Fluid Circulation in a Complex Volcano-Tectonic Setting, Inferred from Self-Potential and Soil CO2 Flux Surveys
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
“Etnohistoria De La Formación Y Desarrollo De La Población De San Miguel Dueñas Y Su Comparación Con Las Tierras Altas De Chimaltenango”
UNIVERSIDAD DE SAN CARLOS DE GUATEMALA DIRECCIÓN GENERAL DE INVESTIGACIÓN PROGRAMA UNIVERSITARIO DE INVESTIGACIÓN EN HISTORIA DE GUATEMALA ESCUELA DE HISTORIA INSTITUTO DE INVESTIGACIONES HISTORICAS ANTROPOLÓGICAS Y ARQUEOLÓGICAS –IIHAA- “ETNOHISTORIA DE LA FORMACIÓN Y DESARROLLO DE LA POBLACIÓN DE SAN MIGUEL DUEÑAS Y SU COMPARACIÓN CON LAS TIERRAS ALTAS DE CHIMALTENANGO” Nombre del Coordinador: Lic. Arturo Francisco Matas Oria Investigadores: Licda. Ligia Isabel Archila Serrano Maestro José F. Benítez Auxiliar de Investigación: Evelyn Búcaro Porras Diciembre de 2003 “Etnohistoria de la Formación y Desarrollo de la Población de San Miguel Dueñas y su Comparación con las Tierras Altas de Chimaltenango” Índice General Página Contenido del Informe INTRODUCCIÓN .......................................................................................................... - 1 - CAPITULO I................................................................................................................... - 3 - MONOGRAFÍA DEL MUNICIPIO DE SAN MIGUEL DUEÑAS, DEPARTAMENTO DE SACATEPEQUEZ................................................................................................... - 3 - 1. DESCRIPCIÓN DEL UNIVERSO DE ESTUDIO................................................................ - 3 - 2. POBLACIÓN Y NIVEL EDUCATIVO ............................................................................. - 7 - 3. VIVIENDAS Y SERVICIOS PÚBLICOS .......................................................................... - 8 - 4. ACTIVIDADES ECONÓMICAS.................................................................................. -
50 Archaeological Salvage at El Chiquirín, Gulf Of
50 ARCHAEOLOGICAL SALVAGE AT EL CHIQUIRÍN, GULF OF FONSECA, LA UNIÓN, EL SALVADOR Marlon Escamilla Shione Shibata Keywords: Maya archaeology, El Salvador, Gulf of Fonseca, shell gatherers, Salvage archaeology, Pacific Coast, burials The salvage archaeological investigation at the site of El Chiquirín in the department of La Unión was carried out as a consequence of an accidental finding made by local fishermen in November, 2002. An enthusiast fisherman from La Unión –José Odilio Benítez- decided, like many other fellow countrymen, to illegally migrate to the United States in the search of a better future for him and his large family. His major goal was to work and save money to build a decent house. Thus, in September 2002, just upon his arrival in El Salvador, he initiated the construction of his home in the village of El Chiquirín, canton Agua Caliente, department of La Unión, in the banks of the Gulf of Fonseca. By the end of November of the same year, while excavating for the construction of a septic tank, different archaeological materials came to light, including malacologic, ceramic and bone remains. The finding was much surprising for the community of fishermen, the Mayor of La Unión and the media, who gave the finding a wide cover. It was through the written press that the Archaeology Unit of the National Council for Culture and Art (CONCULTURA) heard about the discovery. Therefore, the Archaeology Unit conducted an archaeological inspection at that residential place, to ascertain that the finding was in fact a prehispanic shell deposit found in the house patio, approximately 150 m away from the beach. -
Dilemma of Geoconservation of Monogenetic Volcanic Sites Under Fast Urbanization and Infrastructure Developments with Special Re
sustainability Article Dilemma of Geoconservation of Monogenetic Volcanic Sites under Fast Urbanization and Infrastructure Developments with Special Relevance to the Auckland Volcanic Field, New Zealand Károly Németh 1,2,3,* , Ilmars Gravis 3 and Boglárka Németh 1 1 School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand; [email protected] 2 Institute of Earth Physics and Space Science, 9400 Sopron, Hungary 3 The Geoconservation Trust Aotearoa, 52 Hukutaia Road, Op¯ otiki¯ 3122, New Zealand; [email protected] * Correspondence: [email protected]; Tel.: +64-27-4791484 Abstract: Geoheritage is an important aspect in developing workable strategies for natural hazard resilience. This is