Phylogeny of Poa (Poaceae) Based on Trnt–Trnf Sequence Data: Major Clades and Basal Relationships Lynn J
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Improved Conservation Plant Materials Released by NRCS and Cooperators Through December 2014
Natural Resources Conservation Service Improved Conservation Plant Materials Released by Plant Materials Program NRCS and Cooperators through December 2014 Page intentionally left blank. Natural Resources Conservation Service Plant Materials Program Improved Conservation Plant Materials Released by NRCS and Cooperators Through December 2014 Norman A. Berg Plant Materials Center 8791 Beaver Dam Road Building 509, BARC-East Beltsville, Maryland 20705 U.S.A. Phone: (301) 504-8175 prepared by: Julie A. DePue Data Manager/Secretary [email protected] John M. Englert Plant Materials Program Leader [email protected] January 2015 Visit our Website: http://Plant-Materials.nrcs.usda.gov TABLE OF CONTENTS Topics Page Introduction ...........................................................................................................................................................1 Types of Plant Materials Releases ........................................................................................................................2 Sources of Plant Materials ....................................................................................................................................3 NRCS Conservation Plants Released in 2013 and 2014 .......................................................................................4 Complete Listing of Conservation Plants Released through December 2014 ......................................................6 Grasses ......................................................................................................................................................8 -
Appendix 1: Maps and Plans Appendix184 Map 1: Conservation Categories for the Nominated Property
Appendix 1: Maps and Plans Appendix184 Map 1: Conservation Categories for the Nominated Property. Los Alerces National Park, Argentina 185 Map 2: Andean-North Patagonian Biosphere Reserve: Context for the Nominated Proprty. Los Alerces National Park, Argentina 186 Map 3: Vegetation of the Valdivian Ecoregion 187 Map 4: Vegetation Communities in Los Alerces National Park 188 Map 5: Strict Nature and Wildlife Reserve 189 Map 6: Usage Zoning, Los Alerces National Park 190 Map 7: Human Settlements and Infrastructure 191 Appendix 2: Species Lists Ap9n192 Appendix 2.1 List of Plant Species Recorded at PNLA 193 Appendix 2.2: List of Animal Species: Mammals 212 Appendix 2.3: List of Animal Species: Birds 214 Appendix 2.4: List of Animal Species: Reptiles 219 Appendix 2.5: List of Animal Species: Amphibians 220 Appendix 2.6: List of Animal Species: Fish 221 Appendix 2.7: List of Animal Species and Threat Status 222 Appendix 3: Law No. 19,292 Append228 Appendix 4: PNLA Management Plan Approval and Contents Appendi242 Appendix 5: Participative Process for Writing the Nomination Form Appendi252 Synthesis 252 Management Plan UpdateWorkshop 253 Annex A: Interview Guide 256 Annex B: Meetings and Interviews Held 257 Annex C: Self-Administered Survey 261 Annex D: ExternalWorkshop Participants 262 Annex E: Promotional Leaflet 264 Annex F: Interview Results Summary 267 Annex G: Survey Results Summary 272 Annex H: Esquel Declaration of Interest 274 Annex I: Trevelin Declaration of Interest 276 Annex J: Chubut Tourism Secretariat Declaration of Interest 278 -
Breeding System Diversification and Evolution in American Poa Supersect. Homalopoa (Poaceae: Poeae: Poinae)
