2019 Space Weather Workshop Poster Abstracts Embassy Suites Hotel Boulder Please Reference Workshop Poster Program for Poster Dates

Total Page:16

File Type:pdf, Size:1020Kb

2019 Space Weather Workshop Poster Abstracts Embassy Suites Hotel Boulder Please Reference Workshop Poster Program for Poster Dates 2019 Space Weather Workshop Poster Abstracts Embassy Suites Hotel Boulder Please reference Workshop Poster Program for Poster Dates Angling, Matthew (Spire) Poster Number: I3 Poster - On a 4D Ionospheric Data Assimilation Model Using Spire Radio Occultation Data Co-authors: F-X Bocquet, T. M. Duly, V. A. Nguyen, O. Nogues-Correig, L. Tan, T. Yuasa, D. Masters, J. Cappaert, J. Spark Abstract: The ionosphere can affect a wide range of radio frequency (RF) systems operating below 2 GHz. One option for mitigating these effects is to produce assimilative models of the ionospheric density from which products can be derived for specific systems. Such models aim to optimally combine a background model of the ionospheric state with measurements of the ionosphere. This approach is analogous to the use of numerical weather prediction in the meteorological community, and has been evolving for ionospheric use for the last 10 to 15 years. Published research has demonstrated to the utility of this approach. However, obstacles to providing effective data products remain due to the sparseness of ionospheric data over large parts of the world and the timeliness with which data is available. Spire is working to overcome these issues through the use of its large, and growing, constellation of satellites that can measure Total Electron Content (TEC) data in both zenith looking and radio occultation geometries, and its large ground station network that will allow low data latency. The Spire data will be combined with an innovative data assimilation model to provide accurate and actionable ionospheric products. This paper will describe the measurement collection and processing chain, the data assimilation model, and plans for the ongoing development of the combined system. Angryk, Rafal (Georgia State University) *e-Poster Poster Number: S29 - 10:00-10:15 & 3:30-3:45 on Screen 2 Poster - Multivariate Time Series Dataset for Space Weather Machine Learning Co-authors: Petrus C. Martens, Berkay Aydin, Dustin Kempton, Sushant S. Mahajan, Sunitha Basodi, Azim Ahmadzadeh, Soukaina Filali Boubrahimi, Shah Muhammad Hamdi, Michael A. Schuh, Manolis K. Georgoulis Abstract: We present a comprehensive, multivariate time series dataset extracted from solar photospheric vector magnetograms in Spaceweather HMI Active Region Patch (SHARP) series. Our dataset contains a cross-checked NOAA solar flare catalog. It is intended to simplify access to benchmark data for quantitatively comparative studies among machine learning experts and data scientists interested in solar flare prediction. We will present important aspects of data integration and cleaning for active regions and flares, and describe our data integration and sampling procedures. Our dataset covers 4,075 multivariate time series data instances from active regions observed between May 2010 and August 2018. It includes 51 parameters and integrates over 10,000 flare reports. Balikhin, Michael (The University of Sheffield) Poster Number: G14 Poster - NARMAX Based Tools for Space Weather Forecast Resulting from the PROGRESS Project Co-authors: Richard J. Boynton, Simon N. Walker Abstract: The overall aim of the PROGRESS project was to develop novel systems science based tools for the forecast of geomagnetic indices and radiation environment of the geospace and to combine these tools with the forecast of solar wind parameters at L1 to increase the advance time of the forecast. NARMAX based models for Kp, AE and Dst indices, and advanced SNB3GEO-MLT model for the forecast of fluxes of energetic electrons at GEO that accounts for their MLT dependence. The online website that provides the forecast resulting from PROGRESS is also reviewed. Baltzer, Tom (University of Colorado, LASP) *e-Poster Poster Number: I36 - 10:15-10:30 & 3:05-3:20 on Screen 2 Poster - Web Applications and Services in Support of Science Data Access, 'Fusion', Visualization and Download Co-authors: Doug Lindholm, Anne Wilson, Chris Pankratz, and the LASP Web Team Abstract: In order to support easing dataset access for our user community, the University of Colorado's Laboratory for Atmospheric and Space Physics (LASP) Web Team has been building reusable tooling and applying it for use by scientists and mission operators. This poster will describe our LaTiS software library at a high level, and present front end capabilities that it has enabled for several different use cases the Team supports. LaTiS is a software library that implements a mathematical technique for describing and manipulating scientific datasets. LASP has created numerous LaTiS services to provide unified access to disparate datasets easing the development of highly capable web applications which also will be described. Baltzer, Tom (University of Colorado, LASP) *e-Poster Poster Number: I38 - 10:30-10:45 & 3:20-3:35 on Screen 2 Poster - The University of Colorado Space Weather TREC Portal Co-authors: Thomas E. Berger, Jennifer Knuth, Doug