Companion to Functional Analysis John M. Erdman Portland State

Total Page:16

File Type:pdf, Size:1020Kb

Companion to Functional Analysis John M. Erdman Portland State Companion to Functional Analysis John M. Erdman Portland State University Version May 23, 2013 c 2012 John M. Erdman E-mail address: [email protected] Contents PREFACE 1 Greek Letters 2 Fraktur Fonts 3 Chapter 1. LINEAR ALGEBRA AND THE SPECTRAL THEOREM5 1.1. Vector Spaces and the Decomposition of Diagonalizable Operators5 1.2. Normal Operators on an Inner Product Space 10 Chapter 2. A VERY BRIEF DIGRESSION ON THE LANGUAGE OF CATEGORIES 19 2.1. Objects and Morphisms 19 2.2. Functors 21 Chapter 3. NORMED LINEAR SPACES 25 3.1. Norms 25 3.2. Bounded Linear Maps 29 3.3. Finite Dimensional Spaces 31 3.4. Quotients of Normed Linear Spaces 31 3.5. Products of Normed Linear Spaces 32 3.6. Coproducts of Normed Linear Spaces 36 Chapter 4. HILBERT SPACES 39 4.1. Definition and Examples 39 4.2. Nets 40 4.3. Unordered Summation 43 4.4. Hilbert space Geometry 45 4.5. Orthonormal Sets and Bases 47 4.6. The Riesz-Fr´echet Theorem 48 4.7. Strong and Weak Topologies on Hilbert Spaces 49 4.8. Completion of an Inner Product Space 51 Chapter 5. HILBERT SPACE OPERATORS 55 5.1. Invertible Linear Maps and Isometries 55 5.2. Operators and their Adjoints 56 5.3. Algebras with Involution 60 5.4. Self-Adjoint Operators 61 5.5. Projections 62 5.6. Normal Operators 64 5.7. Operators of Finite Rank 64 Chapter 6. BANACH SPACES 67 6.1. The Hahn-Banach Theorems 67 6.2. Natural Transformations 69 6.3. Banach Space Duality 70 6.4. The Open Mapping Theorem 75 6.5. The Closed Graph Theorem 77 iii iv CONTENTS 6.6. Projections and Complemented Subspaces 78 6.7. The Principle of Uniform Boundedness 78 Chapter 7. COMPACT OPERATORS 81 7.1. Definition and Elementary Properties 81 7.2. Trace Class Operators 83 7.3. Hilbert-Schmidt Operators 84 Chapter 8. SOME SPECTRAL THEORY 87 8.1. The Spectrum 87 8.2. Spectra of Hilbert Space Operators 91 Chapter 9. TOPOLOGICAL VECTOR SPACES 93 9.1. Balanced Sets and Absorbing Sets 93 9.2. Filters 93 9.3. Compatible Topologies 94 9.4. Quotients 97 9.5. Locally Convex Spaces and Seminorms 98 9.6. Fr´echet Spaces 99 Chapter 10. DISTRIBUTIONS 103 10.1. Inductive Limits 103 10.2. LF -spaces 104 10.3. Distributions 105 10.4. Convolution 108 10.5. Distributional Solutions to Ordinary Differential Equations 111 10.6. The Fourier Transform 112 Chapter 11. THE GELFAND-NAIMARK THEOREM 115 11.1. Maximal Ideals in C(X) 115 11.2. The Character Space 115 11.3. The Gelfand Transform 118 11.4. Unital C∗-algebras 121 11.5. The Gelfand-Naimark Theorem 122 Chapter 12. MULTIPLICATIVE IDENTITIES AND THEIR ALTERNATIVES 125 12.1. Quasi-inverses 125 12.2. Modular Ideals 127 12.3. Unitization of C∗-algebras 128 12.4. Positive Elements in a C∗-Algebra 133 12.5. Approximate Identities 135 Chapter 13. THE GELFAND-NAIMARK-SEGAL CONSTRUCTION 137 13.1. Positive Linear Functionals 137 13.2. Representations 137 13.3. The GNS-Construction and the Third Gelfand-Naimark Theorem 138 Chapter 14. MULTIPLIER ALGEBRAS 141 14.1. Hilbert Modules 141 14.2. Essential Ideals 144 14.3. Compactifications and Unitizations 146 Chapter 15. THE K0-FUNCTOR 149 15.1. Partial Isometries 149 15.2. Equivalence Relations on Projections 150 CONTENTS v 15.3. A Semigroup of Projections 153 15.4. The Grothendieck Construction 155 ∗ 15.5. The K0 Group for Unital C -Algebras 157 15.6. K0(A)|the Nonunital Case 159 15.7. Exactness and Stability Properties of the K0 Functor 160 Bibliography 161 Index 163 PREFACE Paul Halmos famously remarked in his beautiful Hilbert Space Problem Book [22] that \The only way to learn mathematics is to do mathematics." Halmos is certainly not alone in this belief. The current set of notes is an activity-oriented companion to the study of functional analysis. It is intended as a pedagogical companion for the beginner, an introduction to some of the main ideas in functional analysis, a compendium of problems I think are useful in learning the subject, and an annotated reading/reference list. The great majority of the results in beginning functional analysis are straightforward and can be verified by the thoughtful student. Indeed, that is the main point of these notes|to convince the beginner that the subject is accessible. In the material that follows there are numerous indicators that suggest activity on the part of the reader: words such as \proposition", \example", \exercise", and \corollary", if not followed by a proof or a reference to a proof, are invitations to verify the assertions made. Of course, there are a few