Factorization and Domination Properties of Operators on Banach Lattices

Total Page:16

File Type:pdf, Size:1020Kb

Factorization and Domination Properties of Operators on Banach Lattices UNIVERSIDAD COMPLUTENSE DE MADRID FACULTAD DE CIENCIAS MATEMÁTICAS Departamento de Análisis Matemático FACTORIZATION AND DOMINATION PROPERTIES OF OPERATORS ON BANACH LATTICES. MEMORIA PARA OPTAR AL GRADO DE DOCTOR PRESENTADA POR Pedro Tradacete Pérez Bajo la dirección de los doctores Francisco L. Hernández Rodríguez Julio Flores Álvarez Madrid, 2010 ISBN: 978-84-693-7735-2 © Pedro Tradacete Pérez, 2009 Factorization and domination properties of operators on Banach lattices Factorizaci´on,mayoraci´ony potencias de operadores positivos en ret´ıculosde Banach Pedro Tradacete P´erez Directores de Tesis: Francisco L. Hern´andezRodr´ıguez Julio Flores Alvarez´ Memoria para optar al grado de Doctor en Matem´aticas. Febrero de 2009 Departamento de An´alisisMatem´atico. Universidad Complutense de Madrid. Contents Introducci´on,objetivos y descripci´onde resultados 5 Introduction 17 Chapter 1. Preliminary results 27 1. Basic facts 27 2. Order continuous Banach lattices 28 3. Convexity, concavity, and related notions 30 4. Equi-integrable sets in Banach lattices 32 5. Operators on Banach lattices 34 6. Some Banach spaces results and notation 38 Chapter 2. Power and domination problems for strictly singular operators 41 1. Domination results 41 2. Powers of dominated operators 46 3. Related questions 49 Chapter 3. A Characterization of strictly singular operators in Banach lattices 53 1. Relation with `2-singular and DSS operators 53 2. The role of the lower 2-estimate 58 Chapter 4. Invariant subspaces of positive strictly singular operators 67 1. R-condition 68 2. Strictly singular and AM-compact operators 70 3. Invariant subspaces of positive strictly singular operators 71 4. Invariant subspaces of SS-friendly operators 74 Chapter 5. Compact products of strictly singular operators 77 1. Disjointly homogeneous Banach lattices 77 2. Compact squares of strictly singular operators 79 3. Strictly singular operators on Lorentz spaces 83 4. Strictly singular operators on Orlicz spaces 88 5. Duality of strictly singular operators in spaces Lp;q 91 Chapter 6. c0-singular and `1-singular operators between vector valued Banach lattices 97 1. Tools 97 3 4 CONTENTS 2. Main results 102 3. Applications 103 Chapter 7. Factorization and domination of Banach-Saks operators 107 1. Factorization of operators through Banach lattices with the Banach-Saks property 107 2. Domination by Banach-Saks operators 112 3. Convex hulls of Banach-Saks sets 114 Chapter 8. Factorization of p-convex and q-concave operators 117 1. The basic construction 117 2. Duality relations 125 3. Complex interpolation of Banach lattices 133 4. Factorization for operators which are both p-convex and q-concave 139 5. Other results 146 Bibliography 149 Introducci´on,objetivos y descripci´onde resultados El tema central de esta Memoria es el estudio de operadores entre ret´ıculosde Banach. Recordemos que un ret´ıculode Banach es un espacio de Banach E dotado de una norma k · k, y un orden parcial ≤ tales que: • x ≤ y implica x + z ≤ y + z, para