Lindholm, Anne Wilson, Chris Pankratz, and the LASP Web Team Abstract: The Chancellor of the University of Colorado recently awarded a Grand Challenge grant to a group of departments and labs for the development of the Space Weather Technology, Research and Education Center (SWx-TREC https://www.colorado.edu/spaceweather/). As part of this effort, the Laboratory for Atmospheric and Space Physics (LASP) is developing a Space Weather (SWx) Data Portal to provide unified access to disparate datasets to help close the Research to Operations (R2O) and Operations to Research (O2R) gap. This poster shows the measurement instruments, providers, middleware and SWx TREC Portal prototype displays and how the capabilities being developed can be used to exemplify the 2015 St. Patrick’s Day Storm. Barani, Mohammad (West Virginia University) Poster Number: G12 Poster - Azimuthal Mode Structure of ULF Waves Based on Multiple GOES Satellite Observations Co-authors: Weichao Tu, Theodore Sarris Abstract: The process of radial diffusion, due to the drift resonance between MeV electrons and Ultra Low Frequency (ULF) waves, plays an important role in the transport, acceleration, and loss of energetic electrons in the Earth’s radiation belts. Characterizing the azimuthal mode structure of ULF waves and estimating the azimuthal wave (mode) number m is required for calculating the radial diffusion coefficient of radiation belt electrons. In this study, we make use of the five closely separated GOES satellites that are available during the 28-31 May 2010 storm, which is ideal to estimate the azimuthal mode structure of ULF waves. Specifically, a cross-spectral technique is applied to the compressional Pc5 ULF waves observed by multiple pairs of GOES satellites that cover a wide range of local time during the event to acquire the temporal and spatial variation of mode number. One new improvement in our analysis is that both positive and negative m values are allowed to provide a realistic estimate for the wave propagation direction. We find that during the storm commencement when the solar wind dynamic pressure was high, the ULF wave power is dominated by low mode numbers. Interesting change in the sign of m around noon is also found, with eastward propagation in the noon to dusk sector (solid lines) and westward propagation in the noon to dawn sector (dashed lines). This is consistent with the external driving of ULF waves from the solar wind buffeting around noon, which creates anti-Sunward propagation of waves on both sides. In contrast, during the storm main phase and early recovery phase when the solar wind dynamic pressure dropped to a very low level and the AE index became very active, high mode number ULF waves become dominant. A new result we find is that the high m wave structure covers a wide range of local time, not only limited to midnight region as suggested by previous studies. In addition, new method and analysis is devised and performed to reduce the 2n ambiguities in the cross-phase and mode number calculation by comparing and reconciling the mode estimation results from two overlapping GOES pairs. In the future, the mode number estimation from this study will be used to quantify the role of radial diffusion to the observed enhancement of MeV electrons during the storm. Barbrow, Seth (United States Military Academy) Poster Number: I6 Poster - STK Scenario Development to Predict GPS and PFISR Beam Conjunctions for Periodic and On-demand Scintillation Research Abstract: Using System Took Kit (STK), Global Positioning System (GPS) satellite conjunctions with Poker Flat Incoherent Scatter Radar (PFISR) beams were modeled to project experiments aimed at detecting ionospheric conditions associated with GPS L1 Scintillations. The GPS multi-beam mode has been used successfully at PFISR during the winters of 2017-18 and 2018-19 to detect ionospheric parameters associated with GPS L1 scintillation events. A series of central beams with an associated four beam cross pattern are matched to projected GPS signal ray paths using open source ephemerides, keeping the GPS line of site within +/- 2 degrees of the central beam. The resulting STK scenario will streamline existing PFISR experiment projections, and can be used in the future to develop on-demand conditions-based experiment requests. Benson, Jennifer (Delta Solutions & Strategies, LLC) Poster Number: G8 Poster - Relationship of >2 MeV Electron Fluence and Geomagnetic Storming Near Solar Minimum Abstract: A study has been carried out to explore the relationship between >2 MeV electron fluence and geomagnetic storming during 2017 and 2018 in order to improve forecasting for the likelihood of internal charging in satellites. GOES geosynchronous satellites >2 MeV electron fluxes were used to calculate a 72-hour fluence, and USGS derived Ap index values determined geomagnetic storming. We used threshold criteria of Ap ? 30 to denote geomagnetic storming and 72-hour fluence ? 1.0E9 e/cm2/sr as an indicator of internal charging. During the study period, recurrent coronal holes (CHs) were the main driver of geomagnetic storms. We found that electron fluence exceeded 1.0E9 (‘charging’ threshold) primarily during the equinox periods with gaps during the solstice periods.