theorems where, in my opinion, the time and effort which go into proving them is greater than the benefits derived. In such cases, when I have no improvements to offer to the standard proofs, instead of repeating them I give references. These notes were written for a year long course in functional analysis for graduate students at Portland State University. During the year students are asked to choose, in addition to these notes, other sources of information for the course, either printed texts or online documents, which suit their individual learning styles. As a result the material that is intended to be covered during the Fall quarter, the first 6{8 chapters, is relatively complete. After that, when students have found other sources they like, the notes become sketchier. There are of course a number of advantages and disadvantages in consigning a document to electronic life. One advantage is the rapidity with which links implement cross-references. Hunting about in a book for lemma 3.14.23 can be time-consuming (especially when an author engages in the entirely logical but utterly infuriating practice of numbering lemmas, propositions, theorems, corollaries, and so on, separately). A perhaps more substantial advantage is the ability to correct errors, add missing bits, clarify opaque arguments, and remedy infelicities of style in a timely fashion. The correlative disadvantage is that a reader returning to the web page after a short time may find everything (pages, definitions, theorems, sections) numbered differently. (LATEXis an amazing tool.) I will change the date on the title page to inform the reader of the date of the last nontrivial update (that is, one that affects numbers or cross-references). The most serious disadvantage of electronic life is impermanence. In most cases when a web page vanishes so, for all practical purposes, does the information it contains. For this reason (and the fact that I want this material to be freely available to anyone who wants it) I am making use of a \Share Alike" license from Creative Commons. It is my hope that anyone who finds this material useful will correct what is wrong, add what is missing, and improve what is clumsy. For more information on creative commons licenses see http://creativecommons.org/. Concerning the text itself, please send corrections, suggestions, complaints, and all other comments to the author at [email protected] 1 2 PREFACE Greek Letters Upper case Lower case English name (approximate pronunciation) A α Alpha (AL-fuh) B β Beta (BAY-tuh) Γ γ Gamma (GAM-uh) ∆ δ Delta (DEL-tuh) E or " Epsilon (EPP-suh-lon) Z ζ Zeta (ZAY-tuh) H η Eta (AY-tuh) Θ θ Theta (THAY-tuh) I ι Iota (eye-OH-tuh) K κ Kappa (KAP-uh) Λ λ Lambda (LAM-duh) M µ Mu (MYOO) N ν Nu (NOO) Ξ ξ Xi (KSEE) O o Omicron (OHM-ih-kron) Π π Pi (PIE) P ρ Rho (ROH) Σ σ Sigma (SIG-muh) T τ Tau (TAU) Y υ Upsilon (OOP-suh-lon) Φ φ Phi (FEE or FAHY) X χ Chi (KHAY) Ψ Psi (PSEE or PSAHY) Ω ! Omega (oh-MAY-guh) FRAKTUR FONTS 3 Fraktur Fonts In these notes Fraktur fonts are used (most often for families of sets and families of operators). Below are the Roman equivalents for each letter. When writing longhand or presenting material on a blackboard it is usually best to substitute script English letters. Fraktur Fraktur Roman Upper case Lower case Lower Case A a a B b b C c c D d d E e e F f f G g g H h h I i i J j j K k k L l l M m m N n n O o o P p p Q q q R r r S s s T t t U u u V v v W w w X x x Y y y Z z z CHAPTER 1 LINEAR ALGEBRA AND THE SPECTRAL THEOREM The emphasis in beginning analysis courses is on the behavior of individual (real or complex valued) functions. In a functional analysis course the focus is shifted to spaces of such functions and certain classes of mappings between these spaces. It turns out that a concise, perhaps overly simplistic, but certainly not misleading, description of such material is infinite dimensional linear algebra. From an analyst's point of view the greatest triumphs of linear algebra were, for the n n most part, theorems about operators on finite dimensional vector spaces (principally R and C ). However, the vector spaces of scalar-valued mappings defined on various domains are typically infinite dimensional. Whether one sees the process of generalizing the marvelous results of finite dimensional linear algebra to the infinite dimensional realm as a depressingly unpleasant string of abstract complications or as a rich source of astonishing insights, fascinating new questions, and suggestive hints towards applications in other fields depends entirely on one's orientation towards mathematics in general.