Annals of Botany Page 1 of 23 doi:10.1093/aob/mcw108, available online at www.aob.oxfordjournals.org Breeding system diversification and evolution in American Poa supersect. Homalopoa (Poaceae: Poeae: Poinae) Liliana M. Giussani1,*, Lynn J. Gillespie2, M. Amalia Scataglini1,Marıa A. Negritto3, Ana M. Anton4 and Robert J. Soreng5 1Instituto de Botanica Darwinion, San Isidro, Buenos Aires, Argentina, 2Research and Collections Division, Canadian Museum of Nature, Ottawa, Ontario, Canada, 3Universidad de Magdalena, Santa Marta, Colombia, 4Instituto Multidisciplinario de Biologıa Vegetal (IMBIV), CONICET-UNC, Cordoba, Argentina and 5Department of Botany, Smithsonian Institution, Washington, DC, USA *For correspondence. E-mail [email protected] Received: 11 December 2015 Returned for revision: 18 February 2016 Accepted: 18 March 2016 Downloaded from Background and Aims Poa subgenus Poa supersect. Homalopoa has diversified extensively in the Americas. Over half of the species in the supersection are diclinous; most of these are from the New World, while a few are from South-East Asia. Diclinism in Homalopoa can be divided into three main types: gynomonoecism, gynodioe- cism and dioecism. Here the sampling of species of New World Homalopoa is expanded to date its origin and diver- sification in North and South America and examine the evolution and origin of the breeding system diversity. Methods A total of 124 specimens were included in the matrix, of which 89 are species of Poa supersect. http://aob.oxfordjournals.org/ Homalopoa sections Acutifoliae, Anthochloa, Brizoides, Dasypoa, Dioicopoa, Dissanthelium, Homalopoa sensu lato (s.l.), Madropoa and Tovarochloa, and the informal Punapoa group. Bayesian and parsimony analyses were conducted on the data sets based on four markers: the nuclear ribosomal internal tanscribed spacer (ITS) and exter- nal transcribed spacer (ETS), and plastid trnT-L and trnL-F. -
Vascular Plant Species Diversity of Mt. Etna
Vascular plant species diversity of Mt. Etna (Sicily): endemicity, insularity and spatial patterns along the altitudinal gradient of the highest active volcano in Europe Saverio Sciandrello*, Pietro Minissale* and Gianpietro Giusso del Galdo* Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy * These authors contributed equally to this work. ABSTRACT Background. Altitudinal variation in vascular plant richness and endemism is crucial for the conservation of biodiversity. Territories featured by a high species richness may have a low number of endemic species, but not necessarily in a coherent pattern. The main aim of our research is to perform an in-depth survey on the distribution patterns of vascular plant species richness and endemism along the elevation gradient of Mt. Etna, the highest active volcano in Europe. Methods. We used all the available data (literature, herbarium and seed collections), plus hundreds of original (G Giusso, P Minissale, S Sciandrello, pers. obs., 2010–2020) on the occurrence of the Etna plant species. Mt. Etna (highest peak at 3,328 mt a.s.l.) was divided into 33 belts 100 m wide and the species richness of each altitudinal range was calculated as the total number of species per interval. In order to identify areas with high plant conservation priority, 29 narrow endemic species (EE) were investigated through hot spot analysis using the ``Optimized Hot Spot Analysis'' tool available in the ESRI ArcGIS software package. Results. Overall against a floristic richness of about 1,055 taxa, 92 taxa are endemic, Submitted 7 November 2019 of which 29 taxa are exclusive (EE) of Mt. -
Habitat Indicator Species
1 Handout 6 – Habitat Indicator Species Habitat Indicator Species The species lists below are laid out by habitats and help you to find out which habitats you are surveying – you will see that some species occur in several different habitats. Key: * Plants that are especially good indicators of that specific habitat Plants found in Norfolk’s woodland Common Name Scientific Name Alder Buckthorn Frangula alnus Aspen Populus tremula Barren Strawberry Potentilla sterilis Bird Cherry Prunus padus Black Bryony Tamus communis Bush Vetch Vicia sepium Climbing Corydalis Ceratocapnos claviculata Common Cow-wheat Melampyrum pratense Early dog violet Viola reichenbachiana Early Purple Orchid Orchis mascula * English bluebell Hyacinthoides non-scripta* * Field Maple Acer campestre* Giant Fescue Festuca gigantea * Goldilocks buttercup Ranunculus auricomus* Great Wood-rush Luzula sylvatica Greater Burnet-saxifrage Pimpinella major Greater Butterfly-orchid Platanthera chlorantha Guelder Rose Viburnum opulus Hairy Wood-rush Luzula pilosa Hairy-brome Bromopsis ramosa Hard Fern Blechnum spicant Hard Shield-fern Polystichum aculeatum * Hart's-tongue Phyllitis scolopendrium* Holly Ilex aquifolium * Hornbeam Carpinus betulus* * Midland Hawthorn Crataegus laevigata* Moschatel Adoxa moschatellina Narrow Buckler-fern Dryopteris carthusiana Opposite-leaved Golden-saxifrage Chrysosplenium oppositifolium * Pendulous Sedge Carex Pendula* Pignut Conopodium majus Polypody (all species) Polypodium vulgare (sensulato) * Primrose Primula vulgaris* 2 Handout 6 – Habitat -
