Theoret. Appl. Mech., Vol. 30, No. 2, pp. 85-162, Belgrade 2003 A primer on exterior differential calculus D.A. Burton¤ Abstract A pedagogical application-oriented introduction to the cal- culus of exterior differential forms on differential manifolds is presented. Stokes’ theorem, the Lie derivative, linear con- nections and their curvature, torsion and non-metricity are discussed. Numerous examples using differential calculus are given and some detailed comparisons are made with their tradi- tional vector counterparts. In particular, vector calculus on R3 is cast in terms of exterior calculus and the traditional Stokes’ and divergence theorems replaced by the more powerful exte- rior expression of Stokes’ theorem. Examples from classical continuum mechanics and spacetime physics are discussed and worked through using the language of exterior forms. The nu- merous advantages of this calculus, over more traditional ma- chinery, are stressed throughout the article. Keywords: manifolds, differential geometry, exterior cal- culus, differential forms, tensor calculus, linear connections ¤Department of Physics, Lancaster University, UK (e-mail:
[email protected]) 85 86 David A. Burton Table of notation M a differential manifold F(M) set of smooth functions on M T M tangent bundle over M T ¤M cotangent bundle over M q TpM type (p; q) tensor bundle over M ΛpM differential p-form bundle over M ΓT M set of tangent vector fields on M ΓT ¤M set of cotangent vector fields on M q ΓTpM set of type (p; q) tensor fields on M ΓΛpM set of differential p-forms