Recommended publications
  • NSF Current Newsletter Highlights Research and Education Efforts Supported by the National Science Foundation
    March 2012 Each month, the NSF Current newsletter highlights research and education efforts supported by the National Science Foundation. If you would like to automatically receive notifications by e-mail or RSS when future editions of NSF Current are available, please use the links below: Subscribe to NSF Current by e-mail | What is RSS? | Print this page | Return to NSF Current Archive Robotic Surgery Systems Shipped to Medical Research Centers A set of seven identical advanced robotic-surgery systems produced with NSF support were shipped last month to major U.S. medical research laboratories, creating a network of systems using a common platform. The network is designed to make it easy for researchers to share software, replicate experiments and collaborate in other ways. Robotic surgery has the potential to enable new surgical procedures that are less invasive than existing techniques. The developers of the Raven II system made the decision to share it as the best way to move the field forward--though it meant giving competing laboratories tools that had taken them years to develop. "We decided to follow an open-source model, because if all of these labs have a common research platform for doing robotic surgery, the whole field will be able to advance more quickly," said Jacob Rosen, Students with components associate professor of computer engineering at the University of of the Raven II surgical California-Santa Cruz. Rosen and Blake Hannaford, director of the robotics systems. Credit: University of Washington Biorobotics Laboratory, led the team that Carolyn Lagattuta built the Raven system, initially with a U.S.
    [Show full text]
  • Gnc 2021 Abstract Book
    GNC 2021 ABSTRACT BOOK Contents GNC Posters ................................................................................................................................................... 7 Poster 01: A Software Defined Radio Galileo and GPS SW receiver for real-time on-board Navigation for space missions ................................................................................................................................................. 7 Poster 02: JUICE Navigation camera design .................................................................................................... 9 Poster 03: PRESENTATION AND PERFORMANCES OF MULTI-CONSTELLATION GNSS ORBITAL NAVIGATION LIBRARY BOLERO ........................................................................................................................................... 10 Poster 05: EROSS Project - GNC architecture design for autonomous robotic On-Orbit Servicing .............. 12 Poster 06: Performance assessment of a multispectral sensor for relative navigation ............................... 14 Poster 07: Validation of Astrix 1090A IMU for interplanetary and landing missions ................................... 16 Poster 08: High Performance Control System Architecture with an Output Regulation Theory-based Controller and Two-Stage Optimal Observer for the Fine Pointing of Large Scientific Satellites ................. 18 Poster 09: Development of High-Precision GPSR Applicable to GEO and GTO-to-GEO Transfer ................. 20 Poster 10: P4COM: ESA Pointing Error Engineering
    [Show full text]
  • Effect of the Solar Wind Density on the Evolution of Normal and Inverse Coronal Mass Ejections S
    A&A 632, A89 (2019) Astronomy https://doi.org/10.1051/0004-6361/201935894 & c ESO 2019 Astrophysics Effect of the solar wind density on the evolution of normal and inverse coronal mass ejections S. Hosteaux, E. Chané, and S. Poedts Centre for mathematical Plasma-Astrophysics (CmPA), Celestijnenlaan 200B, KU Leuven, 3001 Leuven, Belgium e-mail: [email protected] Received 15 May 2019 / Accepted 11 September 2019 ABSTRACT Context. The evolution of magnetised coronal mass ejections (CMEs) and their interaction with the background solar wind leading to deflection, deformation, and erosion is still largely unclear as there is very little observational data available. Even so, this evolution is very important for the geo-effectiveness of CMEs. Aims. We investigate the evolution of both normal and inverse CMEs ejected at different initial velocities, and observe the effect of the background wind density and their magnetic polarity on their evolution up to 1 AU. Methods. We performed 2.5D (axisymmetric) simulations by solving the magnetohydrodynamic equations on a radially stretched grid, employing a block-based adaptive mesh refinement scheme based on a density threshold to achieve high resolution following the evolution of the magnetic clouds and the leading bow shocks. All the simulations discussed in the present paper were performed using the same initial grid and numerical methods. Results. The polarity of the internal magnetic field of the CME has a substantial effect on its propagation velocity and on its defor- mation and erosion during its evolution towards Earth. We quantified the effects of the polarity of the internal magnetic field of the CMEs and of the density of the background solar wind on the arrival times of the shock front and the magnetic cloud.