Recommended publications
  • Frames in 2-Inner Product Spaces
    Iranian Journal of Mathematical Sciences and Informatics Vol. 8, No. 2 (2013), pp 123-130 Frames in 2-inner Product Spaces Ali Akbar Arefijamaal∗ and Ghadir Sadeghi Department of Mathematics and Computer Sciences, Hakim Sabzevari University, Sabzevar, Iran E-mail: [email protected] E-mail: [email protected] Abstract. In this paper, we introduce the notion of a frame in a 2- inner product space and give some characterizations. These frames can be considered as a usual frame in a Hilbert space, so they share many useful properties with frames. Keywords: 2-inner product space, 2-norm space, Frame, Frame operator. 2010 Mathematics subject classification: Primary 46C50; Secondary 42C15. 1. Introduction and preliminaries The concept of frames in Hilbert spaces has been introduced by Duffin and Schaeffer [12] in 1952 to study some deep problems in nonharmonic Fourier se- ries. Various generalizations of frames have been proposed; frame of subspaces [2, 6], pseudo-frames [18], oblique frames [10], continuous frames [1, 4, 14] and so on. The concept of frames in Banach spaces have been introduced by Grochenig [16], Casazza, Han and Larson [5] and Christensen and Stoeva [11]. The concept of linear 2-normed spaces has been investigated by S. Gahler in 1965 [15] and has been developed extensively in different subjects by many authors [3, 7, 8, 13, 14, 17]. A concept which is related to a 2-normed space is 2-inner product space which have been intensively studied by many math- ematicians in the last three decades. A systematic presentation of the recent results related to the theory of 2-inner product spaces as well as an extensive ∗ Corresponding author Received 16 November 2011; Accepted 29 April 2012 c 2013 Academic Center for Education, Culture and Research TMU 123 124 Arefijamaal, Sadeghi list of the related references can be found in the book [7].
    [Show full text]
  • A Completely Positive Maps
    A Completely Positive Maps A.1. A linear map θ: A → B between C∗-algebrasiscalledcompletely positive if θ ⊗ id: A ⊗ Matn(C) → B ⊗ Matn(C) is positive for any n ∈ N. Such a map is automatically bounded since any ∗ positive linear functional on a C -algebra is bounded. ⊗ ∈ ⊗ C An operator T = i,j bij eij B Matn( ), where the eij’s are the usual C ∗ ≥ matrix units in Matn( ), is positive if and only if i,j bi bijbj 0 for any ∈ ⊗ C b1,...,bn B. Since every positive element in A Matn( )isthesumofn ∗ ⊗ → elements of the form i,j ai aj eij,weconcludethatθ: A B is completely positive if and only if n ∗ ∗ ≥ bi θ(ai aj)bj 0 i,j=1 for any n ∈ N, a1,...,an ∈ A and b1,...,bn ∈ B. A.2. If θ: A → B is completely positive and B ⊂ B(H), then there exist a Hilbert space K, a representation π: A → B(K) and a bounded operator V : H → K such that θ(a)=V ∗π(a)V and π(A)VH = K. The construction is as follows. Consider the algebraic tensor product AH, and define a sesquilinear form on it by (a ξ,c ζ)=(θ(c∗a)ξ,ζ). Complete positivity of θ means exactly that this form is positive definite. Thus taking the quotient by the space N = {x ∈ A H | (x, x)=0} we get a pre-Hilbert space. Denote its completion by K. Then define a representation π: A → B(K)by π(a)[c ζ]=[ac ζ], where [x] denotes the image of x in (A H)/N .