cualesquiera x; y; z 2 E, • λx ≥ 0, para todo x ≥ 0 en E y todo n´umeroreal λ ≥ 0, • para cualesquiera x; y 2 E existe un m´ınimoy un supremo de x e y en E, denotados respectivamente x ^ y, x _ y, • si denotamos jxj = x _ (−x), que verifica jxj 2 E por la propiedad anterior, se tiene que kxk ≤ kyk si jxj ≤ jyj. Es decir, en un ret´ıculode Banach la estructura lineal, reticular y la topolog´ıason com- patibles, y el estudio de relaciones entre estas tres estructuras es uno de los objetivos de esta teor´ıa.Por una parte, en un ret´ıculode Banach la estructura adicional de ret´ıculoproporciona gran cantidad de herramientas de las que no disponemos en espacios de Banach m´asgenerales. Este hecho facilita el estudio de propiedades geom´etricasde ret´ıculosde Banach, as´ıcomo de las propiedades de operadores que act´uanentre ret´ıculos. Por otra parte, la relaci´onde orden en un ret´ıculode Banach induce tambi´enun orden en los espacio de operadores que actuan entre dos ret´ıculos. Este orden se define de manera nat- ural, considerando un operador positivo como aqu´elque env´ıaelementos positivos a elementos positivos, y definiendo para dos operadores R y T , R ≤ T si la diferencia T − R es un operador positivo. A partir de este hecho, surgen de manera natural una serie de cuestiones sobre la relaci´onentre las propiedades de los operadores y la estructura reticular. Entre estas preguntas, una de las m´asfrecuentes es el llamado problema de mayoraci´on, que consiste en dados oper- adores S ≤ T entre ret´ıculosde Banach E y F , estudiar qu´epropiedades hereda S del operador T . Concretamente, dada una familia de operadores I, por ejemplo un ideal en el sentido de Pietsch, se considerar´abajo qu´econdiciones en los ret´ıculos E y F , si 0 ≤ R ≤ T : E ! F y T 2 I, entonces R 2 I. En este sentido tenemos resultados cl´asicosde P. G. Dodds y D. H. Fremlin, quienes de- mostraron en [37] para ret´ıculos E y F , con E∗ y F orden continuos, si 0 ≤ R ≤ T : E ! F y T es compacto, entonces R tambi´enes compacto. En la misma l´ınea,A. W. Wickstead ha mostrado en [136] que si E∗ o F son ret´ıculosorden continuos y T es d´ebilmente compacto, entonces R tambi´enes d´ebilmente compacto. A su vez, N. Kalton y P. Saab han demostrado en [77] que si F es orden continuo y T es Dunford-Pettis, entonces R es tambi´enDunford-Pettis. 5 6 INTRODUCCION,´ OBJETIVOS Y DESCRIPCION´ DE RESULTADOS M´asrecientemente, C. C. A. Labuschagne ha obtenido tambi´enresultados en esta l´ıneapara operadores Asplund y Radon-Nikodym (ver [83]). Los origenes del teorema de Dodds-Fremlin, y de los problemas de mayoraci´on,est´aen los trabajos de W. A. Luxemburg y A. C. Zaanen sobre operadores integrales [92]. El teorema de Dodds-Fremlin fue demostrado previamente para operadores integrales por R. J. Nagel y U. Schlotterbeck en [97], independientemente de las versiones existentes en la literatura sovi´etica (ver [79, Theorem 5.10]). La validez de dicho teorema para operadores arbitrarios en espacios Lp fue conjeturada a partir de evidencias f´ısicaspor los f´ısicosmatem´aticosJ. Avron, I. Herbst y B. Simon en [16], y demostrada por L. D. Pitt en [109]. Practicamente al mismo tiempo apareci´ola demostraci´ongeneral