    [Show full text]
  • Predicting the Magnetic Vectors Within Coronal Mass Ejections Arriving at Earth: 2
    Space Weather RESEARCH ARTICLE Predicting the magnetic vectors within coronal mass ejections 10.1002/2015SW001171 arriving at Earth: 1. Initial architecture Key Points: N. P.Savani1,2, A. Vourlidas1, A. Szabo2,M.L.Mays2,3, I. G. Richardson2,4, B. J. Thompson2, • First architectural design to predict A. Pulkkinen2,R.Evans5, and T. Nieves-Chinchilla2,3 a CME’s magnetic vectors (with eight events) 1 2 • Modified Bothmer-Schwenn CME Goddard Planetary Heliophysics Institute (GPHI), University of Maryland, Baltimore County, Maryland, USA, NASA 3 initiation rule to improve reliability Goddard Space Flight Center, Greenbelt, Maryland, USA, Institute for Astrophysics and Computational Sciences (IACS), of chirality Catholic University of America, Washington, District of Columbia, USA, 4Department of Astronomy, University of • CME evolution seen by remote Maryland, College Park, Maryland, USA, 5College of Science, George Mason University, Fairfax, Vancouver, USA sensing triangulation is important for forecasting Abstract The process by which the Sun affects the terrestrial environment on short timescales is Correspondence to: predominately driven by the amount of magnetic reconnection between the solar wind and Earth’s N. P. Savani, magnetosphere. Reconnection occurs most efficiently when the solar wind magnetic field has a southward [email protected] component. The most severe impacts are during the arrival of a coronal mass ejection (CME) when the magnetosphere is both compressed and magnetically connected to the heliospheric environment. Citation: Unfortunately, forecasting magnetic vectors within coronal mass ejections remain elusive. Here we report Savani, N. P., A. Vourlidas, A. Szabo, M.L.Mays,I.G.Richardson,B.J. how, by combining a statistically robust helicity rule for a CME’s solar origin with a simplified flux rope Thompson, A.
    [Show full text]
  • Arxiv:2101.07771V4 [Stat.AP] 9 Jun 2021
    Received Jan-19-2021; Revised Jun-02-2021; Accepted XX-XX-XXX DOI: xxx/xxxx SURVEY Critical Risk Indicators (CRIs) for the electric power grid: A survey and discussion of interconnected effects Che-Castaldo, Judy P.*1 | Cousin, Rémi2 | Daryanto, Stefani3 | Deng, Grace4 | Feng, Mei-Ling E.1 | Gupta, Rajesh K.5 | Hong, Dezhi5 | McGranaghan, Ryan M.6 | Owolabi, Olukunle O.7 | Qu, Tianyi8 | Ren, Wei3 | Schafer, Toryn L. J.4 | Sharma, Ashutosh9,10 | Shen, Chaopeng9 | Sherman, Mila Getmansky8 | Sunter, Deborah A.7 | Tao, Bo3 | Wang, Lan11 | Matteson, David S.4 1Conservation & Science Department, Lincoln Park Zoo, Illinois, USA Abstract 2International Research Institute for Climate The electric power grid is a critical societal resource connecting multiple infrastruc- and Society, Earth Institute / Columbia University, New York, USA tural domains such as agriculture, transportation, and manufacturing. The electrical 3Department of Plant and Soil Sciences, grid as an infrastructure is shaped by human activity and public policy in terms of College of Agriculture, Food and Environment / University of Kentucky, demand and supply requirements. Further, the grid is subject to changes and stresses Kentucky, USA due to diverse factors including solar weather, climate, hydrology, and ecology. The 4 Department of Statistics and Data Science, emerging interconnected and complex network dependencies make such interactions Cornell University, New York, USA 5Halicioglu Data Science Institute and increasingly dynamic, posing novel risks, and presenting new challenges to manage Department of Computer Science & the coupled human-natural system. This paper provides a survey of models and meth- Engineering, University of California, San ods that seek to explore the significant interconnected impact of the electric power Diego, California, USA 6Atmosphere Space Technology Research grid and interdependent domains.