    [Show full text]
  • Tensor Products of Convex Cones, Part I: Mapping Properties, Faces, and Semisimplicity
    Tensor Products of Convex Cones, Part I: Mapping Properties, Faces, and Semisimplicity Josse van Dobben de Bruyn 24 September 2020 Abstract The tensor product of two ordered vector spaces can be ordered in more than one way, just as the tensor product of normed spaces can be normed in multiple ways. Two natural orderings have received considerable attention in the past, namely the ones given by the projective and injective (or biprojective) cones. This paper aims to show that these two cones behave similarly to their normed counterparts, and furthermore extends the study of these two cones from the algebraic tensor product to completed locally convex tensor products. The main results in this paper are the following: (i) drawing parallels with the normed theory, we show that the projective/injective cone has mapping properties analogous to those of the projective/injective norm; (ii) we establish direct formulas for the lineality space of the projective/injective cone, in particular providing necessary and sufficient conditions for the cone to be proper; (iii) we show how to construct faces of the projective/injective cone from faces of the base cones, in particular providing a complete characterization of the extremal rays of the projective cone; (iv) we prove that the projective/injective tensor product of two closed proper cones is contained in a closed proper cone (at least in the algebraic tensor product). 1 Introduction 1.1 Outline Tensor products of ordered (topological) vector spaces have been receiving attention for more than 50 years ([Mer64], [HF68], [Pop68], [PS69], [Pop69], [DS70], [vGK10], [Wor19]), but the focus has mostly been on Riesz spaces ([Sch72], [Fre72], [Fre74], [Wit74], [Sch74, §IV.7], [Bir76], [FT79], [Nie82], [GL88], [Nie88], [Bla16]) or on finite-dimensional spaces ([BL75], [Bar76], [Bar78a], [Bar78b], [Bar81], [BLP87], [ST90], [Tam92], [Mul97], [Hil08], [HN18], [ALPP19]).
    [Show full text]
  • Absorbing Representations with Respect to Closed Operator Convex
    ABSORBING REPRESENTATIONS WITH RESPECT TO CLOSED OPERATOR CONVEX CONES JAMES GABE AND EFREN RUIZ Abstract. We initiate the study of absorbing representations of C∗-algebras with re- spect to closed operator convex cones. We completely determine when such absorbing representations exist, which leads to the question of characterising when a representation is absorbing, as in the classical Weyl–von Neumann type theorem of Voiculescu. In the classical case, this was solved by Elliott and Kucerovsky who proved that a representation is nuclearly absorbing if and only if it induces a purely large extension. By considering a related problem for extensions of C∗-algebras, which we call the purely large problem, we ask when a purely largeness condition similar to the one defined by Elliott and Kucerovsky, implies absorption with respect to some given closed operator convex cone. We solve this question for a special type of closed operator convex cone induced by actions of finite topological spaces on C∗-algebras. As an application of this result, we give K-theoretic classification for certain C∗-algebras containing a purely infinite, two- sided, closed ideal for which the quotient is an AF algebra. This generalises a similar result by the second author, S. Eilers and G. Restorff in which all extensions had to be full. 1. Introduction The study of absorbing representations dates back, in retrospect, more than a century to Weyl [Wey09] who proved that any bounded self-adjoint operator on a separable Hilbert space is a compact perturbation of a diagonal operator. This implies that the only points in the spectrum of a self-adjoint operator which are affected by compact perturbation, are the isolated points of finite multiplicity.
    [Show full text]
  • Chapter 2 C -Algebras
    Chapter 2 C∗-algebras This chapter is mainly based on the first chapters of the book [Mur90]. Material bor- rowed from other references will be specified. 2.1 Banach algebras Definition 2.1.1. A Banach algebra C is a complex vector space endowed with an associative multiplication and with a norm k · k which satisfy for any A; B; C 2 C and α 2 C (i) (αA)B = α(AB) = A(αB), (ii) A(B + C) = AB + AC and (A + B)C = AC + BC, (iii) kABk ≤ kAkkBk (submultiplicativity) (iv) C is complete with the norm k · k. One says that C is abelian or commutative if AB = BA for all A; B 2 C . One also says that C is unital if 1 2 C , i.e. if there exists an element 1 2 C with k1k = 1 such that 1B = B = B1 for all B 2 C . A subalgebra J of C is a vector subspace which is stable for the multiplication. If J is norm closed, it is a Banach algebra in itself. Examples 2.1.2. (i) C, Mn(C), B(H), K (H) are Banach algebras, where Mn(C) denotes the set of n × n-matrices over C. All except K (H) are unital, and K (H) is unital if H is finite dimensional. (ii) If Ω is a locally compact topological space, C0(Ω) and Cb(Ω) are abelian Banach algebras, where Cb(Ω) denotes the set of all bounded and continuous complex func- tions from Ω to C, and C0(Ω) denotes the subset of Cb(Ω) of functions f which vanish at infinity, i.e.