National Wetlands Inventory Map Report for Quinault Indian Nation
National Wetlands Inventory Map Report for Quinault Indian Nation Project ID(s): R01Y19P01: Quinault Indian Nation, fiscal year 2019 Project area The project area (Figure 1) is restricted to the Quinault Indian Nation, bounded by Grays Harbor Co. Jefferson Co. and the Olympic National Park. Appendix A: USGS 7.5-minute Quadrangles: Queets, Salmon River West, Salmon River East, Matheny Ridge, Tunnel Island, O’Took Prairie, Thimble Mountain, Lake Quinault West, Lake Quinault East, Taholah, Shale Slough, Macafee Hill, Stevens Creek, Moclips, Carlisle. • < 0. Figure 1. QIN NWI+ 2019 project area (red outline). Source Imagery: Citation: For all quads listed above: See Appendix A Citation Information: Originator: USDA-FSA-APFO Aerial Photography Field Office Publication Date: 2017 Publication place: Salt Lake City, Utah Title: Digital Orthoimagery Series of Washington Geospatial_Data_Presentation_Form: raster digital data Other_Citation_Details: 1-meter and 1-foot, Natural Color and NIR-False Color Collateral Data: . USGS 1:24,000 topographic quadrangles . USGS – NHD – National Hydrography Dataset . USGS Topographic maps, 2013 . QIN LiDAR DEM (3 meter) and synthetic stream layer, 2015 . Previous National Wetlands Inventories for the project area . Soil Surveys, All Hydric Soils: Weyerhaeuser soil survey 1976, NRCS soil survey 2013 . QIN WET tables, field photos, and site descriptions, 2016 to 2019, Janice Martin, and Greg Eide Inventory Method: Wetland identification and interpretation was done “heads-up” using ArcMap versions 10.6.1. US Fish & Wildlife Service (USFWS) National Wetlands Inventory (NWI) mapping contractors in Portland, Oregon completed the original aerial photo interpretation and wetland mapping. Primary authors: Nicholas Jones of SWCA Environmental Consulting. 100% Quality Control (QC) during the NWI mapping was provided by Michael Holscher of SWCA Environmental Consulting. -
Poa Billardierei
Poa billardierei COMMON NAME Sand tussock, hinarepe SYNONYMS Festuca littoralis Labill.; Schedonorus littoralis (Labill.) P.Beauv.; Triodia billardierei Spreng.; Poa billardierei (Spreng.)St.-Yves; Schedonorus billardiereanus Nees; Arundo triodioides Trin.; Schedonorus littoralis var. alpha minor Hook.f.; Austrofestuca littoralis (Labill.) E.B.Alexev. FAMILY Poaceae AUTHORITY Poa billardierei (Spreng.)St.-Yves FLORA CATEGORY Vascular – Native ENDEMIC TAXON No Austrofestuca littoralis. Photographer: Kevin Matthews ENDEMIC GENUS No ENDEMIC FAMILY No STRUCTURAL CLASS Grasses NVS CODE POABIL CHROMOSOME NUMBER 2n = 28 CURRENT CONSERVATION STATUS 2012 | At Risk – Declining | Qualifiers: SO PREVIOUS CONSERVATION STATUSES 2009 | At Risk – Declining | Qualifiers: SO 2004 | Gradual Decline DISTRIBUTION Austrofestuca littoralis. Photographer: Geoff North Island, South Island, Chatham Island (apparently absent from Walls Chatham Island now despite being formerly abundant). Also found in temperate Australia. HABITAT Coastal dunes; sandy and rocky places near the shore, especially foredunes and dune hollows. FEATURES Yellow-green tussocks up to about 70 cm tall. Leaves fine, rolled, somewhat drooping (coarser than silver tussock), initially green, often fading at tips to silver, and drying to golden-straw colour. Seed heads no longer than leaves; seeds relatively large, barley-like, leaving a characteristic zig-zag look to the remaining head when fallen. Flowers in early summer and the seed are produced in late summer. It could be confused with Poa chathamica which has blue- green or grass-green flat leaves and an open seed head which overtops the foliage. It could also be confused with marram grass which has similar foliage but large cat’stail-like seed heads which overtop the foliage. SIMILAR TAXA Ammophila arenaria (marram grass) is often confused with sand tussock because they grow in the same habitat. -
