelino: an 51 52 666 early Pliocene site in Mallorca, Western Mediterranean. In: Libro de 53 54 667 resúmenes del VII Simposio Internacional de Zoología . Topes de Collantes, 55 56 668 Sancti Spiritus, Cuba, pp. 119. 57 58 59 60 http://mc03.manuscriptcentral.com/inz Integrative Zoology Page 64 of 77

28 1 2 3 669 Bover P, Quintana J, Alcover JA (2008). Three islands, three worlds: Paleogeography 4 5 670 and evolution of the vertebrate fauna from the Balearic Islands. Quaternary 6 7 671 International 182 , 135–44. 8 9 10 672 Bover P, Quintana J, Alcover JA (2010). A new species of Myotragus Bate, 1909 11 12 673 (Artyodactyla, Caprinae) from the Early Pliocene of Mallorca (Balearic 13 14 674 Islands, western Mediterranean). Geological Magazine 147 , 871–85. 15 16 675 Clauzon G, Suc JP, Gautier F, Berger A, Loutre MF (1996). Alternate interpretation 17 18 For Review Only 19 676 of the Messinian salinity crisis: controversy resolved? Geology 24 , 363–6. 20 21 677 Delfino M, Bailon S, Pitruzzella G (2011). The Late Pliocene amphibians and reptiles 22 23 678 from “Capo Mannu D1 Local Fauna” (Mandriola, Sardinia, Italy). 24 25 679 Geodiversitas 33 , 357–82. 26 27 680 Estes R (1983). Sauria terrestria, Amphisbaenia. In: Kuhn O, Wellnhofer P, eds. 28 29 30 681 Handbuch der Paläoherpetologie 10A . G. Fischer Verlag, Stuttgart & New 31 32 682 York, pp. 1–249. 33 34 683 Fauquette S, Suc JP, Guiot J, et al. (1999). Climate and biomes in the West 35 36 684 Mediterranean area during the Pliocene. Palaeogeography, 37 38 39 685 Palaeoclimatology, Palaeoecology 152 , 15–36. 40 41 686 Florit X, MourerChauviré C, Alcover JA (1989). Els ocells pleistocènics d'es Pouàs, 42 43 687 Eivissa. Nota preliminar. Butlletí de la Institució Catalana d’Història Natural 44 45 688 (Secció Geologia 5) 56 , 35–46. 46 47 689 GarciaPorta J, Quintana J, Bailon S (2002). Primer hallazgo de Blanus sp 48 49 50 690 (Amphisbaenia, Reptilia) en el Neógeno balear. Revista Española de 51 52 691 Herpetología 16 , 19–28. 53 54 692 Gasc JP, Cabela A, CrnobrnjaIsailovic J, et al. (1997). Atlas of amphibians and 55 56 693 reptiles in Europe . Collection Patrimoines Naturels 29 . Societas Europaea 57 58 59 60 http://mc03.manuscriptcentral.com/inz Page 65 of 77 Integrative Zoology