reflected in the UNESCO IGCP Project (# 692. Geoheritage for Geohazard Resilience) that continues to successfully develop global awareness of the multifaced aspects of geoheritage research. Geohazards form a great variety of natural phenomena that should be properly identified, and their importance communicated to all levels of society. This is especially the case in urban areas such as Auckland. The largest socio-economic urban center in New Zealand, Auckland faces potential volcanic hazards as it sits on an active Quaternary monogenetic volcanic field. Individual volcanic geosites of young eruptive products are considered to form the foundation of community Citation: Németh, K.; Gravis, I.; outreach demonstrating causes and consequences of volcanism associated volcanism. However, in Németh, B. Dilemma of recent decades, rapid urban development has increased demand for raw materials and encroached Geoconservation of Monogenetic on natural sites which would be ideal for such outreach. The dramatic loss of volcanic geoheritage Volcanic Sites under Fast of Auckland is alarming. -
Mapping Susceptibility to Debris Flows Triggered by Tropical Storms: a Case Study of the San Vicente Volcano Area (El Salvador, CA)
Article Mapping Susceptibility to Debris Flows Triggered by Tropical Storms: A Case Study of the San Vicente Volcano Area (El Salvador, CA) Claudio Mercurio 1 , Chiara Martinello 1, Edoardo Rotigliano 1,* , Abel Alexei Argueta-Platero 2, Mario Ernesto Reyes-Martínez 3, Jacqueline Yamileth Rivera-Ayala 3 and Christian Conoscenti 1 1 Dipartimento di Scienze della Terra e del Mare (DiSTeM), University of Palermo, Via Archirafi 22, 90123 Palermo, Italy; [email protected] (C.M.); [email protected] (C.M.); [email protected] (C.C.) 2 Escuela de Posgrado y Educación Continua, Facultad de Ciencias Agronómicas, University of El Salvador, Final de Av. Mártires y Héroes del 30 julio, 1101 San Salvador, El Salvador; [email protected] 3 Ministerio de Medio Ambiente y Recursos Naturales (MARN), Calle Las Mercedes, 1101 San Salvador, El Salvador; [email protected] (M.E.R.-M.); [email protected] (J.Y.R.-A.) * Correspondence: [email protected] Abstract: In this study, an inventory of storm-triggered debris flows performed in the area of the San Vicente volcano (El Salvador, CA) was used to calibrate predictive models and prepare a landslide susceptibility map. The storm event struck the area in November 2009 as the result of the simultane- ous action of low-pressure system 96E and Hurricane Ida. Multivariate Adaptive Regression Splines (MARS) was employed to model the relationships between a set of environmental variables and the locations of the debris flows. Validation of the models was performed by splitting 100 random samples of event and non-event 10 m pixels into training and test subsets. -
Radiocarbon and Geologic Evidence Reveal Ilopango Volcano As Source of the Colossal ‘Mystery’ Eruption of 539/40 CE
Quaternary Science Reviews xxx (xxxx) xxx Contents lists available at ScienceDirect Quaternary Science Reviews journal homepage: www.elsevier.com/locate/quascirev Radiocarbon and geologic evidence reveal Ilopango volcano as source of the colossal ‘mystery’ eruption of 539/40 CE * Robert A. Dull a, b, , John R. Southon c, Steffen Kutterolf d, Kevin J. Anchukaitis e, Armin Freundt d, David B. Wahl f, g, Payson Sheets h, Paul Amaroli i, Walter Hernandez j, Michael C. Wiemann k, Clive Oppenheimer l a Department of Earth and Environmental Sciences, California Lutheran University, Thousand Oaks, CA, 91360, USA b Environmental Science Institute, University of Texas, Austin, TX, 78712, USA c Department of Earth System Science, University of California at Irvine, Irvine, CA, 92697, USA d GEOMAR, Helmholtz Center for Ocean Research, Wischhofstr. 1-3, D-24148, Kiel, Germany e School of Geography and Development and Laboratory of Tree-Ring Research, University of Arizona, Tucson, AZ, 85721, USA f United States Geological Survey, Menlo Park, CA, 94025, USA g Department of Geography, University of California at Berkeley, CA, 94720, USA h Department of Anthropology, University of Colorado, Boulder, CO, 80309, USA i Fundacion Nacional de Arqueología de El Salvador, FUNDAR, San Salvador, El Salvador j Retired from Ministerio de Medio Ambiente y Recursos Naturales, San Salvador, El Salvador k United States Department of Agriculture Forest Products Laboratory, Madison, WI, 53726, USA l Department of Geography, University of Cambridge, Downing Place, Cambridge, CB2 3EN, UK article info abstract Article history: Ilopango volcano (El Salvador) erupted violently during the Maya Classic Period (250e900 CE) in a Received 24 February 2019 densely-populated and intensively-cultivated region of the southern Maya realm, causing regional Received in revised form abandonment of an area covering more than 20,000 km2. -