de P. G. Dodds y D. H. Fremlin que ha sido la m´asinfluyente en la teor´ıaactual de operadores en ret´ıculosde Banach. En el caso particular de endomorfismos en un mismo ret´ıculo,es decir si E = F , una cuesti´on interesante relacionada con la anterior es el llamado problema de la potencia, que consiste en dados dos operadores 0 ≤ R ≤ T : E ! E saber si alguna potencia de R hereda propiedades de T , en este caso sin pedir condiciones extra al ret´ıculo E. Esta pregunta fue inicialmente planteada por C. D. Aliprantis y O. Burkinshaw en [9] y [10], donde obtuvieron para cualquier ret´ıculode Banach E y operadores 0 ≤ R ≤ T : E ! E, si T es compacto, entonces R3 es compacto, y si T es d´ebilmente compacto, entonces R2 es d´ebilmente compacto. En la misma l´ınea,para la clase de operadores Dunford-Pettis, N. Kalton y P. Saab, probaron que dado un ret´ıculode Banach E, si 0 ≤ R ≤ T : E ! E y T es Dunford-Pettis, entonces R2 tambi´enes Dunford-Pettis. Adem´as,estos resultados son ´optimos,en el sentido de que existen ejemplos de operadores que no cumplen estas propiedades para potencias menores. En la actualidad, podemos encontrar aplicaciones de estos resultados en an´alisis de modelos de biolog´ıamatem´aticao en aplicaciones de la ecuaci´ondel transporte. Concretamente, en biolog´ıamatem´atica,la primera aplicaci´onde estos resultados se debe a R. Burger en [27], que ha utilizado los resultados de [9] para obtener informaci´onsobre los autovalores de operadores involucrados en un determinado modelo discreto que describe la evoluci´onde densidades en una poblaci´onde reproducci´onasexual bajo la acci´onde mutaci´ony selecci´on. En una l´ınea similar, A. Rhandi y R. Schnaubelt en [118] han utilizado los resultados de mayoraci´onpara obtener la existencia y unicidad de soluciones positivas de la ecuaci´onque describe un modelo de poblaciones no autonomas con difusi´onen L1. Por otro lado, en el estudio de la ecuaci´on del transporte, estos resultados han sido aplicados recientemente por A. Dehici, A. Jeribi y K. Latrach en [35] para estudiar el espectro de operadores de transici´onque describen la madurez de una poblaci´on creciente de c´elulas,y por M. Sbihi en [121] para estudiar la estabilidad del espectro esencial de semigrupos en un espacio de Hilbert. Estas´ son s´oloalgunas de las aplicaciones que pretendemos ilustren la utilidad de estos resultados en otras ´areasde las matem´aticas,vease [2] para m´asinformaci´on. En esta memoria, dos cap´ıtulos de la misma giran en torno a estos problemas. En concreto, en el Cap´ıtulo2, estudiamos el problema de mayoraci´ony de la potencia para operadores INTRODUCCION,´ OBJETIVOS Y DESCRIPCION´ DE RESULTADOS 7 estrictamente singulares. Recordemos que un operador T : X ! Y entre espacios de Banach es estrictamente singular (o m´asbrevemente SS) si para ning´unsubespacio (cerrado) M ⊂ X de dimensi´oninfinita, la restricci´on T jM es invertible. Esta clase de operadores fue introducida por T. Kato en [78], en conexi´oncon la teor´ıade perturbaci´onde operadores Fredholm. Los operadores estrictamente singulares forman un ideal cerrado de operadores (en el sentido de Pietsch), que contiene al ideal de los operadores compactos.