    [Show full text]
  • Cmes, Solar Wind and Sun-Earth Connections: Unresolved Issues
    CMEs, solar wind and Sun-Earth connections: unresolved issues Rainer Schwenn Max-Planck-Institut für Sonnensystemforschung, Katlenburg-Lindau, Germany [email protected] In recent years, an unprecedented amount of high-quality data from various spaceprobes (Yohkoh, WIND, SOHO, ACE, TRACE, Ulysses) has been piled up that exhibit the enormous variety of CME properties and their effects on the whole heliosphere. Journals and books abound with new findings on this most exciting subject. However, major problems could still not be solved. In this Reporter Talk I will try to describe these unresolved issues in context with our present knowledge. My very personal Catalog of ignorance, Updated version (see SW8) IAGA Scientific Assembly in Toulouse, 18-29 July 2005 MPRS seminar on January 18, 2006 The definition of a CME "We define a coronal mass ejection (CME) to be an observable change in coronal structure that occurs on a time scale of a few minutes and several hours and involves the appearance (and outward motion, RS) of a new, discrete, bright, white-light feature in the coronagraph field of view." (Hundhausen et al., 1984, similar to the definition of "mass ejection events" by Munro et al., 1979). CME: coronal -------- mass ejection, not: coronal mass -------- ejection! In particular, a CME is NOT an Ejección de Masa Coronal (EMC), Ejectie de Maså Coronalå, Eiezione di Massa Coronale Éjection de Masse Coronale The community has chosen to keep the name “CME”, although the more precise term “solar mass ejection” appears to be more appropriate. An ICME is the interplanetry counterpart of a CME 1 1.
    [Show full text]
  • Solar Wind Properties and Geospace Impact of Coronal Mass Ejection-Driven Sheath Regions: Variation and Driver Dependence E
    Solar Wind Properties and Geospace Impact of Coronal Mass Ejection-Driven Sheath Regions: Variation and Driver Dependence E. K. J. Kilpua, D. Fontaine, C. Moissard, M. Ala-lahti, E. Palmerio, E. Yordanova, S. Good, M. M. H. Kalliokoski, E. Lumme, A. Osmane, et al. To cite this version: E. K. J. Kilpua, D. Fontaine, C. Moissard, M. Ala-lahti, E. Palmerio, et al.. Solar Wind Properties and Geospace Impact of Coronal Mass Ejection-Driven Sheath Regions: Variation and Driver Dependence. Space Weather: The International Journal of Research and Applications, American Geophysical Union (AGU), 2019, 17 (8), pp.1257-1280. 10.1029/2019SW002217. hal-03087107 HAL Id: hal-03087107 https://hal.archives-ouvertes.fr/hal-03087107 Submitted on 23 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. RESEARCH ARTICLE Solar Wind Properties and Geospace Impact of Coronal 10.1029/2019SW002217 Mass Ejection-Driven Sheath Regions: Variation and Key Points: Driver Dependence • Variation of interplanetary properties and geoeffectiveness of CME-driven sheaths and their dependence on the E. K. J. Kilpua1 , D. Fontaine2 , C. Moissard2 , M. Ala-Lahti1 , E. Palmerio1 , ejecta properties are determined E.