29 1 2 3 694 Herpetologica, Muséum National d’Histoire Naturelle & Service du Patrimone 4 5 695 Naturel, Paris. 6 7 696 Gautier F, Clauzon G, Suc JP, Cravatte J, Violantini D (1994). Âge et durée de la 8 9 10 697 crise de salinité messinienne. Comptes Rendus de l’Académie des Sciences 11 12 698 Naturelles de Paris, Serie II 318 , 1103–9. 13 14 699 Gibbard PL, Head MJ, Walker MJC, The Subcomission on Quaternary Stratigraphy 15 16 700 (2010). Formal ratification of the Quaternary System/Period and the 17 18 For Review Only 19 701 Pleistocene Series/Epoch with a base at 2.58 Ma. Journal of Quaternary 20 21 702 Science 25 , 96–102. 22 23 703 GómezPujol L, Balaguer P, Fornós JJ (2007). El litoral de Mallorca: síntesis 24 25 704 geomórfica. In: Fornós JJ, Ginés J, GómezPujol L, eds. Geomorfología 26 27 705 litoral: Migjorn y Llevant de Mallorca . Monografies de la Societat d’Història 28 29 30 706 Natural de les Balears 15 . Societat d’Història Natural de les Balears, Palma de 31 32 707 Mallorca, pp. 39–59. 33 34 708 Gràcia F, Clamor B, Lavergne JJ (2000). Les coves de cala Varques (Manacor, 35 36 709 Mallorca). Endins 23 , 41–57. 37 38 39 710 Gràcia F, Watkinson P, Monserrat T, Clarke O, Landreth R (1997). Les coves de la 40 41 711 zona de Ses Partions (Felanitx, Mallorca). Endins 21, 5–36. 42 43 712 Hemmer H, Kadel B, Kadel K (1981). The Balearic toad ( Bufo viridis balearicus 44 45 713 (Boettger, 1881)), human Bronze Age culture, and Mediterranean 46 47 714 biogeography. Amphibia-Reptilia 2, 217–30. 48 49 50 715 JiménezMoreno G, Fauquette S, Suc JP (2010). Miocene to Pliocene vegetation 51 52 716 reconstruction and climate estimates in the Iberian Peninsula from pollen data. 53 54 717 Review of Palaeobotany and Palynology 162 , 403–15. 55 56 57 58 59 60 http://mc03.manuscriptcentral.com/inz Integrative Zoology Page 66 of 77

30 1 2 3 718 Jordana X, MarínMoratalla N, DeMiguel D, Kaiser TM, Köhler M (2012). Evidence 4 5 719 of correlated evolution of hypsodonty and exceptional longevity in endemic 6 7 720 insular mammals. Proceedings of the Royal Society B 279 , 3339–3346. 8 9 10 721 Kotsakis T (1981). La lucertole (Lacertidae, Squamata) del Pliocene, Pleistocene e 11 12 722 Olocene delle baleari. Bolletí de la Societat d'Història Natural de les Balears 13 14 723 25 , 135–50. 15 16 724 Krijgsman W, Hilgen FJ, Raffi I, Sierro FJ, Wilson DS (1999). Chronology, causes 17 18 For Review Only 19 725 and progression of the Messinian Salinity Crisis. Nature 400 , 652–5. 20 21 726 McDowell SB (1987). Systematics. In: Seigel RA, Collins JT, Novak SS, eds. Snakes: 22 23 727 ecology and evolutionary biology. Macmillan, New York, pp. 3–50. 24 25 728 Mein P, Adrover R (1982). Une faunule de mammifères insulaires dans el Miocène 26 27 729 moyen de Majorque (Îles Baléares). Geobios Mémoire Spécial 6, 451–63. 28 29 30 730 MoyàSolà S, PonsMoyà J (1982). Myotragus pepgonellae nov. sp., un primitivo 31 32 731 representante del género Myotragus Bate, 1909 (Bovidae, Mammalia) en la 33 34 732 isla de Mallorca (Baleares). Acta Geologica Hispanica 17 , 77–87. 35 36 733 MoyàSolà S, Köhler M, Alba D, PonsMoyà J (2007). El significado de Myotragus 37 38 39 734 batei y M. binigausensis en la evolución del género Myotragus (Bovidae, 40 41 735 Mammalia) en las Islas Baleares. In: Pons GX, Vicens D, eds. Geomorfologia 42 43 736 Litoral i Quaternari. Homenatge a Joan Cuerda Barceló . Monografies de la 44 45 737 Societat d’Historia Natural de les Balears , 14 . SHNB, Palma de Mallorca, pp. 46 47 738 155–80. 48 49 50 739 MoyàSolà S, PonsMoyà J, Alcover JA, Agustí J (1984). La fauna de vertebrados 51 52 740 neógenocuaternaria de Eivissa (Pitiuses). Nota preliminar. Acta Geologica 53 54 741 Hispanica 19 , 33–5. 55 56 57 58 59 60 http://mc03.manuscriptcentral.com/inz Page 67 of 77 Integrative Zoology

