Harriet L. Wilkes Honors College Honors Theses

Florida Atlantic University Libraries Year 

Fluctuating craniodental asymmetry in the southern African Acinonyx Jubatus Jubatus Stephanie J. Sabshin Florida Atlantic University,

This paper is posted at DigitalCommons@Florida Atlantic University. http://digitalcommons.fau.edu/wilkes theses/27 FLUCTUATING CRANIODENTAL ASYMMETRY IN THE SOUTHERN AFRICAN

CHEETAH ACINONYX JUBATUS JUBATUS

By

Stephanie Julia Sabshin

A Thesis Submitted to the Faculty of

The Wilkes Honors College

in Partial Fulfillment of the Requirements for the Degree of

Bachelor of Arts in Liberal Arts and Sciences

with a Concentration in Pre-Veterinary Studies

Wilkes Honors College of

Florida Atlantic University

Jupiter, Florida

May 2007

FLUCTUATING CRANIODENTAL ASYMMETRY IN THE SOUTHERN AFRICAN

CHEETAH ACINONYX JUBATUS JUBATUS

by Stephanie Julia Sabshin

This thesis was prepared under the direction of the candidate’s thesis advisor, Dr. Jon Moore, and has been approved by the members of her/his supervisory committee. It was submitted to the faculty of The Honors College and was accepted in partial fulfillment of the requirements for the degree of Bachelor of Arts in Liberal Arts and Sciences.

SUPERVISORY COMMITTEE:

______Dr. Jon Moore

______Dr. Terje Hoim

______Dean, Wilkes Honors College

______Date

ii ACKNOWLEDGEMENTS

I would like to offer my sincerest gratitude to the entire faculty and staff of the

Harriet L. Wilkes Honors College who have been instrumental in helping me find my

direction. I would like to specifically thank Dr. Moore for being a patient and

encouraging thesis advisor from the very beginning conversations about thesis topics.

You consistently indulged my most creative, and often unfeasible, thesis ideas, giving me a great sense of confidence in my abilities. Also, thank you Dr. Fitchett and Dr. Hoim, for giving me an appreciation for the value of mathematics that will be invaluable in my future.

Furthermore, I couldn’t have made it through these four years without my friends; friends who made me work when all I wanted to do was play, and friends who made me play when all I thought I had time to do was work. You have brought balance to my life and I will miss you all greatly.

Finally, the most important recognition has to go to my family. You all have allowed me to explore different interests and find my own way, even when my own way resulted in my complete occupation of the dining room table with books, summers abroad, significant additions to the family, and random ideas gone astray. For your unwavering support, I am eternally grateful.

iii ABSTRACT

Author: Stephanie Julia Sabshin

Title: Fluctuating Craniodental Asymmetry in the Southern

African Cheetah Acinonyx jubatus jubatus

Institution: Wilkes Honors College of Florida Atlantic University

Thesis Advisor: Dr. Jon Moore

Degree: Bachelor of Arts in Liberal Arts and Sciences

Concentration: Pre-Veterinary Studies

Year: 2007

The cheetah (Acinonyx jubatus) continues to be an object of intensive study with

respect to its genetic heterozygosity and its drastic decline in the wild. Fluctuating

asymmetry (FA) has been used to evaluate the levels of inbreeding and monomorphism

in the cheetah. A measurement of craniodental FA was undertaken to compare the

southern African cheetah (Acinonyx jubatus jubatus) with previously collected craniodental FA measurements from the East African cheetah (Acinonyx jubatus raineyi).

Unlike their counterparts, the southern African cheetah did not show significant asymmetry. These findings suggest that fluctuating asymmetry cannot be used as a determination of genetic depletion in .

iv

To those who are motivated by the understanding that in the brief moment of but a blink,

the spots once seen will be gone forever.

v TABLE OF CONTENTS

Introduction………………………………………………………………..………………1

Materials and Methods……………………………………………………...……………..3

Results……………………………………………………………………….…………….6

Discussion………………………………………………………………….…………….10

References…………………………………………………………….………………….13

Appendix I Description of skulls…….....………………………….…………………17

Appendix II A written description of each measurement...……...……….………..…..19

Appendix III Raw Data (in cm)………………………………………..……………….21

TABLES . Table 1. Age and sex of individuals used in this study……………………...……...3

Table 2a. Student's t-test values for significant directionality of asymmetry for each sex………………………………………………….………………...6

Table 2b. Student's t-test values for significant directionality of asymmetry for each age group………………………………………….…………………7

Table 3a. Means (in cm), sample sizes (n), and standard deviations of asymmetry for males and females…………………………………………8

Table 3b. Male and female composite mean asymmetry values for each measurement……………………………………………..………………..9

Table 4. F-ratios from a univariate analysis of variance testing for significant differences in asymmetry due to age and sex and interactions among them……………………………………………………....………………10

FIGURES

Figure 1. Cranial, tooth and mandibular measurements used to examine fluctuating asymmetry in Acinonyx jubatus from Namibia…………..…...5

vi Introduction

Fluctuating asymmetry (FA) is a measure of deviations from ideal symmetry

between bilaterally paired traits. Because symmetry is expected to be the ideal state, FA

is not likely to be adaptive. It is characterized by a leptokurtic distribution of small

random deviations around a mean of zero (Van Valen, 1962; Soulx, 1967; Palmer &

Strobeck, 1986, Palmer, 1996; Gangestad & Thornhill, 1999). This is opposed to

directional asymmetry, where all individuals develop a right or left bias, and anti- symmetry, where some individuals develop a left bias and some develop a right. Anti- symmetry is due to genetic predisposition rather than stress (Palmer & Strobeck, 1986).

FA also is not the same as the asymmetry seen in frequency-dependent natural selection

(Hori 1993).

FA has been shown through studies to increase in inbred and relatively monomorphic populations (Dobzhansky & Wallace, 1953; Lerner, 1954; Soule, 1967;

Kat, 1982; Leary et al., 1983, 1985; Leamy, 1984). It has therefore been proposed that

FA may be a useful tool in conservation biology to help determine whether a species’ survival may be compromised by the loss of genetic diversity (Wayne et al., 1986; Leary

& Allendorf, 1989; Parsons, 1992; Sarre et al., 1994; Clarke, 1995; Palmer, 1996). There is considerable evidence for a negative correlation between fluctuating asymmetry and

success with respect to sexual selection in numerous species, which may act to improve

offspring viability by choosing more favorable genes (Møller & Thornhill, 1998).

Wayne et al. (1986) have discussed evidence indicating a high level of genetic monomorphism in the southern African cheetah, Acinonyx jubatus jubatus. This genetic

1 monomorphism was a consequence of an acute evolutionary bottleneck which resulted in

more recent inbreeding (O’Brien et al., 1985; Menotti-Raymond & O’Brien 1993).