USGS Open-File Report 2009-1133, V. 1.2, Table 3
Table 3. (following pages). Spreadsheet of volcanoes of the world with eruption type assignments for each volcano. [Columns are as follows: A, Catalog of Active Volcanoes of the World (CAVW) volcano identification number; E, volcano name; F, country in which the volcano resides; H, volcano latitude; I, position north or south of the equator (N, north, S, south); K, volcano longitude; L, position east or west of the Greenwich Meridian (E, east, W, west); M, volcano elevation in meters above mean sea level; N, volcano type as defined in the Smithsonian database (Siebert and Simkin, 2002-9); P, eruption type for eruption source parameter assignment, as described in this document. An Excel spreadsheet of this table accompanies this document.] Volcanoes of the World with ESP, v 1.2.xls AE FHIKLMNP 1 NUMBER NAME LOCATION LATITUDE NS LONGITUDE EW ELEV TYPE ERUPTION TYPE 2 0100-01- West Eifel Volc Field Germany 50.17 N 6.85 E 600 Maars S0 3 0100-02- Chaîne des Puys France 45.775 N 2.97 E 1464 Cinder cones M0 4 0100-03- Olot Volc Field Spain 42.17 N 2.53 E 893 Pyroclastic cones M0 5 0100-04- Calatrava Volc Field Spain 38.87 N 4.02 W 1117 Pyroclastic cones M0 6 0101-001 Larderello Italy 43.25 N 10.87 E 500 Explosion craters S0 7 0101-003 Vulsini Italy 42.60 N 11.93 E 800 Caldera S0 8 0101-004 Alban Hills Italy 41.73 N 12.70 E 949 Caldera S0 9 0101-01= Campi Flegrei Italy 40.827 N 14.139 E 458 Caldera S0 10 0101-02= Vesuvius Italy 40.821 N 14.426 E 1281 Somma volcano S2 11 0101-03= Ischia Italy 40.73 N 13.897 E 789 Complex volcano S0 12 0101-041 -
Mapping Environmental Services in Highland Guatemala Public Disclosure Authorized
PES Learning Paper 2007-4 Mapping Environmental Services in Highland Guatemala Public Disclosure Authorized Stefano Pagiola, Wei Zhang, and Ale Colom Public Disclosure Authorized Public Disclosure Authorized December 2007 Public Disclosure Authorized Latin America and Caribbean Sustainable Development Department World Bank Washington DC, USA Abstract This paper uses data from Guatemala to map areas that are important for the provision of indirect ecosystem services—services whose benefits are enjoyed at some distance from the ecosystem that provides them, such as watershed services (enjoyed downstream) or biodiversity conservation (enjoyed globally). These services are usually externalities from the perspective of land users, and so tend to be under-provided. Mapping the areas that supply such services links the supply and demand of ecosystem services in a spatially explicit way, allows the identification and prioritization of areas of conservation interest. Authors Stefano Pagiola is senior environmental economist and Wei Zhang is consultant in the Environment Department, World Bank. Ale Colom is an independent consultant. Keywords Environmental services, mapping, watershed, biodiversity, Guatemala Acknowledgements Work on this paper was financed in part by a grant from the Norwegian Trust Fund for Environmentally and Socially Sustainable Development. The opinions expressed in this paper are the authors’ own and do not necessarily represent those of the World Bank Group or the Government of Norway. Cover photo Volcán del Fuego, Guatemala (Stefano Pagiola). PES Learning Papers PES Learning Papers draw on the World Bank’s extensive experience in supporting programs of Payments for Environmental Services (PES). They are part of a larger effort by the World Bank to provide open access to its research and make a contribution to development policy discussions around the world. -
Multi-Instrumental Investigation of Volcanic Outgassing at Pacaya Volcano, Guatemala