31 1 2 3 742 MoyàSolà S, Quintana J, Alcover JA, Köhler M (1999). Endemic island faunas of the 4 5 743 Mediterranean Miocene. In: Rössner GE, Heissig K, eds. The Miocene land 6 7 744 mammals of Europe . Pfeil, Munchen, pp. 435–42. 8 9 10 745 Pinya S, Carretero MA (2011). The Balearic herpetofauna: a species update and a 11 12 746 review on the evidence. Acta Herpetologica 6, 59–80. 13 14 747 Pomar L, RodríguezPerea A, Sabat F, Fornós JJ (1990). Neogene stratigraphy of 15 16 748 Mallorca Island. Paleontologia i Evolució 2, 271–320. 17 18 For Review Only 19 749 PonsMonjo G, MoyàSolà S, Furió M (2012). New data on the origin of Nesiotites 20 21 750 (Soricidae, Mammalia) in Menorca (Balearic Islands, Spain). Comptes Rendus 22 23 751 Palevol 11 , 393–401. 24 25 752 PonsMoyà J (1990). Estratigrafía y fauna del yacimiento kárstico de Cala Morlanda 26 27 753 (Manacor, Mallorca). Endins 16 , 59–62. 28 29 30 754 PonsMoyà, J, MoyàSolà S, Alcover JA, Agustí J (1981). La fauna de Mamíferos de 31 32 755 los yacimientos menorquines con Geochelone gymnesica (Bate, 1914). Acta 33 34 756 Geologica Hispanica 16 , 129–30. 35 36 757 Quintana J (1998). Aproximación a los yacimientos de vertebrados del Mio 37 38 39 758 Pleistoceno de la isla de Menorca. Bolletí de la Societat d'Història Natural de 40 41 759 les Balears 41 , 101–17. 42 43 760 Quintana J, Agustí J (2007). Los mamíferos insulares del Mioceno medio y superior 44 45 761 de Menorca (islas Baleares, Mediterráneo occidental). Geobios 40 , 677–87. 46 47 762 Quintana J, Alcover JA, MoyàSolà S, Sanchiz B (2005). Presence of Latonia (Anura, 48 49 50 763 Discoglosidae) in the Insular Pliocene of Minorca (Balearic Islands). In: 51 52 764 Alcover JA, Bover P, eds. Proceedings of the International Symposium 53 54 765 “Insular Vertebrate Evolution: The Palaeontological Approach” . 55 56 57 58 59 60 http://mc03.manuscriptcentral.com/inz Integrative Zoology Page 68 of 77

32 1 2 3 766 Monografies de la Societat d’Història Natural de les Balears 12 . Societat 4 5 767 d’Història Natural de les Balears, Palma de Mallorca, pp. 293–6. 6 7 768 Quintana J, Bover P, Alcover JA, Agustí J, Bailon S (2010). Presence of Hypolagus 8 9 10 769 Dice, 1917 (Mammalia, Lagomorpha) in the Neogene of the Balearic Islands 11 12 770 (Western Mediterranean): Description of Hypolagus balearicus nov. sp. 13 14 771 Geobios 43 , 555–67. 15 16 772 Quintana J, MoyàSolà S, Köhler M (2011). Nuralagus rex , gen. et sp. nov., an 17 18 For Review Only 19 773 endemic insular giant rabbit from the Neogene of Minorca (Balearic Islands, 20 21 774 Spain). Journal of Vertebrate Paleontology 31 , 231–40. 22 23 775 Rage JC (1984). Serpentes. Handbuch der Paläoherpetologie, Part II . Gustav Fischer 24 25 776 Verlag, Stuttgart NewYork. 26 27 777 Reumer JWF (1979). On two new micromammals from the Pleistocene of Mallorca. 28 29 30 778 Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, 31 32 779 Series B 82 , 473–82. 33 34 780 Reumer JWF (1981). The Pleistocene small mammals from Sa Pedrera de S´Ònix, 35 36 781 Majorca (Gliridae, Soricidae). Proceedings of the Koninklijke Nederlandse 37 38 39 782 Akademie van Wetenschappen, Series B 84 , 3–11. 40 41 783 Reumer JWF (1982). Some remarks on the fossil vertebrates from Menorca, Spain. 42 43 784 Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, 44 45 785 Series B 85, 77–87. 46 47 786 Roček Z (1984). Lizards (Reptilia: Sauria) from the lower Miocene locality Dolnice 48 49 50 787 (Bohemia, Czechoslovakia). Rozpravy Ceskoslovenske akademie ved Rada 51 52 788 Matematickych a Prirodnich 94 , 1–69. 53 54 55 56 57 58 59 60 http://mc03.manuscriptcentral.com/inz Page 69 of 77 Integrative Zoology