Wayne et al. (1986) evaluated the level of craniodental fluctuating asymmetry in

the East African cheetah compared with certain other felid species. Their data

showed a significant elevation of fluctuating asymmetry in the cheetah compared with

other tested felids. They interpreted the results as being evidence for a decreased developmental stability. However, confirmation of this interpretation with respect to the southern African cheetah subspecies was needed.

Kieser and Groeneveld (1991) evaluated the fluctuating odontometric asymmetry in the southern African cheetah subspecies. Contrasting the conclusions drawn by

Wayne et al. concerning the East African cheetah, their data gives evidence that the cheetah did not show higher levels of fluctuating asymmetry than the other felids tested, but rather, frequently reduced levels of asymmetry.

Because craniodental FA was measured in the East African cheetah, but only odontometric FA was measured in the southern African cheetah population, it seemed appropriate to measure the craniodental FA in the southern African cheetah subspecies in order to determine if the conclusions drawn by Wayne et al. (1986) with respect to the

East African population can be applied to the larger southern African population.

Perhaps it is the case that odontometric FA cannot be used in felid species as a measure of developmental stability due to dental irregularities (Marker and Dickman, 2004;

Marker, 1997). As noted in Wayne et al. (1986) and as was discovered in this study, cranial measurements have tended to show more asymmetry than odontometric measurements.

2 Materials and Methods

Data were obtained from museum processed dried skulls of 61 Namibian

cheetah Acinonyx jubatus jubatus (see Appendix 1). The skulls were all collected

between 1993 and 2006 and stored at the Cheetah Conservation Fund in Otjiwarango.

The specimens were separated into the sexes and age groups as presented in Table 1

according to Marker and Dickman (2003). Additionally, for analysis purposes, an age group 9 was added to encompass all the adults (combining age groups 5-8) since these individuals are all fully grown, and therefore, growth should not be a possible factor in the fluctuating asymmetry for these individuals.

Table 1. Age and sex of individuals used in this study. Age Group Class Age No. No. (months) Males Females 1 Young cubs 0-6 4 3 2 Large cubs >6-12 3 2 3 Adolescents >12-18 5 1 4 Newly >18-30 4 5 independent 5 Young adults >30-48 12 3 6 Prime adults >48-96 8 3 7 Old adults >96-144 2 5 8 Very old adults >144 0 1 9 Full Grown Adult >30 22 12

A total of 28 bilaterally symmetrical measurements were made on each individual

(Figure 1, Appendix 2 and Appendix 3) using a sliding vernier caliper. In the event that the skull was partially damaged, only bilaterally intact sections of the skull were used.

Repeated measurements on 20 randomly selected skulls yielded a mean intraobserver difference of 0.09 ! 0.45 mm and a reliability coefficient of 0.89. A reliability coefficient is evaluated with repeated measures made on the same skull in ignorance of the initial

3 measurements, with the same equipment and under the same conditions. This statistical analysis establishes that deviations between left and right side measurements are due to asymmetry rather than measurement error.

Asymmetry is determined by taking the absolute value of the difference between left and right side measurements. A Student’s t-test for antimeric differences that do not differ significantly from zero was performed (see Tables 2a and 2b) in order to confirm that the asymmetry found was due to random size differences (fluctuating asymmetry) rather than population preference of side differences (directional asymmetry).

A two-way ANOVA (age vs. sex) was performed (see Table 4) in order to

evaluate possible differences among the ages and sexes in mean asymmetry for all 28

characters. For this analysis, age groups 1 and 3 and the measurement for supraorbital

length were removed from the study due to insufficient number of specimens (see

Appendix 3). Asymmetry was calculated as the absolute value of the difference between

the left and the ride side.

4

Figure 1. Cranial, tooth and mandibular measurements used to examine fluctuating asymmetry in Acinonyx jubatus from Namibia (see Appendix 2 for detailed descriptions). 1) Length of skull 2) Depth of skull 3) Basilar length 4) Palatal length 5) Width of the maxilla 6) Zygomatic width 7) Mastoidal width 8) Length of bulla 9) Width of bulla 10) Nasal width 11) Interorbital width 12) Supraorbital width 13) Length of mandible 14) Depth of mandible 15) Length of upper tooth row 16) Length of upper tooth row plus incisors 17) Diameter of upper canine 18) Length of 3 premolar 19) Length of 4 premolar 20) Width of 4 premolar 21) Width of upper incisors 22) Width of upper incisors plus canines 23) Length of lower tooth row 24) Length of lower tooth row plus incisors 25) Diameter of lower canine 26) Length of lower molar 27) Width of lower molar 28) Width of lower incisors 29) Width of lower incisors plus canine.

5 Results

When the Student’s t-test was performed (see Tables 2a and 2b) for males and females, only 7 out of 54 (13.0%) of the measurements showed significant directionality.

As well, when the test was redone for the different age groups, only 4 out of 108 (3.7%) measurements showed significant directionality. Therefore, it can be considered that the of asymmetry is fluctuating rather than directional.

Table 2a. Student's t-test values for significant directionality of asymmetry for each sex Male Female No. Measurement t df P t df P 2 depth 0.872 31 0.388 0.766 16 0.422 3 basilar length 1.130 30 0.268 0.356 15 0.727 4 palatal length 2.199* 33 0.035 1.412 17 0.176 5 width of maxilla 2.661* 33 0.012 0.283 17 0.781 6 zygomatic width 2.015 29 0.053 1.143 17 0.269 7 mastoidal width 0.774 29 0.445 0.179 16 0.860 8 length of bulla 0.292 33 0.772 0.025 16 0.980 9 width of bulla 0.998 32 0.326 0.089 19 0.930 10 nasal width 2.544* 30 0.016 0.081 15 0.936 11 interorbital width 0.936 32 0.356 2.656* 18 0.016 12 supraorbital width 0.449 24 0.658 1.127 12 0.282 13 length of mandible 2.369* 31 0.024 3.611* 20 0.002 14 width of mandible 0.831 31 0.412 0.259 21 0.798 15 length of upper tooth row 0.908 34 0.371 0.238 19 0.815 16 length of upper tooth row and incisors 0.880 33 0.385 1.215 17 0.241 17 diameter of upper canine 0.251 32 0.803 0.051 17 0.960 18 length of upper P3 0.450 32 0.656 0.274 18 0.787 19 length of upper P4 0.480 36 0.634 1.260 19 0.223 20 width of upper P4 1.611 31 0.117 0.357 18 0.725 21 width of upper incisors 0.843 32 0.406 0.616 19 0.545 22 width of upper incisors and canine 0.484 33 0.632 1.866 18 0.078 23 length of lower tooth row 0.883 31 0.384 0.545 19 0.592 24 length of lower tooth row and incisors 0.671 29 0.507 0.028 18 0.978 25 diameter of lower canine 0.565 32 0.576 0.334 17 0.742 26 length of lower molar 0.671 33 0.507 2.266* 16 0.038 27 width of lower molar 1.632 31 0.113 0.499 15 0.652 28 width of lower incisors 0.124 29 0.902 0.934 14 0.366 29 width of lower incisors and canine 0.683 30 0.500 0.872 17 0.395 *Denotes significance at the p<0.05 level