    [Show full text]
  • Stinespring's Theorem for Maps on Hilbert C
    STINESPRING’S THEOREM FOR MAPS ON HILBERT C∗−MODULES Shefali Gupta Supervisor - Dr. G. Ramesh A Thesis Submitted to Indian Institute of Technology Hyderabad In Partial Fulfillment of the Requirements for The Degree of Master of Science in Mathematics Department of Mathematics April 2016 2 3 4 Acknowledgement The success of this work is accredited to many. Firstly, thanking the god and my par- ents for everything, my next acknowledgement goes to my supervisor-cum-guide, Dr. G. Ramesh, because of whom, I got to learn, understand thoroughly and moreover appreci- ate, a whole new branch of mathematics, Operator Algebras. Not just this but under his expert guidance and motivation, we could successfully come up with results we aimed to acquire since the beginning of this project. I am highly grateful to him for his strong support and understanding. I am also thankful to my friends in IIT Hyderabad, who stood by me through all the thicks and thins throughout the course of my M.Sc. and for being there whenever I needed them. Last but not the least, I would like to thank my classmates who have always supported me in every matter. 5 6 Abstract Stinespring’s representation theorem is a fundamental theorem in the theory of com- pletely positive maps. It is a structure theorem for completely positive maps from a C∗−algebra into the C∗−algebra of bounded operators on a Hilbert space. This theo- rem provides a representation for completely positive maps, showing that they are simple modifications of ∗−homomorphisms. One may consider it as a natural generalization of the well-known Gelfand-Naimark-Segal thoerem for states on C∗−algebras.
    [Show full text]
  • Chapter XI: Applications of Spectral Theory
    CHAPTER XI APPLICATIONS OF SPECTRAL THEORY Let H be a separable, infinite-dimensional, complex Hilbert space. We exploit properties of the Spectral Theorem to investigate and classify operators on H. As usual, all Hilbert spaces considered will be assumed to be complex and separable, even if it is not explicitly stated. If T is an element of the C∗-algebra B(H), recall that the resolvent of T is the set res(T ) of all complex numbers λ for which λI − T has a two-sided inverse in B(H). The spectrum sp(T ) of T is the complement of the resolvent of T. That is, λ belongs to sp(T ) if λI −T does not have a bounded two-sided inverse. THEOREM 11.1. (Existence of Positive Square Roots of Positive Operators) Let H be a Hilbert space, and let T be a positive operator in B(H); i.e., (T (x), x) ≥ 0 for all x ∈ H. Then: (1) There exists an element R in B(H) such that T = R∗R. (2) There exists a unique positive square root of T, i.e., a unique positive operator S such that T = S2. Moreover, S belongs to the smallest sub-C∗-algebra of B(H) that contains T and I. (3) If T is invertible, then its positive square root S is also invertible. PROOF. We know that a positive operator T is necessarily selfad- R joint. Hence, writing T = λ dp(λ), let us show that p(−∞,0) = 0. That R is, the spectrum of T is contained in the set of nonnegative real numbers.