33 1 2 3 789 Rofes J, Bover P, CuencaBescós G, Alcover JA (2012). Nesiotites rafelinensis sp. 4 5 790 nov., the earliest shrew (Mammalia, Soricidae) from the Balearic Islands, 6 7 791 Spain. Palaeontologia Electronica 15 , 8A. 8 9 10 792 Sacchi CF, Testard P (1971). Ecologie animale . Doin, Paris. 11 12 793 Sanchiz B (1977). La Familia Bufonidae (Amphibia, Anura) en el Terciario Europeo. 13 14 794 Trabajos Neogeno/Quaternario 8, 75–111. 15 16 795 Seguí B (1998). Els ocells fòssils de Mallorca i Menorca. Successió estratigràfica 17 18 For Review Only 19 796 d’aus en els rebliments càrstics de les Gimnèsies (PhD thesis). Universitat de 20 21 797 les Illes Balears, Palma de Mallorca, Spain. 22 23 798 Seguí B (1999). A late Tertiary woodcock from Minorca, Balearic Islands, Western 24 25 799 Mediterranean. Condor 101 , 909–15. 26 27 800 Seguí B (2002). A new genus of crane (Aves: Gruiformes) from the late Tertiary of 28 29 30 801 the Balearic Islands, Western Mediterranean. Ibis 144 , 411–22. 31 32 802 Seguí B, Quintana J, Fornós JJ, Alcover JA (2001). A new fulmarine petrel (Aves: 33 34 803 Procellariiformes) from the upper Miocene of the Western Mediterranean. 35 36 804 Palaeontology 44 , 933–48. 37 38 39 805 Szyndlar Z (1991). A review of Neogene and Quaternary snakes of Central and 40 41 806 Eastern Europe. Part I: Scolecophidia, Boidae, Colubrinae. Estudios 42 43 807 Geológicos 47 , 103–26. 44 45 808 Szyndlar Z, Rage JC (1999). Oldest fossil vipers (Serpentes: Viperidae) from the old 46 47 809 World. Kaupia 8, 9–20. 48 49 50 810 van der Made J, Morales J, Montoya P (2006). Late Miocene turnover in the Spanish 51 52 811 record in relation to palaeoclimate and the Messinian salinity crisis. 53 54 812 Palaeogeography, Palaeoclimatology, Palaeoecology 238 , 228–46. 55 56 57 58 59 60 http://mc03.manuscriptcentral.com/inz Integrative Zoology Page 70 of 77

34 1 2 3 813 Vidal N, Rage JC, Couloux A, Hedges SB (2009). Snakes (Serpentes). In: Hedges SB, 4 5 814 Kumar S, eds. The Timetree of Life . Oxford University Press, Oxford, pp. 390– 6 7 815 7. 8 9 10 816 11 12 13 14 15 16 17 18 For Review Only 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 http://mc03.manuscriptcentral.com/inz Page 71 of 77 Integrative Zoology