Michigan Technological University Digital Commons @ Michigan Tech Dissertations, Master's Theses and Master's Reports 2015 MULTI-INSTRUMENTAL INVESTIGATION OF VOLCANIC OUTGASSING AT PACAYA VOLCANO, GUATEMALA. Carlo Prandi Michigan Technological University, [email protected] Copyright 2015 Carlo Prandi Recommended Citation Prandi, Carlo, "MULTI-INSTRUMENTAL INVESTIGATION OF VOLCANIC OUTGASSING AT PACAYA VOLCANO, GUATEMALA.", Open Access Master's Thesis, Michigan Technological University, 2015. https://doi.org/10.37099/mtu.dc.etdr/35 Follow this and additional works at: https://digitalcommons.mtu.edu/etdr Part of the Geology Commons, Tectonics and Structure Commons, and the Volcanology Commons MULTI-INSTRUMENTAL INVESTIGATION OF VOLCANIC OUTGASSING AT PACAYA VOLCANO, GUATEMALA. By Carlo Maria Prandi A THESIS Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE In Geology MICHIGAN TECHNOLOGICAL UNIVERSITY 2015 © 2015 Carlo Maria Prandi This thesis has been approved in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE in Geology. Department of Geological and Mining Engineering and Sciences Thesis Co-Advisor: Gregory P. Waite Thesis Co-Advisor: Chad Deering Committee Member: Claudia Corazzato Department Chair: John S. Gierke. Table of Contents 1) Abstract .................................................................................................................................... 1 2) Introduction ............................................................................................................................. -
World Heritage Volcanoes a Thematic Study
World Heritage Convention IUCN World Heritage Studies 2009 Number 8 World Heritage Volcanoes A Thematic Study IUCN Programme on Protected Areas A Global Review of Volcanic World Heritage Properties: Present Situation, Future Prospects and Management Requirements IUCN, International Union for Conservation of Nature Founded in 1948, IUCN brings together States, government agencies and a diverse range of non-govern- mental organizations in a unique world partnership: over 1000 members in all spread across some 140 countries. As a Union, IUCN seeks to infl uence, encourage and assist societies throughout the world to conserve the integrity and diversity of nature and to ensure that any use of natural resources is equitable and ecologically sustainable. A central Secretariat coordinates the IUCN Programme and serves the Union membership, representing their views on the world stage and providing them with the strategies, services, scientifi c knowl- edge and technical support they need to achieve their goals. Through its six Commissions, IUCN draws together over 10,000 expert volunteers in project teams and ac- tion groups, focusing in particular on species and biodiversity conservation and the management of habitats and natural resources. The Union has helped many countries to prepare National Conservation Strategies, and demonstrates the application of its knowledge through the fi eld projects it supervises. Operations are increasingly decentralized and are carried forward by an expanding network of regional and country offi ces, located principally in developing countries. IUCN builds on the strengths of its members, networks and partners to enhance their capacity and to support global alliances to safeguard natural resources at local, regional and global levels. -
Volcanic Landforms and Processes
Volcanic Landforms and Processes Background Volcano: a rupture in the crust of a planetary-mass object (Earth) that allows lava, volcanic ash (tephra), and gasses to escape from a magma chamber below the surface. Classification Based on Activity: Active: have been observed in eruption during historic time Dormant: have no historic record but show evidence of geologically recent activity Cotopaxi, Ecuador El Capitan, Arizona Extinct: geologically dead Background Igneous Landforms: result from both constructive and erosional processes • Eruptions at the surface produce volcanic landforms primarily controlled by the type of magma (basaltic, andesitic, rhyolitic) • Subsurface injection and differential erosion produce secondary landforms (dikes, sills, batholiths etc.) • Viscosity influences the style of eruption, flow characteristics of lava and resulting landforms (temperature, composition, gas content) Viscosity: resistance to flow • Tectonic setting • Source of lava • Composition Andesite: sediments, water, oceanic Basalt: asthenosphere crust and continental crust and oceanic crust Intermediate composition Lower percentages of silicon and oxygen Composition, Viscosity and Eruptive Style Composition Basalt Andesite Rhyolite Fluid Viscosity Pasty Eruptive Style Quiet Violent Temperature Cool Hot Eruption Products Lava: molten rock extruded from the magma chamber through fissures or central vents of the volcanic cone. Tephra: all fragmental material produced by a volcanic eruption regardless of composition, size or emplacement mechanism. Often characterized based on size. Ash, cinders, bombs, blocks Gases: release of pressure and the rate of degassing of magma influences severity of eruption (tied to viscosity) Eruption Products Lava Flows – Topographic features vary considerably with the composition of magma. – Basalt: fluid, forms thin laterally extensive flows – Siliceous, viscous magmas (rhyolite/dacite) form thick pasty flows with steep margins. -