    [Show full text]
  • Ten Years of PAMELA in Space
    Ten Years of PAMELA in Space The PAMELA collaboration O. Adriani(1)(2), G. C. Barbarino(3)(4), G. A. Bazilevskaya(5), R. Bellotti(6)(7), M. Boezio(8), E. A. Bogomolov(9), M. Bongi(1)(2), V. Bonvicini(8), S. Bottai(2), A. Bruno(6)(7), F. Cafagna(7), D. Campana(4), P. Carlson(10), M. Casolino(11)(12), G. Castellini(13), C. De Santis(11), V. Di Felice(11)(14), A. M. Galper(15), A. V. Karelin(15), S. V. Koldashov(15), S. Koldobskiy(15), S. Y. Krutkov(9), A. N. Kvashnin(5), A. Leonov(15), V. Malakhov(15), L. Marcelli(11), M. Martucci(11)(16), A. G. Mayorov(15), W. Menn(17), M. Mergè(11)(16), V. V. Mikhailov(15), E. Mocchiutti(8), A. Monaco(6)(7), R. Munini(8), N. Mori(2), G. Osteria(4), B. Panico(4), P. Papini(2), M. Pearce(10), P. Picozza(11)(16), M. Ricci(18), S. B. Ricciarini(2)(13), M. Simon(17), R. Sparvoli(11)(16), P. Spillantini(1)(2), Y. I. Stozhkov(5), A. Vacchi(8)(19), E. Vannuccini(1), G. Vasilyev(9), S. A. Voronov(15), Y. T. Yurkin(15), G. Zampa(8) and N. Zampa(8) (1) University of Florence, Department of Physics, I-50019 Sesto Fiorentino, Florence, Italy (2) INFN, Sezione di Florence, I-50019 Sesto Fiorentino, Florence, Italy (3) University of Naples “Federico II”, Department of Physics, I-80126 Naples, Italy (4) INFN, Sezione di Naples, I-80126 Naples, Italy (5) Lebedev Physical Institute, RU-119991 Moscow, Russia (6) University of Bari, I-70126 Bari, Italy (7) INFN, Sezione di Bari, I-70126 Bari, Italy (8) INFN, Sezione di Trieste, I-34149 Trieste, Italy (9) Ioffe Physical Technical Institute, RU-194021 St.
    [Show full text]
  • Examining Emerging Risks
    CAS Professional Education IN FOCUS: TAMING CATS‐MANAGING NATURAL AND MAN‐MADE CATASTROPHE RISKS BALTIMORE, MD EXAMINING EMERGING RISKS Alan D. Roth, Ph.D. Chief Risk Officer, Advanced Fusion Systems, LLC TOPICS TO BE COVERED • CLIMATE CHANGE • WATER SCARCITY • FOOD SCARCITY • FUEL SCARCITY • SOLAR STORMS • EMP • PANDEMICS • CYBER WARFARE CLIMATE CHANGE Is it real? This is from NASA Where? –is also important! We need to consider: • Pacific Decadal Oscillation • North Atlantic Oscillation • Southern Oscillation: El Niño and La Niña • Arctic Oscillation • Trade winds • Meridional Overturning Circulation (aka Conveyor Belt) Temperature from 1884 to 2011 Ocean currents are varied http://www.jpl.nasa.gov/news/news.cfm?release=2012‐099 El Niño/Southern Oscillation (ENSO) NOAA: North Atlantic Oscillation NOAA: North Atlantic Oscillation Arctic Oscillation The state of atmospheric circulation over the Arctic. Red is low pressure, blue is high pressure. Influences weather patterns at lower latitudes. Effect of changes in temperature distribution on extremes ”MANAGING THE RISKS OF EXTREME EVENTS AND DISASTERS TO ADVANCE CLIMATE CHANGE ADAPTATION: SUMMARY FOR POLICYMAKERS” Special Report of the IPCC 2012 page 6 The. Different changes in temperature distributions between present and future climate and their effects on extreme values of the distributions: (a) effects of a simple shift of the entire distribution toward a warmer climate; (b) effects of an increase in temperature variability with no shift in the mean; (c) effects of an altered shape of the distribution, in this example a change in asymmetry toward the hotter part of the distribution. (courtesy IPCC) Arctic Sea Ice Extent thru Sept. ‘12 Ice Decreasing at an Increasing Rate 2007 vs 2012 Abrupt Climate Change 23 Times! Courtesy Rihichar d B.