Recommended publications
  • Frames in 2-Inner Product Spaces
    Iranian Journal of Mathematical Sciences and Informatics Vol. 8, No. 2 (2013), pp 123-130 Frames in 2-inner Product Spaces Ali Akbar Arefijamaal∗ and Ghadir Sadeghi Department of Mathematics and Computer Sciences, Hakim Sabzevari University, Sabzevar, Iran E-mail: [email protected] E-mail: [email protected] Abstract. In this paper, we introduce the notion of a frame in a 2- inner product space and give some characterizations. These frames can be considered as a usual frame in a Hilbert space, so they share many useful properties with frames. Keywords: 2-inner product space, 2-norm space, Frame, Frame operator. 2010 Mathematics subject classification: Primary 46C50; Secondary 42C15. 1. Introduction and preliminaries The concept of frames in Hilbert spaces has been introduced by Duffin and Schaeffer [12] in 1952 to study some deep problems in nonharmonic Fourier se- ries. Various generalizations of frames have been proposed; frame of subspaces [2, 6], pseudo-frames [18], oblique frames [10], continuous frames [1, 4, 14] and so on. The concept of frames in Banach spaces have been introduced by Grochenig [16], Casazza, Han and Larson [5] and Christensen and Stoeva [11]. The concept of linear 2-normed spaces has been investigated by S. Gahler in 1965 [15] and has been developed extensively in different subjects by many authors [3, 7, 8, 13, 14, 17]. A concept which is related to a 2-normed space is 2-inner product space which have been intensively studied by many math- ematicians in the last three decades. A systematic presentation of the recent results related to the theory of 2-inner product spaces as well as an extensive ∗ Corresponding author Received 16 November 2011; Accepted 29 April 2012 c 2013 Academic Center for Education, Culture and Research TMU 123 124 Arefijamaal, Sadeghi list of the related references can be found in the book [7].
    [Show full text]
  • A Completely Positive Maps
    A Completely Positive Maps A.1. A linear map θ: A → B between C∗-algebrasiscalledcompletely positive if θ ⊗ id: A ⊗ Matn(C) → B ⊗ Matn(C) is positive for any n ∈ N. Such a map is automatically bounded since any ∗ positive linear functional on a C -algebra is bounded. ⊗ ∈ ⊗ C An operator T = i,j bij eij B Matn( ), where the eij’s are the usual C ∗ ≥ matrix units in Matn( ), is positive if and only if i,j bi bijbj 0 for any ∈ ⊗ C b1,...,bn B. Since every positive element in A Matn( )isthesumofn ∗ ⊗ → elements of the form i,j ai aj eij,weconcludethatθ: A B is completely positive if and only if n ∗ ∗ ≥ bi θ(ai aj)bj 0 i,j=1 for any n ∈ N, a1,...,an ∈ A and b1,...,bn ∈ B. A.2. If θ: A → B is completely positive and B ⊂ B(H), then there exist a Hilbert space K, a representation π: A → B(K) and a bounded operator V : H → K such that θ(a)=V ∗π(a)V and π(A)VH = K. The construction is as follows. Consider the algebraic tensor product AH, and define a sesquilinear form on it by (a ξ,c ζ)=(θ(c∗a)ξ,ζ). Complete positivity of θ means exactly that this form is positive definite. Thus taking the quotient by the space N = {x ∈ A H | (x, x)=0} we get a pre-Hilbert space. Denote its completion by K. Then define a representation π: A → B(K)by π(a)[c ζ]=[ac ζ], where [x] denotes the image of x in (A H)/N .
    [Show full text]
  • Tensor Products of Convex Cones, Part I: Mapping Properties, Faces, and Semisimplicity
    Tensor Products of Convex Cones, Part I: Mapping Properties, Faces, and Semisimplicity Josse van Dobben de Bruyn 24 September 2020 Abstract The tensor product of two ordered vector spaces can be ordered in more than one way, just as the tensor product of normed spaces can be normed in multiple ways. Two natural orderings have received considerable attention in the past, namely the ones given by the projective and injective (or biprojective) cones. This paper aims to show that these two cones behave similarly to their normed counterparts, and furthermore extends the study of these two cones from the algebraic tensor product to completed locally convex tensor products. The main results in this paper are the following: (i) drawing parallels with the normed theory, we show that the projective/injective cone has mapping properties analogous to those of the projective/injective norm; (ii) we establish direct formulas for the lineality space of the projective/injective cone, in particular providing necessary and sufficient conditions for the cone to be proper; (iii) we show how to construct faces of the projective/injective cone from faces of the base cones, in particular providing a complete characterization of the extremal rays of the projective cone; (iv) we prove that the projective/injective tensor product of two closed proper cones is contained in a closed proper cone (at least in the algebraic tensor product). 1 Introduction 1.1 Outline Tensor products of ordered (topological) vector spaces have been receiving attention for more than 50 years ([Mer64], [HF68], [Pop68], [PS69], [Pop69], [DS70], [vGK10], [Wor19]), but the focus has mostly been on Riesz spaces ([Sch72], [Fre72], [Fre74], [Wit74], [Sch74, §IV.7], [Bir76], [FT79], [Nie82], [GL88], [Nie88], [Bla16]) or on finite-dimensional spaces ([BL75], [Bar76], [Bar78a], [Bar78b], [Bar81], [BLP87], [ST90], [Tam92], [Mul97], [Hil08], [HN18], [ALPP19]).