6 Table 2b. Student's t-test values for significant directionality of asymmetry for each age group. Age Age Age Age Age Group 1 Group 2 Group 3 Group 4 Group 9 No. Measurement t df P t df P t df P t df P t df P 2 depth 1.121 3 0.364 0.991 4 0.374 1.312 4 0.164 0.454 8 0.689 1.866 28 0.071 3 basilar length 2.425 3 0.094 0.062 3 0.954 0.735 3 0.515 0.327 8 0.752 0.352 25 0.728 4 palatal length 3.362* 3 0.044 1.414 3 0.252 1.156 4 0.312 0.474 8 0.648 0.065 29 0.949 5 width of maxilla 0.317 3 0.772 2.782 3 0.069 1.773 4 0.151 0.286 8 0.782 2.354* 29 0.026 6 zygomatic width 1.000 1 0.500 1.890 2 0.199 1.492 5 0.196 0.241 8 0.816 1.174 27 0.251 7 mastoidal width 0.611 2 0.603 0.561 3 0.614 1.193 3 0.152 0.146 8 0.888 0.868 26 0.393 8 length of bulla 0.088 4 0.934 1.712 4 0.162 0.032 4 0.976 2.609* 8 0.031 0.589 26 0.561 9 width of bulla 0.232 4 0.828 0.975 4 0.385 0.501 5 0.638 0.052 8 0.959 1.096 27 0.283 10 nasal width 1.472 3 0.237 1.108 3 0.349 2.277 2 0.151 0.115 7 0.912 1.505 27 0.144 11 interorbital width 0.794 3 0.485 0.920 3 0.425 0.091 5 0.931 1.747 7 0.124 1.978* 29 0.057 12 supraorbital width 0.499 3 0.652 1.126 3 0.342 3.790 2 0.063 1.330 6 0.232 1.469 19 0.158 13 length of mandible 0.934 2 0.449 1.112 4 0.328 0.933 4 0.404 0.325 8 0.754 0.111 30 0.912 14 width of mandible 3.101 3 0.053 1.322 3 0.278 0.105 4 0.921 1.236 8 0.252 1.068 31 0.294 15 length of upper tooth row 0.422 4 0.695 0.647 4 0.553 0.000 4 1.000 1.362 8 0.210 0.763 30 0.451 length of upper tooth row 0.524 3 0.636 0.963 3 0.407 0.605 4 0.578 0.200 8 0.846 1.546 29 0.133 16 and incisors 17 diameter of upper canine 0.000 1 1.000 1.298 4 0.264 0.637 5 0.552 0.806 8 0.444 0.055 28 0.957 18 length of upper P3 1.424 2 0.290 2.301 4 0.083 1.992 4 0.117 0.171 8 0.868 0.689 29 0.497 19 length of upper P4 0.657 4 0.547 1.978 4 0.119 0.476 5 0.654 1.336 8 0.218 0.528 31 0.602 20 width of upper P4 1.095 3 0.353 0.918 2 0.456 0.000 4 1.000 0.000 8 1.000 1.429 29 0.164 21 width of upper incisors 1.441 2 0.286 0.472 3 0.669 0.000 4 1.000 2.240 8 0.055 1.860 31 0.072 width of upper incisors and 1.094 3 0.354 0.085 3 0.938 1.127 4 0.323 0.302 8 0.771 1.751 30 0.090 22 canine 23 length of lower tooth row 0.454 3 0.681 3.040 2 0.093 0.592 4 0.625 0.148 8 0.886 0.192 30 0.849 length of lower tooth row 1.043 3 0.373 0.096 2 0.932 0.109 3 0.920 0.367 8 0.723 0.953 28 0.349 24 and incisors 25 diameter of lower canine 0.607 2 0.606 0.322 3 0.769 0.621 4 0.569 0.146 7 0.888 0.156 30 0.877 26 length of lower molar 0.655 2 0.580 1.188 3 0.320 0.000 4 1.000 0.731 7 0.488 0.080 30 0.937 27 width of lower molar 3.000 1 0.205 0.500 2 0.667 0.606 4 0.577 2.103 6 0.080 1.436 30 0.161 28 width of lower incisors 2.000 2 0.184 1.134 3 0.339 0.583 4 0.620 0.446 7 0.669 1.442 26 0.161 width of lower incisors and 0.105 2 0.926 1.686 3 0.190 0.117 3 0.914 0.514 8 0.621 0.967 28 0.342 29 canine *Denotes significance at the p<0.05 level