    [Show full text]
  • Astrophysics in 2006 3
    ASTROPHYSICS IN 2006 Virginia Trimble1, Markus J. Aschwanden2, and Carl J. Hansen3 1 Department of Physics and Astronomy, University of California, Irvine, CA 92697-4575, Las Cumbres Observatory, Santa Barbara, CA: ([email protected]) 2 Lockheed Martin Advanced Technology Center, Solar and Astrophysics Laboratory, Organization ADBS, Building 252, 3251 Hanover Street, Palo Alto, CA 94304: ([email protected]) 3 JILA, Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder CO 80309: ([email protected]) Received ... : accepted ... Abstract. The fastest pulsar and the slowest nova; the oldest galaxies and the youngest stars; the weirdest life forms and the commonest dwarfs; the highest energy particles and the lowest energy photons. These were some of the extremes of Astrophysics 2006. We attempt also to bring you updates on things of which there is currently only one (habitable planets, the Sun, and the universe) and others of which there are always many, like meteors and molecules, black holes and binaries. Keywords: cosmology: general, galaxies: general, ISM: general, stars: general, Sun: gen- eral, planets and satellites: general, astrobiology CONTENTS 1. Introduction 6 1.1 Up 6 1.2 Down 9 1.3 Around 10 2. Solar Physics 12 2.1 The solar interior 12 2.1.1 From neutrinos to neutralinos 12 2.1.2 Global helioseismology 12 2.1.3 Local helioseismology 12 2.1.4 Tachocline structure 13 arXiv:0705.1730v1 [astro-ph] 11 May 2007 2.1.5 Dynamo models 14 2.2 Photosphere 15 2.2.1 Solar radius and rotation 15 2.2.2 Distribution of magnetic fields 15 2.2.3 Magnetic flux emergence rate 15 2.2.4 Photospheric motion of magnetic fields 16 2.2.5 Faculae production 16 2.2.6 The photospheric boundary of magnetic fields 17 2.2.7 Flare prediction from photospheric fields 17 c 2008 Springer Science + Business Media.
    [Show full text]
  • Digital Tracking Observations Can Discover Asteroids Ten Times
    Digital Tracking Observations Can Discover Asteroids Ten Times Fainter than Conventional Searches Aren N. Heinze1,2, Stanimir Metchev3,4,1, and Joseph Trollo3 ABSTRACT We describe digital tracking, a method for asteroid searches that greatly increases the sensitivity of a telescope to faint unknown asteroids. It has been previously used to detect faint Kuiper Belt objects using the Hubble Space Telescope and large ground- based instruments, and to find a small, fast-moving asteroid during a close approach to Earth. We complement this earlier work by developing digital tracking methodology for detecting asteroids using large-format CCD imagers. We demonstrate that the tech- nique enables the ground-based detection of large numbers of new faint asteroids. Our methodology resolves or circumvents all major obstacles to the large-scale application of digital tracking for finding main belt and near-Earth asteroids. We find that for both asteroid populations, digital tracking can deliver a factor of ten improvement over conventional searches. Digital tracking has long been standard practice for deep Kuiper Belt surveys, but even there our methodology enables deeper integrations than have yet been attempted. Our search for main belt asteroids using a one-degree imager on the 0.9m WIYN telescope on Kitt Peak validates our methodology, delivers sensitivity to asteroids in a regime previously probed only with 4-meter and larger instruments, and leads to the detection of 156 previously unknown asteroids and 59 known objects in a single field. Digital tracking has the potential to revolutionize searches for faint moving objects ranging from the Kuiper Belt through main belt and near-Earth asteroids, and perhaps even anthropogenic space debris in low Earth orbit.
    [Show full text]
  • Advancements in Modeling Self-Consistent Core-Collapse Supernovae with CHIMERA
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 8-2012 Advancements in Modeling Self-Consistent Core-Collapse Supernovae with CHIMERA Merek Austin Chertkow University of Tennessee, Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Other Astrophysics and Astronomy Commons Recommended Citation Chertkow, Merek Austin, "Advancements in Modeling Self-Consistent Core-Collapse Supernovae with CHIMERA. " PhD diss., University of Tennessee, 2012. https://trace.tennessee.edu/utk_graddiss/1463 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Merek Austin Chertkow entitled "Advancements in Modeling Self-Consistent Core-Collapse Supernovae with CHIMERA." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Physics. William Hix, Major Professor We have read this dissertation and recommend its acceptance: Kate Jones, Mike Guidry, Robert, Hinde Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Advancements in Modeling Self-Consistent Core-Collapse Supernovae with CHIMERA A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Merek Austin Chertkow August 2012 c by Merek Austin Chertkow, 2012 All Rights Reserved.
    [Show full text]