    [Show full text]
  • Absorbing Representations with Respect to Closed Operator Convex
    ABSORBING REPRESENTATIONS WITH RESPECT TO CLOSED OPERATOR CONVEX CONES JAMES GABE AND EFREN RUIZ Abstract. We initiate the study of absorbing representations of C∗-algebras with re- spect to closed operator convex cones. We completely determine when such absorbing representations exist, which leads to the question of characterising when a representation is absorbing, as in the classical Weyl–von Neumann type theorem of Voiculescu. In the classical case, this was solved by Elliott and Kucerovsky who proved that a representation is nuclearly absorbing if and only if it induces a purely large extension. By considering a related problem for extensions of C∗-algebras, which we call the purely large problem, we ask when a purely largeness condition similar to the one defined by Elliott and Kucerovsky, implies absorption with respect to some given closed operator convex cone. We solve this question for a special type of closed operator convex cone induced by actions of finite topological spaces on C∗-algebras. As an application of this result, we give K-theoretic classification for certain C∗-algebras containing a purely infinite, two- sided, closed ideal for which the quotient is an AF algebra. This generalises a similar result by the second author, S. Eilers and G. Restorff in which all extensions had to be full. 1. Introduction The study of absorbing representations dates back, in retrospect, more than a century to Weyl [Wey09] who proved that any bounded self-adjoint operator on a separable Hilbert space is a compact perturbation of a diagonal operator. This implies that the only points in the spectrum of a self-adjoint operator which are affected by compact perturbation, are the isolated points of finite multiplicity.
    [Show full text]
  • Chapter 2 C -Algebras
    Chapter 2 C∗-algebras This chapter is mainly based on the first chapters of the book [Mur90]. Material bor- rowed from other references will be specified. 2.1 Banach algebras Definition 2.1.1. A Banach algebra C is a complex vector space endowed with an associative multiplication and with a norm k · k which satisfy for any A; B; C 2 C and α 2 C (i) (αA)B = α(AB) = A(αB), (ii) A(B + C) = AB + AC and (A + B)C = AC + BC, (iii) kABk ≤ kAkkBk (submultiplicativity) (iv) C is complete with the norm k · k. One says that C is abelian or commutative if AB = BA for all A; B 2 C . One also says that C is unital if 1 2 C , i.e. if there exists an element 1 2 C with k1k = 1 such that 1B = B = B1 for all B 2 C . A subalgebra J of C is a vector subspace which is stable for the multiplication. If J is norm closed, it is a Banach algebra in itself. Examples 2.1.2. (i) C, Mn(C), B(H), K (H) are Banach algebras, where Mn(C) denotes the set of n × n-matrices over C. All except K (H) are unital, and K (H) is unital if H is finite dimensional. (ii) If Ω is a locally compact topological space, C0(Ω) and Cb(Ω) are abelian Banach algebras, where Cb(Ω) denotes the set of all bounded and continuous complex func- tions from Ω to C, and C0(Ω) denotes the subset of Cb(Ω) of functions f which vanish at infinity, i.e.