7 Table 3a. Means ( X ) in cm, sample sizes (n), and standard deviations (SD) of asymmetry for males and females. Male Female Age Group 1 2 3 4 9 1 2 3 4 9 n 4 3 5 4 22 1-3 1-2 1 5 12 SD SD SD SD SD SD SD SD SD SD X X X X X X X X X X depth 0.11 0.07 0.06 0.05 0.23 0.12 0.14 0.15 0.13 0.09 0.05 0.01 0.25 0.07 0.08 0.06 0.06 basilar length 0.18 0.15 0.05 0.06 0.16 0.10 0.14 0.12 0.13 0.08 0.18 0.07 0.06 0.04 0.13 0.14 palatal length 0.09 0.05 0.02 0.01 0.05 0.04 0.05 0.05 0.04 0.03 0.01 0.01 0.01 0.04 0.04 0.05 0.04 width of maxilla 0.05 0.06 0.02 0.01 0.11 0.05 0.06 0.03 0.07 0.05 0.01 0.01 0.01 0.07 0.06 0.06 0.05 zygomatic width 0.03 0.42 0.12 0.10 0.04 0.09 0.10 0.14 0.11 0.04 0.06 0.04 0.08 0.04 0.08 0.07 mastoidal width 0.06 0.07 0.02 0.04 0.07 0.04 0.04 0.03 0.11 0.18 0.06 0.06 0.02 0.03 0.07 0.10 length of bulla 0.09 0.05 0.09 0.05 0.11 0.07 0.06 0.05 0.12 0.08 0.08 0.01 0.12 0.16 0.08 0.08 0.05 0.05 width of bulla 0.02 0.02 0.03 0.03 0.05 0.02 0.03 0.02 0.07 0.04 0.04 0.03 0.02 0.01 0.05 0.06 0.05 0.07 0.06 nasal width 0.10 0.08 0.01 0.00 0.16 0.09 0.06 0.03 0.13 0.15 0.06 0.07 0.02 0.16 0.13 0.06 0.06 interorbital width 0.14 0.10 0.07 0.03 0.27 0.18 0.11 0.12 0.10 0.09 0.06 0.17 0.18 0.01 0.07 0.09 0.16 0.10 supraorbital width 0.05 0.05 0.04 0.04 0.20 0.10 0.09 0.04 0.13 0.12 0.38 0.18 0.20 0.07 0.04 0.16 0.07 length of mandible 0.34 0.47 0.05 0.01 0.09 0.08 0.08 0.03 0.11 0.10 0.03 0.15 0.01 0.02 0.07 0.04 0.11 0.08 width of mandible 0.08 0.05 0.02 0.01 0.06 0.05 0.11 0.07 0.16 0.19 0.05 0.04 0.04 0.04 0.07 0.15 0.19 0.07 0.04 length of upper tooth row 0.12 0.13 0.02 0.00 0.03 0.02 0.06 0.05 0.09 0.11 0.09 0.11 0.07 0.01 0.01 0.02 0.04 0.04 length of upper tooth row 0.11 0.10 0.03 0.01 0.08 0.04 0.03 0.03 0.05 0.04 0.11 0.14 0.02 0.04 0.04 0.04 0.03 and incisors diameter of upper canine 0.02 0.00 0.07 0.04 0.04 0.04 0.03 0.02 0.03 0.02 0.04 0.02 0.09 0.04 0.04 0.03 0.03 length of upper P3 0.05 0.06 0.04 0.03 0.05 0.05 0.04 0.04 0.06 0.12 0.27 0.02 0.01 0.08 0.03 0.06 0.02 0.02 length of upper P4 0.04 0.05 0.04 0.03 0.04 0.03 0.03 0.03 0.04 0.04 0.25 0.04 0.02 0.11 0.02 0.03 0.04 0.03 width of upper P4 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.05 0.08 0.02 0.03 0.02 0.01 0.01 0.02 0.03 0.03 width of upper incisors 0.03 0.04 0.06 0.04 0.03 0.01 0.02 0.02 0.03 0.02 0.06 0.06 0.03 0.05 0.03 0.03 0.04 width of upper incisors and 0.07 0.06 0.02 0.04 0.09 0.05 0.01 0.00 0.06 0.06 0.06 0.03 0.03 0.04 0.04 0.05 0.04 canine length of lower tooth row 0.02 0.03 0.01 0.07 0.04 0.04 0.05 0.03 0.08 0.13 0.03 0.07 0.00 0.06 0.05 0.03 0.03 length of lower tooth row 0.09 0.07 0.06 0.00 0.02 0.03 0.09 0.12 0.06 0.06 0.03 0.01 0.06 0.09 0.10 0.05 0.03 and incisors diameter of lower canine 0.06 0.02 0.02 0.01 0.04 0.03 0.05 0.02 0.03 0.02 0.03 0.01 0.00 0.03 0.02 0.02 0.02 length of lower molar 0.02 0.02 0.02 0.01 0.04 0.02 0.04 0.05 0.04 0.03 0.06 0.00 0.04 0.01 0.03 0.02 width of lower molar 0.02 0.01 0.02 0.00 0.03 0.02 0.01 0.00 0.02 0.01 0.02 0.00 0.04 0.03 0.02 0.02 width of lower incisors 0.05 0.04 0.02 0.01 0.00 0.01 0.06 0.04 0.03 0.03 0.04 0.01 0.00 0.04 0.05 0.04 0.06 width of lower incisors and 0.04 0.03 0.04 0.01 0.07 0.04 0.04 0.05 0.05 0.04 0.04 0.03 0.06 0.04 0.03 0.04 0.03 canine

8 Standard statistics for the asymmetry of each of the 28 morphological measurements in the skulls of each age group for males and females are presented in

Table 3a. Table 3b shows male and female average mean asymmetry values for each measurement. In only 5 out of the 28 measurements (18.0%) was the male average mean asymmetry values larger than the female. This indicates that the females measured were significantly more asymmetric than the males.

Table 3b. Male and female composite mean asymmetry values for each measurement. Measurement Male Female depth 0.11 0.13 basilar length 0.12 0.13 palatal length 0.03 0.05 width of maxilla 0.04 0.06 zygomatic width 0.06 0.10 mastoidal width 0.05 0.06 length of bulla 0.08 0.09 width of bulla* 0.05 0.04 nasal width 0.08 0.09 interorbital width 0.10 0.14 supraorbital width* 0.14 0.10 length of mandible 0.09 0.13 width of mandible 0.08 0.09 length of upper tooth row 0.04 0.06 length of upper tooth row and incisors 0.05 0.06 diameter of upper canine* 0.05 0.04 length of upper P3 0.04 0.05 length of upper P4* 0.05 0.04 width of upper P4 0.02 0.02 width of upper incisors* 0.04 0.03 width of upper incisors and canine 0.05 0.05 length of lower tooth row 0.04 0.04 length of lower tooth row and incisors 0.05 0.06 diameter of lower canine 0.02 0.04 length of lower molar 0.03 0.03 width of lower molar 0.02 0.02 width of lower incisors 0.03 0.03 width of lower incisors and canine 0.05 0.05 * indicates when Male value > Female value

A two-way ANOVA for age and sex was performed and the results are displayed in Table 4. There was no significant difference between the mean fluctuating asymmetry

9 due to sex, and there were only 2 measurements that showed significant difference between the mean fluctuating asymmetry due to age: the width of mandible (p=0.025) and the width of lower incisors (p=0.012). For the interaction between sex and age, there was also only one measurement that showed a significant difference between the mean fluctuating asymmetry: width of the lower molar (p=0.039).