Effusive Eruption of Viscous Silicic Magma Triggered and Driven by Recharge: a Case Study of the Cerro Chascon-Runtu Jarita Dome Complex in Southwest Bolivia
Bull Volcanol (1999) 60:241–264 Q Springer-Verlag 1999 ORIGINAL PAPER R. B. Watts 7 S. L. de Silva 7 G. Jimenez de Rios I. Croudace Effusive eruption of viscous silicic magma triggered and driven by recharge: a case study of the Cerro Chascon-Runtu Jarita Dome Complex in Southwest Bolivia Received: 23 August 1998 / Accepted: 10 March 1999 Abstract The Cerro Chascon-Runtu Jarita Complex is composites of dacitic and rhyolitic compositions. The a group of ten Late Pleistocene (F85 ka) lava domes southernmost dome is dominantly rhyolite with rare located in the Andean Central Volcanic Zone of Boliv- mafic enclaves. The composite domes have lower flanks ia. These domes display considerable macroscopic and of porphyritic dacite with F35 vol.% phenocrysts of microscopic evidence of magma mixing. Two groups of plagioclase, orthopyroxene, and hornblende in a micro- domes are defined chemically and geographically. A lite-rich, rhyodacitic glass. Sieve-textured plagioclase, northern group, the Chascon, consists of four lava bod- mixed populations of disequilibrium plagioclase com- ies of dominantly rhyodacite composition. These bodies positions, xenocrystic quartz, and sanidine with ternary contain 43–48% phenocrysts of plagioclase, quartz, san- composition reaction rims indicate that the dacite is a idine, biotite, and amphibole in a microlite-poor, rhyol- hybrid. The central cores of the composite domes are itic glass. Rare mafic enclaves and selvages are present. rhyolitic and contain up to 48 vol.% phenocrysts of Mineral equilibria yield temperatures from 640 to plagioclase, quartz, sanidine, biotite, and amphibole. 750 7C and log ƒO2 of –16. Geochemical data indicate This is separated from the dacitic flanks by a banded that the pre-eruption magma chamber was zoned from zone of mingled lava. -
Documentation of a Holocene Volcanic Cone in the Tuya-Teslin Volcanic Field, Northern British Columbia
Geological Survey of Canada CURRENT RESEARCH 2006-A1 Documentation of a Holocene volcanic cone in the Tuya-Teslin volcanic field, northern British Columbia K. Simpson, B. Edwards, and K. Wetherell 2006 CURRENT RESEARCH Natural Resources Ressources naturelles Canada Canada ©Her Majesty the Queen in Right of Canada 2006 ISSN 1701-4387 Catalogue No. M44-2006/A1E-PDF ISBN 0-662-42326-7 A copy of this publication is also available for reference by depository libraries across Canada through access to the Depository Services Program's Web site at http://dsp-psd.pwgsc.gc.ca A free digital download of this publication is available from GeoPub: http://geopub.nrcan.gc.ca/index_e.php Toll-free (Canada and U.S.A.): 1-888-252-4301 Critical reviewers Mark Stasiuk Authors’ addresses K. Simpson ([email protected]) Geological Survey of Canada 605 Robson Street, Suite 101, Vancouver, British Columbia V6B 5J3 B.Edwards ([email protected]) K. Wetherell ([email protected]) Department of Geology, Dickinson College, P.O. Box 1773, Carlisle, Pennsylvania 17013 U.S.A. Publication approved by GSC Pacific, Vancouver Original manuscript submitted: 2005-09-13 Final version approved for publication: 2005-11-03 Correction date: All requests for permission to reproduce this work, in whole or in part, for purposes of commercial use, resale, or redistribution shall be addressed to: Earth Sciences Sector Information Division, Room 402, 601 Booth Street, Ottawa, Ontario K1A 0E8. Documentation of a Holocene volcanic cone in the Tuya-Teslin volcanic field, northern British Columbia K. Simpson, B. Edwards, and K. Wetherell Simpson, K., Edwards, B., and Wetherell, K., 2006: Documentation of a Holocene volcanic cone in the Tuya-Teslin volcanic field, northern British Columbia; Geological Survey of Canada, Current Research 2006-A1, 7 p.