    [Show full text]
  • Stinespring's Theorem for Maps on Hilbert C
    STINESPRING’S THEOREM FOR MAPS ON HILBERT C∗−MODULES Shefali Gupta Supervisor - Dr. G. Ramesh A Thesis Submitted to Indian Institute of Technology Hyderabad In Partial Fulfillment of the Requirements for The Degree of Master of Science in Mathematics Department of Mathematics April 2016 2 3 4 Acknowledgement The success of this work is accredited to many. Firstly, thanking the god and my par- ents for everything, my next acknowledgement goes to my supervisor-cum-guide, Dr. G. Ramesh, because of whom, I got to learn, understand thoroughly and moreover appreci- ate, a whole new branch of mathematics, Operator Algebras. Not just this but under his expert guidance and motivation, we could successfully come up with results we aimed to acquire since the beginning of this project. I am highly grateful to him for his strong support and understanding. I am also thankful to my friends in IIT Hyderabad, who stood by me through all the thicks and thins throughout the course of my M.Sc. and for being there whenever I needed them. Last but not the least, I would like to thank my classmates who have always supported me in every matter. 5 6 Abstract Stinespring’s representation theorem is a fundamental theorem in the theory of com- pletely positive maps. It is a structure theorem for completely positive maps from a C∗−algebra into the C∗−algebra of bounded operators on a Hilbert space. This theo- rem provides a representation for completely positive maps, showing that they are simple modifications of ∗−homomorphisms. One may consider it as a natural generalization of the well-known Gelfand-Naimark-Segal thoerem for states on C∗−algebras.
    [Show full text]
  • Chapter XI: Applications of Spectral Theory
    CHAPTER XI APPLICATIONS OF SPECTRAL THEORY Let H be a separable, infinite-dimensional, complex Hilbert space. We exploit properties of the Spectral Theorem to investigate and classify operators on H. As usual, all Hilbert spaces considered will be assumed to be complex and separable, even if it is not explicitly stated. If T is an element of the C∗-algebra B(H), recall that the resolvent of T is the set res(T ) of all complex numbers λ for which λI − T has a two-sided inverse in B(H). The spectrum sp(T ) of T is the complement of the resolvent of T. That is, λ belongs to sp(T ) if λI −T does not have a bounded two-sided inverse. THEOREM 11.1. (Existence of Positive Square Roots of Positive Operators) Let H be a Hilbert space, and let T be a positive operator in B(H); i.e., (T (x), x) ≥ 0 for all x ∈ H. Then: (1) There exists an element R in B(H) such that T = R∗R. (2) There exists a unique positive square root of T, i.e., a unique positive operator S such that T = S2. Moreover, S belongs to the smallest sub-C∗-algebra of B(H) that contains T and I. (3) If T is invertible, then its positive square root S is also invertible. PROOF. We know that a positive operator T is necessarily selfad- R joint. Hence, writing T = λ dp(λ), let us show that p(−∞,0) = 0. That R is, the spectrum of T is contained in the set of nonnegative real numbers.
    [Show full text]
  • L/Rspaces for Von Neumann Algebra with Reference to a Faithful Normal Semifinite Weight
    Publ. RIMS, Kyoto Univ. 19 (1983), 673-727 L/rSpaces for von Neumann Algebra with Reference to a Faithful Normal Semifinite Weight By Tetsuya MASUDA Abstract The Lp-space LP(M, 0o) for a von Neumann algebra M and its faithful normal semifinite weight 0o is constructed as a linear space of closed linear operators acting on the standard representation Hilbert space H$Q. Any Lp-element has the polar and the Jordan decompositions relative to a positive th part Z/JCM, ^o). Any positive element in I/p-space has an interpretation as the (l/p) 1/p I/p power $ of a 0eMJ with its Lp-norm given by 0(1) . The product of an Lp-element and an L5-element is explicitly denned as an 1/,-ele- ment with r~1=p~1 + q~1 provided l^r and the Holder inequality is proved. Also LP(M, 0o) are shown to be isomorphic for the same p and different 0o. There exists a vector subspace D™0 of the Tomita algebra associated with 00 and a ^-dependent injection TP:D^0-^LP(M, 00) with dense range. The sesquilinear form on 1 1 = LP(M, $o) xZ/p' (M, ^o),^>~ + (p')~ 1 is a natural extension of the inner product of H^0 through the mapping Tp X TV. The present work is an extension of our joint work with Araki to weights, and our Lp-spaces are isomorphic to those defined by Haagerup, Hilsum, Kosaki, and Terp. § 1. Introduction The Lp-space Lp (M, r) of a semifinite von Neumann algebra M with respect to a faithful normal semifinite trace r is defined as the linear space p 1/p of all r-measurable operators T satisfying \\T\\p=r (|T| ) <oo (see [22, 26]).