Table 4. F-ratios from a univariate analysis of variance testing for significant differences in asymmetry due to age and sex and interactions among them. Number Measurement Sex Age Sex/Age 2 depth 2.865 1.055 0.555 3 basilar length 0.145 0.496 1.295 4 palatal length 0.013 2.161 0.436 5 width of maxilla 0.127 0.198 0.255 6 zygomatic width 0.486 0.257 0.169 7 mastoidal width 0.034 0.318 0.262 8 length of bulla 1.443 0.944 1.702 9 width of bulla 0.070 0.628 1.529 10 nasal width 0.424 0.421 1.319 11 interorbital width 0.241 0.700 0.561 13 length of mandible 0.008 0.658 0.064 14 width of mandible 0.050 4.221* 0.481 15 length of upper tooth row 0.838 0.339 0.352 16 length of upper tooth row and incisors 0.719 0.657 0.663 17 diameter of upper canine 0.038 0.220 0.100 18 length of upper P3 0.609 0.058 0.178 19 length of upper P4 0.036 0.682 0.277 20 width of upper P4 0.255 0.495 0.313 21 width of upper incisors 0.713 0.776 0.088 22 width of upper incisors and canine 0.474 0.614 1.178 23 length of lower tooth row 0.489 0.044 0.538 24 length of lower tooth row and incisors 0.178 1.941 0.049 25 diameter of lower canine 2.762 2.299 0.831 26 length of lower molar 0.397 0.123 0.329 27 width of lower molar 3.241 2.732 3.713* 28 width of lower incisors 0.795 5.302* 0.498 29 width of lower incisors and canine 0.296 1.457 0.044 * denotes significance at the p < 0.05 level

Discussion

Although censusing the cheetah is difficult due to its diurnal and transient nature, population estimates and cheetah sightings confirm that the cheetah population in contributes a larger percentage to the overall cheetah population than the

10 population (Marker, 1998), the highest population being in Namibia where

the samples were collected for this study. It is possible that due to the limited data

available on the East African cheetah population, the results from the East African population studies could have been distorted. As well, there could have been possible drawbacks in the Kieser and Groeneveld study from measuring only fluctuating odontometric asymmetry on the southern African cheetah. This is because there is significant wear and stress on carnivore teeth that is not related to asymmetry or genetic health that would probably skew the results.

Ignoring possible limitations of these studies, from a simple inspection of these results it appears as if the Namibian cheetah population does not show significant fluctuating asymmetry while the East African cheetah population does (Wayne et al.,

1986). However, it may be premature to look at these results and conclude that the cheetah has not experienced the elevated levels of inbreeding previously claimed by

Wayne et al. (1986), due to the fact that fluctuating asymmetry as a measure of inbreeding has not been proven successful in felid species. While it has proven to work in laboratory conditions (Dobzhansky & Wallace, 1953; Lerner, 1954; Soulé, 1967; Kat,

1982; Leary et al., 1983, 1985; Leamy, 1984), it is problematic to assume this follows true with all other species. Especially when confronted with reoccurring evidence that the measures of FA do not support the hypothesis that the cheetah has an increased level of homozygosity due to genetic stress (Willig & Owen, 1987; Kieser & Groeneveld,

1991; Merola, 1994). This is because it is known that the southern African cheetah population has equally elevated levels of inbreeding that is experienced by the East

11 African population (Wayne et al. 1985), even though the levels of asymmetry do not correlate.

Other studies have been conducted in which dental abnormalities are thought to be indicative of genetic homozygosity. Marker and Dickman (2004) have shown the

Namibian cheetah to have significant focal palatine erosion, crowded lower incisors and absence of one or both premolars. These abnormalities have significant repercussions to the cheetah population and result in a perforation of the palatine bone and cause a localized infection.

Kieser and Groeneveld (1991) found that the cheetah showed markedly reduced levels of FA compared with other felid species. They hypothesized that this could simply mean that some felid species are asymmetric while others are not, regardless of their genetic basis.

Until further research can be conducted to confirm the usefulness of fluctuating asymmetry in determining inbreeding levels in wild cat populations, our findings show that the use of FA to assess genetic stress on the cheetah remains inconclusive. Because of these inconclusive findings, there continues to be a need to look at the various measures of genetic health and the use of different parameters to measure levels of inbreeding and monomorphism in the cheetah.

12 References

Clarke, G. M. 1995. Relationships between developmental stability and fitness: application for conservation biology. Conservation Biology. 9: 18-24.

Dobzhansky, T. H., and B Wallace. 1953. The genetics of homeostasis in Drosophila. Proceedings of the National Academy of Sciences. USA. 39: 162-170.

Gangestad, S. W., and R Thornhill. 1999. Individual differences in developmental precision and fluctuating asymmetry: a model and its implications. Journal of Evolutionary Biology. 12: 402-416.

Hori, M. 1993. Frequency-dependent natural selection in the handedness of scale-eating cichlid fish. Science. 260(5105): 216-219.

Kat, P. W. 1982. The relationship between heterozygosity for enzyme loci and developmental homeostasis in peripheral populations of aquatic bivalves (Unionidae). American Naturalist. 119: 824-832.

Kieser, J. A., and H. T. Groeneveld. 1991. Fluctuating odontometric asymmetry, morphological variability, and genetic monomorphism in the cheetah Acinonyx jubatus. Evolution. 45: 1175-1183.

Leamy, L. 1984. Morphometric studies in inbred and hybrid house mice. V. Directional and fluctuating asymmetry. American Naturalist. 123: 579-593.

Leary, R. F., and W. Allendorf. 1989. Fluctuating asymmetry as an indicator of stress: implications for conservation biology. Trends in Ecology and Evolution. 4: 214-217.

Leary, R. F., W. Allendorf, and K. L. Knudsen. 1983. Developmental stability and enzyme heterozygosity in rainbow trout. Nature. 301: 71-72.

Leary, R. F., W. Allendorf, and K. L. Knudsen. 1984. Superior developmental stability of heterozygotes at enzyme loci in salmonid fishes. American Naturalist. 124: 540-551.

Leary, R. F., W. Allendorf, and K. L. Knudsen. 1985. Inheritance of meristic variation and the evolution of developmental stability in rainbow trout. Evolution. 39: 308-314.

Lerner, I. M. 1954. Genetic homeostasis. Edinburgh: Oliver and Boyd, London, U.K.

Marker, L. 1997. Morphological Abnormalities in Namibian Cheetahs Acinonyx jubatus. Proceedings of the 50th Namibian Vet Congress.

Marker, L. 1998. Current status of the cheetah (Acinonyx jubatus). Proceedings of a Symposium on Cheetahs as Game Ranch . 1-17.

13 Marker, L., and A. J. Dickman. 2003. Morphology, physical condition, and growth of the cheetah (Acinonyx jubatus jubatus). Journal of Mammalogy. 84: 840-850.

Marker, L., and A. J. Dickman. 2004. Dental anomalies and incidence of palatal erosion in Namibian cheetahs (Acinonyx Jubatus Jubatus). Journal of Mammology, 85: 19-24.

Marker-Krause, L., J. Grisham. 1993. Captive breeding of cheetahs in North American zoos 1987-1991. Zoo Biology. 12: 5-18.