    [Show full text]
  • L/Rspaces for Von Neumann Algebra with Reference to a Faithful Normal Semifinite Weight
    Publ. RIMS, Kyoto Univ. 19 (1983), 673-727 L/rSpaces for von Neumann Algebra with Reference to a Faithful Normal Semifinite Weight By Tetsuya MASUDA Abstract The Lp-space LP(M, 0o) for a von Neumann algebra M and its faithful normal semifinite weight 0o is constructed as a linear space of closed linear operators acting on the standard representation Hilbert space H$Q. Any Lp-element has the polar and the Jordan decompositions relative to a positive th part Z/JCM, ^o). Any positive element in I/p-space has an interpretation as the (l/p) 1/p I/p power $ of a 0eMJ with its Lp-norm given by 0(1) . The product of an Lp-element and an L5-element is explicitly denned as an 1/,-ele- ment with r~1=p~1 + q~1 provided l^r and the Holder inequality is proved. Also LP(M, 0o) are shown to be isomorphic for the same p and different 0o. There exists a vector subspace D™0 of the Tomita algebra associated with 00 and a ^-dependent injection TP:D^0-^LP(M, 00) with dense range. The sesquilinear form on 1 1 = LP(M, $o) xZ/p' (M, ^o),^>~ + (p')~ 1 is a natural extension of the inner product of H^0 through the mapping Tp X TV. The present work is an extension of our joint work with Araki to weights, and our Lp-spaces are isomorphic to those defined by Haagerup, Hilsum, Kosaki, and Terp. § 1. Introduction The Lp-space Lp (M, r) of a semifinite von Neumann algebra M with respect to a faithful normal semifinite trace r is defined as the linear space p 1/p of all r-measurable operators T satisfying \\T\\p=r (|T| ) <oo (see [22, 26]).
    [Show full text]
  • Lecture Notes on “Completely Positive Semigroups and Applications to II1
    Lecture notes on \Completely positive semigroups and applications ∗ to II1 factors" Jesse Peterson May 24, 2013 Contents 1 Completely positive maps 1 1.1 Stinespring's Dilation Theorem . 2 1.2 Bhat's Dilation Theorem . 6 1.3 Poisson boundaries . 9 2 The Poisson boundary of a finite von Neumann algebra 12 3 Derivations 15 3.1 Examples . 21 3.1.1 Inner derivations . 21 3.1.2 Approximately inner derivations . 21 3.1.3 The difference quotient . 22 3.1.4 Group algebras and group-measure space constructions . 22 3.1.5 Equivalence relations . 23 3.1.6 Free products . 24 3.1.7 Free Brownian motion . 24 3.1.8 Tensor products . 24 3.1.9 q-Gaussians . 25 3.1.10 Conditionally negative definite kernels . 26 4 Approximate bimodularity 26 1 Completely positive maps An operator system E is a closed self adjoint subspace of a unital C∗-algebra A such that ∗ 1 2 E. We denote by Mn(E) the space of n × n matrices over E. If A is a C -algebra, then ∗From the minicourse given at the workshop on Operator Algebras and Harmonic Analysis, at Instituto de Ciencias Mathem´aticas 1 ∼ ∗ Mn(A) = A ⊗ Mn(C) has a unique norm for which it is again a C -algebra, where the adjoint given ∗ ∗ ∗ by [ai;j] = [aj;i]. This can be seen easily for C -subalgebras of B(H), and the general case then follows since every C∗-algebra is isomorphic to a C∗-subalgebra of B(H) by the GNS-construction. In particular, if E ⊂ A is an operator system then Mn(E) is again an operator system when viewed ∗ as a subspace of the C -algebra Mn(A).
    [Show full text]
  • AM Plichko, MM Popov SOME OPEN PROBLEMS on BANACH SPACES
    Математичнi Студiї. Т.38, №2 Matematychni Studii. V.38, No.2 УДК 517.982 A. M. Plichko, M. M. Popov SOME OPEN PROBLEMS ON BANACH SPACES A. M. Plichko, M. M. Popov. Some open problems on Banach spaces, Mat. Stud. 38 (2012), 203–211. Notes of the Problem Session which has been held on the section of Banach Spaces during the International conference dedicated to the 120-th anniversary of Stefan Banach in Lviv (Ukraine), September 17–21, 2012. А. Н. Пличко, М. М. Попов. Некоторые открытые проблемы о банаховых пространствах // Мат. Студiї. – 2012. – Т.38, №2. – C.203–211. Записки проблемной сессии секции банаховых пространств на международной конфе- ренции, посвященной 120-летию со дня рождения Стефана Банаха в г. Львов (Украина) 17–21 сентября 2012 г. 1. A question about renormings of the James space (V. M. Kadets). Kharkiv V.N. Karazin National University (Kharkiv, Ukraine), [email protected] Let us say that a Banach space X possesses the 2-Daugavet property if every finite rank operator T : X ! X satisfies kId + T k2 ≥ 1 + kT k2: Problem 1.1. Is it true that the James space J possesses the 2-Daugavet property in some equivalent norm? It is known ([1]) that the 2-Daugavet property of X implies the absence of an uncondi- tional basis in X. So, the 2-Daugavet property could be a reasonable object of study. Unfortunately, there is a little obstacle: all the known examples of spaces with the 2- Daugavet property in fact possess (in the original norm or after a renorming) the much stronger Daugavet property: every finite rank operator T : X ! X satisfies kId + T k = 1 + kT k: Every space with the Daugavet property contains a isomorphic copy of `1 (see [2], so the James space J does not have this property in any equivalent norm.