    [Show full text]
  • Lecture Notes on “Completely Positive Semigroups and Applications to II1
    Lecture notes on \Completely positive semigroups and applications ∗ to II1 factors" Jesse Peterson May 24, 2013 Contents 1 Completely positive maps 1 1.1 Stinespring's Dilation Theorem . 2 1.2 Bhat's Dilation Theorem . 6 1.3 Poisson boundaries . 9 2 The Poisson boundary of a finite von Neumann algebra 12 3 Derivations 15 3.1 Examples . 21 3.1.1 Inner derivations . 21 3.1.2 Approximately inner derivations . 21 3.1.3 The difference quotient . 22 3.1.4 Group algebras and group-measure space constructions . 22 3.1.5 Equivalence relations . 23 3.1.6 Free products . 24 3.1.7 Free Brownian motion . 24 3.1.8 Tensor products . 24 3.1.9 q-Gaussians . 25 3.1.10 Conditionally negative definite kernels . 26 4 Approximate bimodularity 26 1 Completely positive maps An operator system E is a closed self adjoint subspace of a unital C∗-algebra A such that ∗ 1 2 E. We denote by Mn(E) the space of n × n matrices over E. If A is a C -algebra, then ∗From the minicourse given at the workshop on Operator Algebras and Harmonic Analysis, at Instituto de Ciencias Mathem´aticas 1 ∼ ∗ Mn(A) = A ⊗ Mn(C) has a unique norm for which it is again a C -algebra, where the adjoint given ∗ ∗ ∗ by [ai;j] = [aj;i]. This can be seen easily for C -subalgebras of B(H), and the general case then follows since every C∗-algebra is isomorphic to a C∗-subalgebra of B(H) by the GNS-construction. In particular, if E ⊂ A is an operator system then Mn(E) is again an operator system when viewed ∗ as a subspace of the C -algebra Mn(A).
    [Show full text]
  • AM Plichko, MM Popov SOME OPEN PROBLEMS on BANACH SPACES
    Математичнi Студiї. Т.38, №2 Matematychni Studii. V.38, No.2 УДК 517.982 A. M. Plichko, M. M. Popov SOME OPEN PROBLEMS ON BANACH SPACES A. M. Plichko, M. M. Popov. Some open problems on Banach spaces, Mat. Stud. 38 (2012), 203–211. Notes of the Problem Session which has been held on the section of Banach Spaces during the International conference dedicated to the 120-th anniversary of Stefan Banach in Lviv (Ukraine), September 17–21, 2012. А. Н. Пличко, М. М. Попов. Некоторые открытые проблемы о банаховых пространствах // Мат. Студiї. – 2012. – Т.38, №2. – C.203–211. Записки проблемной сессии секции банаховых пространств на международной конфе- ренции, посвященной 120-летию со дня рождения Стефана Банаха в г. Львов (Украина) 17–21 сентября 2012 г. 1. A question about renormings of the James space (V. M. Kadets). Kharkiv V.N. Karazin National University (Kharkiv, Ukraine), [email protected] Let us say that a Banach space X possesses the 2-Daugavet property if every finite rank operator T : X ! X satisfies kId + T k2 ≥ 1 + kT k2: Problem 1.1. Is it true that the James space J possesses the 2-Daugavet property in some equivalent norm? It is known ([1]) that the 2-Daugavet property of X implies the absence of an uncondi- tional basis in X. So, the 2-Daugavet property could be a reasonable object of study. Unfortunately, there is a little obstacle: all the known examples of spaces with the 2- Daugavet property in fact possess (in the original norm or after a renorming) the much stronger Daugavet property: every finite rank operator T : X ! X satisfies kId + T k = 1 + kT k: Every space with the Daugavet property contains a isomorphic copy of `1 (see [2], so the James space J does not have this property in any equivalent norm.