Menotti-Raymond, M.A. and O'Brien, S.J. 1993. Dating the genetic bottleneck of the African cheetah. Proceedings of the National Academy of Sciences. USA 90: 3172-3176.

Merola, M. 1994. A reassessment of homozygosity and the case for inbreeding depression in the cheetah, Acinonyx jubatus: implications for conservation. Conservation Biology. 8: 961-971.

Modi, W. S., R. K. Wayne, and S. J. O’Brien. 1987. Analysis of fluctuating asymmetry in cheetahs. Evolution. 41: 227-228.

Møller, A. P., and R. Thornhill. 1998. Bilateral symmetry and sexual selection: a meta- analysis. The American Naturalist. 151: 174-192.

O’Brien, S. J., D. E. Wildt, D. Goldman, D. R. Merril, and M. Bush. 1983. The cheetah is depauperate in biochemical genetic variation. Science. 221: 459-462.

O’Brien, S. J., M. E. Roelke, L. Marker, A. Newman, C. A. Winkler, D. Meltzer, L. Colly, J. F. Evermann, M. Bush and D. E. Wildt. 1985 Genetic basis for species vulnerability in the cheetah. Science. 227: 1428-1434.

O’Brien, S. J., D. E. Wildt, M. Bush, T. M. Caro, C. Fitzgibbon, I. Aggundey, and R. E. Leakey. 1987. East African cheetahs: Evidence for two population bottlenecks? Proceedings of the National Academy of Sciences. USA. 84: 508-511.

Palmer, A. R. 1996. Waltzing with asymmetry: is fluctuating asymmetry a powerful new tool for biologists or just an alluring new dance step? Bioscience. 46: 518-532.

Palmer, A. R., and C. Strobeck. 1992. Fluctuating asymmetry as a measure of developmental stability: implications of non-normal distributions and power of statistical tests. Acta Zoologica Fennica. 191: 57-72.

Parsons, P. A. 1992. Fluctuating asymmetry: a biological monitor of environmental and genomic stress. Heredity. 68: 361-364.

Sarre, S., J. M. Dearn, and A. Georges. 1994. The application of fluctuating asymmetry in the monitoring of populations. Pacific Conservation Biology. 1: 118-122.

14 Soulé, M. E. 1967. Phenetics of natural populations. II. Asymmetry and evolution in a lizard. American Naturalist. 101: 141-160.

Van Valen, L. 1962. A study of fluctuating asymmetry. Evolution. 16: 125-142.

Wayne, R. K., W. S. Modi, and S. J. O’Brien, 1986. Morphological variability and asymmetry in the cheetah (Acinonyx jubatus), a genetically uniform species. Evolution. 40: 78-85.

Willig, M. R., and R. D. Owen. 1987. Fluctuating asymmetry in the cheetah: Methodological and interpretive concerns. Evolution. 41: 225-227.

15 Appendix I: Description of Skulls (sorted by sex and age)

AJU # (ID) SEX Age (mo) DOD Cause Farm 1477 F 4 9-Oct-05 Unknown Greenhout Deliberately run 1166 F 5 6-Apr-99 over with car Osonjiva Along Waterberg Plateau Rd. # 1318 F 5 10-Nov-02 Hit by car 2512 Died in captivity - 994 F 8 31-Dec-95 kidney failure Elandsvreugde euthanized due to chronic bone 1381 F 8 2-Apr-04 problems Elandsvreugde 1343 F 14 21-Nov-02 Shot Sumas 891 F 24 17-Dec-93 Choked on meat Elandsvreugde 1211 F 24 28-Sep-00 Run over Near Outjo 1227 F 24 19-Dec-00 Broken neck Richlyn Died under 958 F 25 24-Dec-94 anesthesia Elandsvreugde 1293 F 30 May 2002 Accidental Otjikango 1224 F 39 21-Sep-01 Shot Otjiwa 1341 F 48 21-Nov-02 Shot Sumas 1372 F 60 27-Aug-03 Shot by farmer Tsuwandes Shot, suspected of 1399 F 72 9-Dec-03 livestock predation Otjimbuka 1235 F 84 26-Jan-01 Choked on meat Elandsvreugde Killed by farmer 948 F 114 31-Dec-01 and dogs Etunda 1116 F 120 10-Mar-03 Euthanized Osonjiva 1270 F 120 March 2003 Shot Tonnemacher Euthanasia, old 1325 F 144 7-Oct-03 age Elandsvreugde 1069 F 192 4-Jun-02 Euthanized Elandsvreugde 1020 M 1 12-Jun-96 Died overnight Bombatsi Deliberately run 1165 M 5 6-Apr-99 over with car Osonjiva Euthanized due to 1182 M 5 14-Oct-00 broken neck Osondjache 1316 M 5 3-Aug-02 Killed by dogs Oros Parasites - died in 1035 M 8 31-Jan-97 captivity Elandsvreugde 1305 M 10 29-Jun-02 Killed by farmer Okatierute 995 M 11 4-Mar-96 Shot Okatjiruti Starved to death - 1272 M 12 19-Oct-01 found in trap cage Accidental 1200 M 14 11-Sep-00 poisoning Aloe Grove Died en route to 1299 M 14 11-Jun-02 vet Okatjuna Suspected of 1344 M 14 21-Nov-02 livestock predation Detering shot in shoulder, 1451 M 17 15-Oct-05 euthanized by vet Gaus 1152 M 26 11-Sep-00 Pesticide toxicity Aloe Grove

16 Shot - suspected 1142 M 27 19-Jun-99 killing calves Sumas 950 M 28 18-Sep-96 Shot Near Namutoni 1194 M 30 11-Apr-00 Shot Nimitz 1060 M 33 31-May-98 Shot Kaaitjaas 1061 M 33 31-May-98 Shot Kaaitjaas 1037 M 40 12-Nov-99 Hit by car Okapuka 1249 M 42 6-Jun-01 Shot Sumas 1250 M 42 6-Jun-01 Shot Sumas 1186 M 42 1-Dec-99 Shot 1248 M 42 5-Jun-01 Shot Sumas 869 M 46 1-Apr-94 Found dead Boskop 833 M 48 22-Jan-93 Anesthesia related Elandsvreugde Shot, suspected of 1476 M 48 19-Sep-05 livestock predation Okamoharo 1438 M 48 18-Aug-04 hit by car Windhoek International Airport Shot, suspected of 1476 M 48 19-Sep-05 livestock predation Okamoharo Ran into game 1183 M 48 11-Oct-99 fence Osondjache 832 M 51 23-Apr-93 Shot Cheetah View 1230 M 60 4-Jun-02 Euthanized Elandsvreugde Possibly male 979 M 64 18-Dec-96 aggression Groenhout Otjiwarongo/Otavi main road 1170 M 72 12-Oct-00 Run over by truck right before Grootfontein dist. 1188 M 72 20-Jan-02 Shot Omambondie Tal Found dead - 881 M 84 28-Apr-95 snakebite Phantom Tar road between Osondjache 1199 M 84 15-Mar-01 Run over game fences Bone perforated 1178 M 90 25-Jun-05 stomach Elandsvreugde 1071 M 108 23-Aug-01 Euthanized Holstein 1276 M 111 28-Feb-02 Killed by farmer Swartskroon

17

Appendix II

A written description of each measurement.