Alagnak Wild River & Katmai National Park Vascular Plant Inventory Annual Technical Report
ALAGNAK WILD RIVER & KATMAI NATIONAL PARK VASCULAR PLANT INVENTORY ANNUAL TECHNICAL REPORT Matthew L. Carlson & Robert Lipkin Alaska Natural Heritage Program Environment and Natural Resources Institute University of Alaska Anchorage 707 "A" Street Anchorage, Alaska 99501 National Park Service Alaska Region Inventory & Monitoring Program NPS Report : June 2003 Cooperative Agreement No. 1443CA991000013 Funding Source: National Park Service, Inventory & Monitoring Program ALAGNAK WILD RIVER & KATMAI NATIONAL PARK VASCULAR PLANT INVENTORY ANNUAL TECHNICAL REPORT 2 ABSTRACT In 2002, the Alaska Natural Heritage Program (AKNHP), conducted vascular plant field inventories in the Alagnak Wild River and Katmai Nation Park units in accordance with a cooperative agreement with the National Park Service. The primary goal was to document ≥ 90% of the vascular plant species expected to occur within the parks and significantly improve our understanding of current species distributions. The inventory targeted diverse habitat types and poorly-sampled areas. The AKNHP visited four diverse eco-geographic regions and sampled intensively within these regions from late June to mid-August, 2002. A total of 530 specimens were collected, recorded, pressed, and curated. For Katmai Park, 317 individual taxa are represented, 146 are new records for the park, and an additional 41 represent verifications of previously unvouchered reports. Of the 133 specimens collected from the Alagnak Wild River, 120 are new records for that unit. A number of finds were significant range extensions or taxa of conservation concern. Dupontia fisheri is a tundra grass of northern and western Alaska. We located a population at Swikshak Lagoon, over 300 km east of the other outlying stations, and this site is the first recording from a woodland marsh in Alaska. -
The Representation of Wetland Types and Species in RAMSAR Sites in The
The representation of wetland types and species in RAMSAR sites in the Baltic Sea Catchment Area The representation of wetland types and species in RAMSAR sites in the Baltic Sea Catchment Area | 1 2 | The representation of wetland types and species in RAMSAR sites in the Baltic Sea Catchment Area White waterlily, Nymphaea alba The representation of wetland types and species in RAMSAR sites in the Baltic Sea Catchment Area In order to get a better reference the future and long-term planning of activities aimed for the protection of wetlands and their ecological functions, WWF Sweden initiated an evaluation of the representation of wetland types and species in the RAMSAR network of protected sites in the Baltic Sea Catchment Area. The study was contracted to Dr Mats Eriksson (MK Natur- och Miljökonsult HB, Sweden), who has been assisted by Mrs Alda Nikodemusa, based in Riga, for the compilation of information from the countries in Eastern Europe. Mats O.G. Eriksson MK Natur- och Miljökonsult HB, Tommered 6483, S-437 92 Lindome, Sweden With assistance by Alda Nikodemusa, Kirsu iela 6, LV-1006 Riga, Latvia The representation of wetland types and species in RAMSAR sites in the Baltic Sea Catchment Area | 3 Contents Foreword 5 Summary 6 Sammanfattning på svenska 8 Purpose of the study 10 Background and introduction 10 Study area 12 Methods 14 Land-use in the catchment area 14 Definitions and classification of wetland types 14 Country-wise analyses of the representation of wetland types 15 Accuracy of the analysis 16 Overall analysis of the -
Identifying and Appreciating the Native and Naturalized Grasses of California