    [Show full text]
  • Linear Mappings of Operator Algebras
    LINEAR MAPPINGS OF OPERATOR ALGEBRAS B. RUSSO1 In (6) it was shown that a linear mapping </>of one C*-algebra ft with identity into another which carries unitary operators into uni- tary operators is a C*-homomorphism followed by multiplication by the unitary operator </>(/), i.e. <p(A) = cp(I)p(A), <p(A*)=4>(A)*, and p(A2) =p(A)2 for each A in a. We continue in that spirit here, with the unitary group replaced first by an arbitrary semigroup contained in the unit sphere, then by the semigroup of regular contractions. By a C*-algebra we shall mean a uniformly closed self-adjoint algebra of bounded linear operators on some Hilbert space, which contains the identity operator. Lemma 1. Let (S>bea normed algebra containing a multiplicative semi- group S with the following properties: (i) the linear span of % is 03; (ii) sup{||s|| :s£s} =K< <x>.For x in 03, define \\x\\§to beini{ Y" \ai\ :x= E" ajSj, SjE$>, aj complex, n^ 1}. Then \\ • ||§ is a normed algebra norm on 03 such that || -|| ^K\\ -||§. Furthermore, if S and 3 are multi- plicative semigroups in the normed algebras 03 and Q resp., each satisfy- ing (i) and (ii), and if <p is a linear mapping of 03 into 6 such that 0(S)C3, then for each x in 03, ||</»(x)||3g||x||§. Proof. Verify. Let (J be a C*- algebra and let S be a multiplicative semigroup con- tained in the unit sphere of a. Suppose that the linear span of S is a and that ||-4||§ = ||.4|| whenever A is a regular element of a.
    [Show full text]
  • Free Products of Completely Positive Maps and Spectral Sets FLORINBOCA*
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector JOURNAL OF FUNCTIONAL ANALYSIS 97, 251-263 (1991) Free Products of Completely Positive Maps and Spectral Sets FLORIN BOCA* Mathematics Department, INCREST, Bdul Pacii 220, 79622, Bucharest, Romania Communicated by C. Foias Received May 24, 1989 1. INTRODUCTION Let [F, be the free group on n generators and for each word w E [F, let 1WI be its length. Haagerup [lo] showed that for each 0 < r < 1, the function H,(wp)= r”” is a positive definite function on [F,,. Consider the positive definite function q,(n) = rinl on h. Then the free product function cpI * cpr on ff, = Z * H coincides with H, and the result was extended this way by de Michele and Fig&Talamanca [7] and by Boiejko [4, 51. In [S] it is proved that the free product of the unital positive defined functions ui: Gi + Z(Z) is still positive defined on the free product group * Gi. The correspondence between the positive defined functions on a discrete group G and the completely positive maps on the full C*-algebra C*(G) and the isomorphism C*(G, * G2) N C*(G,) Z C*(G,) suggested we con- sider amalgamated products of unital linear maps on the amalgamated product of a family of unital C*-algebras over a C*-subalgebra. In Section 3 we prove that the amalgamated product of a family of unital completely positive B-bimodule maps Qi: A, + C is completely positive on the “biggest” amalgamated free product i .A i.
    [Show full text]