1. Length of skull- from gumline between the two first incisors to external occipital protuberance

2. Depth of skull- from top point where right and left nasal bones meet to mastoid process

3. Basilar length- from frontal gumline of I3 to tip of protrusion caudal to tympanic bulla

4. Palatal length- from frontal gumline of I3 to posterior nasal spine of the palatine bone

5. Width of maxilla- from posterior gumline of P4 to posterior nasal spine of the palatine bone

6. Zygomatic width- from caudal end of presphenoid to the most frontal point of the junction of the malar bone and the temporal bone

7. Mastoidal width- from the mastoid process to the caudal arch point of the occipital condoyle

8. Length of bulla-from anterior end, where the foramen for auditory tube is, to tip of protrusion caudal to the tympanic bulla

9. Width of bulla- from anterior tip of the foramen for auditory tube to anterior end of jugular foramen

10. Nasal width- from anterior midline point to end of nasal bone

11. Interorbital width- from top point where right and left nasal bones meet to tips of upper postorbital process

12. Supraorbital width- from tips of upper postorbital process to the suture point where the frontal bone meets the parietal bone

13. Length of mandible- from anterior gumline point of canine to lateral tip of condyloid process

14. Depth of mandible- from top of coronoid process to bottom of angular process

15. Length of upper tooth row- from anterior gumline point of canine to gumline behind P4 (*note whether or not P2 is present*)

16. Length of upper tooth row and incisors- from medial gumline of I1 to gumline behind P4

17. Diameter of upper canine- from anterior to posterior gumline points of canine

18. Length of upper P3- from anterior to posterior gumline points of P3

19. Length of upper P4- from anterior to posterior gumline points of P4

20. Width of P4- from gumline points lateral and medial to caudal groove of P4

21. Width of upper incisors- from medial gumline of I1 to lateral gumline of I3

22. Width of upper incisors plus canines- from medial gumline of I1 to posterior gumline of upper canine

18

23. Length of lower tooth row- from anterior gumline of P3 to gumline behind M1

24. Length of lower tooth row and incisors- from gumline between first two incisors to gumline behind M1

25. Diameter of lower canine- from anterior to posterior gumline points of canine

26. Length of lower molar- from anterior to posterior gumline points of M1, measuring from medial side of jaw

27. Width of lower molar- from gumline points lateral and medial to groove in tooth

28. Width of lower incisors- from medial gumline of I1 to lateral gumline of I3

29. Width of lower incisors and canines- from medial gumline of I1 to posterior gumline of lower canine

19 Appendix 3: Raw Data (in cm)

sex basilar basilar ID age age length depth depth depth basilar (M=1, length length number (months) ranking of skull RT LF difference difference F=2) RT LF 1020 1 1 1 7.88 5.50 5.47 0.03 6.31 6.30 0.01 1182 1 5 1 14.62 9.67 9.50 0.17 12.20 11.91 0.29 1316 1 5 1 14.37 10.05 9.93 0.12 12.29 11.98 0.31 950 1 28 2 19.80 12.35 12.39 0.04 16.37 16.46 0.09 995 1 11 2 15.79 10.31 10.29 0.02 13.41 13.32 0.09 1035 1 8 2 15.42 9.78 9.69 0.09 12.77 12.78 0.01 1200 1 14 3 11.05 10.85 0.20 1272 1 12 3 17.53 11.92 11.56 0.36 14.73 14.55 0.18 1299 1 14 3 11.10 11.38 0.28 14.29 14.00 0.29 1142 1 27 4 19.50 12.57 12.21 0.36 16.71 16.40 0.31 1152 1 26 4 17.97 10.96 10.91 0.05 14.87 14.99 0.12 1194 1 30 4 19.07 11.59 11.68 0.09 15.79 15.82 0.03 832 1 51 5 19.69 12.14 12.00 0.14 16.38 16.50 0.12 869 1 46 5 20.36 12.64 12.59 0.05 16.83 16.85 0.02 1037 1 40 5 18.34 11.65 11.59 0.06 15.05 15.20 0.15 1060 1 33 5 18.00 11.21 11.05 0.16 14.88 14.75 0.13 1061 1 33 5 19.55 12.17 12.09 0.08 16.15 15.99 0.16 1183 1 48 5 17.7 11.4 11.35 0.05 14.91 14.88 0.03 1186 1 42 5 17.98 11.7 11.61 0.09 15.67 15.59 0.08 1248 1 42 5 21.11 13.12 13.32 0.20 17.93 18.19 0.26 1249 1 42 5 12.96 12.85 0.11 17.5 17.6 0.10 1250 1 42 5 12.32 12.42 0.10 0.00 833 1 48 6 19.23 11.59 11.47 0.12 16.12 15.95 0.17 881 1 84 6 20.10 12.50 12.33 0.17 16.49 16.51 0.02 979 1 64 6 21.47 13.17 13.11 0.06 17.48 17.31 0.17 1170 1 72 6 19.79 11.7 11.99 0.29 16.45 1188 1 72 6 19.01 12.18 12.45 0.27 16.17 15.99 0.18 1199 1 84 6 19.00 12.11 12.45 0.34 15.91 16.18 0.27 1230 1 60 6 11.95 11.90 0.05 16.02 15.98 0.04 1071 1 108 7 1318 2 5 1 958 2 25 2 18.00 11.11 11.14 0.03 14.76 14.84 0.08 994 2 8 2 14.82 9.69 9.63 0.06 12.41 12.28 0.13 1343 2 14 3 10.75 11.00 0.25 0.00 891 2 24 4 18.38 11.30 11.51 0.21 15.21 15.15 0.06 1211 2 24 4 18.70 12.00 12.01 0.01 15.17 15.17 0.00 1227 2 24 4 19.46 12.12 12.10 0.02 15.95 15.98 0.03 1293 2 30 4 18.33 11.26 11.34 0.08 15.22 15.11 0.11 1341 2 48 5 18.35 11.40 11.35 0.05 15.36 15.42 0.06 (919) 2 46 5 17.95 11.10 11.03 0.07 14.55 14.61 0.06 1235 2 84 6 19.17 11.98 11.97 0.01 15.95 15.99 0.04 1116 2 120 7 11.47 11.45 0.02 1270 2 120 7 18.15 14.93 15.26 0.33 1069 2 192 8 11.49 11.46 0.03 15.15 15.34 0.19