    [Show full text]
  • De Rham Cohomology of Smooth Manifolds
    VU University, Amsterdam Bachelorthesis De Rham Cohomology of smooth manifolds Supervisor: Author: Prof. Dr. R.C.A.M. Patrick Hafkenscheid Vandervorst Contents 1 Introduction 3 2 Smooth manifolds 4 2.1 Formal definition of a smooth manifold . 4 2.2 Smooth maps between manifolds . 6 3 Tangent spaces 7 3.1 Paths and tangent spaces . 7 3.2 Working towards a categorical approach . 8 3.3 Tangent bundles . 9 4 Cotangent bundle and differential forms 12 4.1 Cotangent spaces . 12 4.2 Cotangent bundle . 13 4.3 Smooth vector fields and smooth sections . 13 5 Tensor products and differential k-forms 15 5.1 Tensors . 15 5.2 Symmetric and alternating tensors . 16 5.3 Some algebra on Λr(V ) ....................... 16 5.4 Tensor bundles . 17 6 Differential forms 19 6.1 Contractions and exterior derivatives . 19 6.2 Integrating over topforms . 21 7 Cochains and cohomologies 23 7.1 Chains and cochains . 23 7.2 Cochains . 24 7.3 A few useful lemmas . 25 8 The de Rham cohomology 29 8.1 The definition . 29 8.2 Homotopy Invariance . 30 8.3 The Mayer-Vietoris sequence . 32 9 Some computations of de Rham cohomology 35 10 The de Rham Theorem 40 10.1 Singular Homology . 40 10.2 Singular cohomology . 41 10.3 Smooth simplices . 41 10.4 De Rham homomorphism . 42 10.5 de Rham theorem . 44 1 11 Compactly supported cohomology and Poincar´eduality 47 11.1 Compactly supported de Rham cohomology . 47 11.2 Mayer-Vietoris sequence for compactly supported de Rham co- homology . 49 11.3 Poincar´eduality .
    [Show full text]
  • Category Theory Course
    Category Theory Course John Baez September 3, 2019 1 Contents 1 Category Theory: 4 1.1 Definition of a Category....................... 5 1.1.1 Categories of mathematical objects............. 5 1.1.2 Categories as mathematical objects............ 6 1.2 Doing Mathematics inside a Category............... 10 1.3 Limits and Colimits.......................... 11 1.3.1 Products............................ 11 1.3.2 Coproducts.......................... 14 1.4 General Limits and Colimits..................... 15 2 Equalizers, Coequalizers, Pullbacks, and Pushouts (Week 3) 16 2.1 Equalizers............................... 16 2.2 Coequalizers.............................. 18 2.3 Pullbacks................................ 19 2.4 Pullbacks and Pushouts....................... 20 2.5 Limits for all finite diagrams.................... 21 3 Week 4 22 3.1 Mathematics Between Categories.................. 22 3.2 Natural Transformations....................... 25 4 Maps Between Categories 28 4.1 Natural Transformations....................... 28 4.1.1 Examples of natural transformations........... 28 4.2 Equivalence of Categories...................... 28 4.3 Adjunctions.............................. 29 4.3.1 What are adjunctions?.................... 29 4.3.2 Examples of Adjunctions.................. 30 4.3.3 Diagonal Functor....................... 31 5 Diagrams in a Category as Functors 33 5.1 Units and Counits of Adjunctions................. 39 6 Cartesian Closed Categories 40 6.1 Evaluation and Coevaluation in Cartesian Closed Categories. 41 6.1.1 Internalizing Composition................. 42 6.2 Elements................................ 43 7 Week 9 43 7.1 Subobjects............................... 46 8 Symmetric Monoidal Categories 50 8.1 Guest lecture by Christina Osborne................ 50 8.1.1 What is a Monoidal Category?............... 50 8.1.2 Going back to the definition of a symmetric monoidal category.............................. 53 2 9 Week 10 54 9.1 The subobject classifier in Graph.................
    [Show full text]