35 1 2 3 817 FIGURE LEGENDS 4 5 818 Figure 1 Map and location (top) of the late Miocene/early Pliocene interval deposits 6 7 819 presented in this paper and Pliocene Balearic deposits mentioned in the text: (a) View 8 9 10 820 of the Na Burguesa1 (NB1) deposit. (b) View of the Caló den Rafelino (CdR) 11 12 821 deposit. Abbreviations: CdR = Caló den Rafelino, CF = Crull de Cap Farrutx, CM = 13 14 822 Cala Morlanda, NB1 = Na Burguesa1, PN = Punta Nati, SF = Ses Fontanelles. 15 16 823 Figure 2 Several reptiles from the Mallorcan late Miocene/early Pliocene deposits: (a 17 18 For Review Only 19 824 c) Dorsal vertebra of Dopasia sp. from CdR (IMEDEA 90115) in dorsal (a), anterior 20 21 825 (b) and ventral (c) views: (d) Osteoderm in dorsal view Dopasia sp. from NB1: (ef) 22 23 826 Dorsal vertebra of Scolecophidia from NB1 in dorsal (e) and ventral (f) views: (g) 24 25 827 Right dentary of Scindidae cf. Chalcides from NB1 in medial view. Scale bars equal 26 27 828 1 mm. 28 29 30 829 Figure 3 Mammalian species obtained in NB1: (a) Soricinae indet., jaw, lingual 31 32 830 view, (b) Cricetinae indet., jaw, lingual view, (c) Muridae indet., jaw, lingual view, 33 34 831 (d) Eliomys /Hypnomys , jaw, lingual view, (e) cf. Hypolagus , femur, frontal view, (f) 35 36 832 cf. Myotragus , proximal epiphysis of a right femur, frontal view. Scale bars equal 1 37 38 39 833 cm. 40 41 834 Figure 4 Occlusal view of the two teeth of Hypnomys sp. retrieved from the Caló den 42 43 835 Rafelino (CdR) deposit: (a) IMEDEA 90622, left m1, (b) IMEDEA 90623, left M1. 44 45 836 Scale bar equals 1 mm. 46 47 837 Figure 5 Diagram of the late Miocene/early Pliocene to Holocene vertebrate 48 49 50 838 terrestrial fauna from the Balearic Islands. (*) The taxonomical identity of the 51 52 839 described species from Menorca Myotragus binigausensis MoyàSolà & PonsMoyà, 53 54 840 1980, Hypnomys eliomyoides Agustí, 1980 and Nesiotites meloussae PonsMoyà & 55 56 841 MoyàSolà, 1980 is unclear and it is under discussion (Reumer 1982; Bover & 57 58 59 60 http://mc03.manuscriptcentral.com/inz Integrative Zoology Page 72 of 77

36 1 2 3 842 Alcover 2000; MoyàSolà et al. 2007; PonsMonjo et al. 2012). Here we consider 4 5 843 these species as being synonymous of the Mallorcan coetaneous taxa, following 6 7 844 Bover et al. (2008). Gray arrows indicate contacts between Mallorca and Menorca 8 9 10 845 during Quaternary glaciations. 11 12 13 14 15 16 17 18 For Review Only 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 http://mc03.manuscriptcentral.com/inz Page 73 of 77 Integrative Zoology

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 For Review Only 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 http://mc03.manuscriptcentral.com/inz Integrative Zoology Page 74 of 77

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 For Review Only 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 109x122mm (300 x 300 DPI) 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 http://mc03.manuscriptcentral.com/inz Page 75 of 77 Integrative Zoology

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 For Review Only 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 http://mc03.manuscriptcentral.com/inz Integrative Zoology Page 76 of 77

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 For Review Only 19 20 21 22 23 24 25 109x54mm (300 x 300 DPI) 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 http://mc03.manuscriptcentral.com/inz Page 77 of 77 Integrative Zoology

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 For Review Only 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 322x618mm (300 x 300 DPI) 49 50 51 52 53 54 55 56 57 58 59 60 http://mc03.manuscriptcentral.com/inz