IDENTIFYING AND APPRECIATING THE NATIVE AND NATURALIZED GRASSES OF CALIFORNIA Materials Selected and Presented by David Amme for class offered on May 8, 2003, Seaside, CA under the auspices of California Native Grass Association P.O Box 72405 • Davis, CA 95617 Voice: 530-759-8458 FAX 530-753-1553 Email: [email protected] Web: http://www.cnga.org Identifying and Appreciating the Native and Naturalized Grasses of California California Native Grass Association California Native Grass Association Identifying and Appreciating the Native and Naturalized Grasses of California WHAT IS A GRASS? KEY TO GRASSES, SEDGES AND RUSHES 1a Flowers with stiff, greenish or brownish, 6 parted perianth (calyx and corolla); stamens 6 or 3; fruit a many-seeded capsule; leaves usually wiry and round in cross section . RUSH FAMILY (Juncaceae) lb Flowers without evident calyx or corolla, gathered into short scaly clusters (spikelets); stamens 3; fruit with a single seed. 2 2a Leaves in 2 vertical rows or ranks; leaf sheaths usually split, with overlapping edges; stems usually round in cross section and hollow between the joints; each flower of the spikelet contained between 2 bracts, the lemma and the palea . GRASS FAMILY (Cramineae) 2b Leaves in 3 vertical rows or ranks; leaf sheaths tubular, not split; stems often triangular in cross section and solid between joints; each flower of the spikelet in the axil of a single bract, the glume . SEDGE FAMILY (Cyperaceae) From: HOW TO KNOW THE GRASSES by Richard W. Pohl; Wm. C. Brown Company Publishers; Dubuque, Iowa. Identifying -
Kenai National Wildlife Refuge Species List, Version 2018-07-24
Kenai National Wildlife Refuge Species List, version 2018-07-24 Kenai National Wildlife Refuge biology staff July 24, 2018 2 Cover image: map of 16,213 georeferenced occurrence records included in the checklist. Contents Contents 3 Introduction 5 Purpose............................................................ 5 About the list......................................................... 5 Acknowledgments....................................................... 5 Native species 7 Vertebrates .......................................................... 7 Invertebrates ......................................................... 55 Vascular Plants........................................................ 91 Bryophytes ..........................................................164 Other Plants .........................................................171 Chromista...........................................................171 Fungi .............................................................173 Protozoans ..........................................................186 Non-native species 187 Vertebrates ..........................................................187 Invertebrates .........................................................187 Vascular Plants........................................................190 Extirpated species 207 Vertebrates ..........................................................207 Vascular Plants........................................................207 Change log 211 References 213 Index 215 3 Introduction Purpose to avoid implying -
Hans Walter Lack & Thomas Raus Hildemar Scholz
Fl. Medit. 22: 233-244 doi: 10.7320/FlMedit22.233 Version of Record published online on 28 December 2012 Hans Walter Lack & Thomas Raus Hildemar Scholz (1928 – 2012) Hildemar Scholz, aged 84, passed away on 5 June 2012 as a consequence of a bad fall he had suffered at home a few weeks earlier. He was a world authority on grasses, the adventive flora of Europe, and rust fungi from central Europe. From 1964 until his retire- ment in 1993 he was a member of staff of the Botanic Garden and Botanical Museum Berlin-Dahlem, rising from scientific collaborator to one of the directors at this institution. Hildemar was a born plant-collector active all over Europe, in North and West Africa with a special interest in grasses and the rust fungi parasitizing them. Born on 27 May 1928 in Berlin into a family of protestant clergymen Hildemar Scholz remained both in language and manners very much a Berliner, in the true and best sense of the word, and never ever considered leaving his home town, even during the many diffi- cult years this city encountered in the last century. Having belatedly finished his school training because of the Second World War in 1947, he tried to get enrolled at Berlin University, subsequently renamed Humboldt University, in the Soviet sector of the city, but was rejected – probably because his father was a clergyman. Hildemar had more success at the newly founded Free University in the American sector of Berlin, where he got admit- ted in 1949 and chose biology as his subject.