21

palatal palatal width of width of ID length length maxilla maxilla number palatal maxilla zygomatic zygomatic zygomatic RT LF difference RT LF difference width RT width LF difference 1020 2.74 2.84 0.10 1.62 1.62 0.00 1182 5.45 5.60 0.15 3.31 3.19 0.12 4.16 4.75 0.59 1316 5.36 5.45 0.09 3.08 3.08 0.00 4.96 4.96 0.00 950 7.27 7.28 0.01 4.08 3.99 0.09 6.55 6.53 0.02 995 6.02 6.03 0.01 3.42 3.44 0.02 1035 5.85 5.87 0.02 3.31 3.34 0.03 5.54 5.66 0.12 1200 5.51 5.38 0.13 1272 6.29 6.36 0.07 3.45 3.57 0.12 5.52 5.40 0.12 1299 6.69 6.78 0.09 3.66 3.61 0.05 5.61 5.50 0.11 1142 7.69 7.59 0.10 4.10 4.15 0.05 6.38 6.45 0.07 1152 6.99 6.99 0.00 3.94 3.91 0.03 6.39 6.41 0.02 1194 7.00 7.09 0.09 3.92 3.87 0.05 5.88 6.12 0.24 832 7.18 7.12 0.06 4.13 4.05 0.08 6.65 6.62 0.03 869 7.76 7.77 0.01 4.09 4.16 0.07 6.92 6.90 0.02 1037 6.91 6.89 0.02 3.90 3.89 0.01 5.96 5.92 0.04 1060 6.44 6.53 0.09 3.60 3.65 0.05 1061 7.37 7.39 0.02 3.93 4.00 0.07 6.81 6.96 0.15 1183 6.79 6.82 0.03 3.76 3.90 0.14 5.92 5.89 0.03 1186 6.69 6.59 0.10 3.77 3.88 0.11 5.77 6.10 0.33 1248 8.12 8.21 0.09 4.55 4.49 0.06 6.91 7.16 0.25 1249 8.15 8.10 0.05 4.55 4.50 0.05 7.01 6.80 0.21 1250 7.58 7.60 0.02 4.19 4.19 0.00 6.71 7.01 0.30 833 7.12 7.17 0.05 3.99 4.07 0.08 6.63 6.79 0.16 881 7.44 7.54 0.10 3.92 3.98 0.06 6.57 6.56 0.01 979 7.94 7.96 0.02 4.16 4.31 0.15 1170 7.62 3.76 6.21 1188 7.48 7.43 0.05 3.75 3.85 0.10 5.61 5.85 0.24 1199 7.21 7.22 0.01 3.78 3.81 0.03 6.50 6.52 0.02 1230 7.31 7.29 0.02 4.00 4.12 0.12 6.39 6.39 0.00 1071 7.74 7.74 0.00 4.17 4.16 0.01 6.89 6.60 0.29 1318 958 6.82 6.83 0.01 3.73 3.83 0.10 6.36 6.32 0.04 994 5.57 5.59 0.02 3.27 3.29 0.02 5.29 5.37 0.08 1343 6.46 6.45 0.01 3.40 3.41 0.01 5.60 5.56 0.04 891 6.96 6.85 0.11 3.99 3.85 0.14 6.40 6.48 0.08 1211 6.84 6.84 0.00 3.51 3.50 0.01 6.02 5.93 0.09 1227 7.07 7.04 0.03 3.65 3.75 0.10 6.50 6.45 0.05 1293 6.67 6.71 0.04 3.70 3.70 0.00 6.28 6.15 0.13 1341 7.20 7.11 0.09 3.61 3.61 0.00 6.01 6.00 0.01 (919) 6.58 6.60 0.02 3.77 3.65 0.12 6.05 6.03 0.02 1235 7.58 7.53 0.05 4.14 4.01 0.13 6.68 6.57 0.11 1116 6.70 6.65 0.05 3.90 3.89 0.01 6.65 6.49 0.16 1270 6.95 6.93 0.02 3.85 3.81 0.04 1069 6.88 6.98 0.10 6.43 6.36 0.07

22

length width of ID mastoidal mastoidal mastoidal length of length of bulla width of width of bulla number width RT width LF difference bulla RT bulla LF difference bulla RT bulla LF difference 1020 1.25 1.21 0.04 1.95 1.92 0.03 1.12 1.10 0.02 1182 2.31 2.45 0.14 2.36 2.48 0.12 1.57 1.61 0.04 1316 2.95 2.95 0.00 2.11 1.99 0.12 1.57 1.57 0.00 950 3.73 3.65 0.08 3.45 3.43 0.02 1.80 1.76 0.04 995 3.11 3.06 0.05 2.97 2.93 0.04 1.79 1.85 0.06 1035 3.15 3.15 0.00 2.82 2.91 0.09 1.72 1.75 0.03 1200 3.37 3.36 0.01 2.85 2.89 0.04 1.37 1.43 0.06 1272 2.63 2.51 0.12 1.83 1.87 0.04 1299 2.70 2.60 0.10 2.50 2.40 0.10 1.78 1.71 0.07 1142 2.99 3.00 0.01 2.81 2.69 0.12 1.95 1.93 0.02 1152 3.31 3.26 0.05 3.08 3.10 0.02 1.74 1.72 0.02 1194 3.02 3.00 0.02 3.23 3.16 0.07 1.81 1.76 0.05 832 3.61 3.60 0.01 3.50 3.58 0.08 2.15 2.05 0.10 869 3.59 3.72 0.13 3.41 3.48 0.07 2.01 2.00 0.01 1037 3.16 3.11 0.05 3.20 3.26 0.06 1.71 1.83 0.12 1060 3.25 3.32 0.07 3.13 2.95 0.18 1.78 1.83 0.05 1061 3.50 3.49 0.01 3.47 3.32 0.15 2.03 1.93 0.10 1183 3.08 3.21 0.13 3.29 3.36 0.07 1.76 1.80 0.04 1186 3.49 3.42 0.07 2.81 2.88 0.07 1.60 1.62 0.02 1248 3.69 3.74 0.05 3.72 3.81 0.09 1.98 1.89 0.09 1249 3.70 3.67 0.03 3.69 3.87 0.18 1.94 1.83 0.11 1250 3.08 3.30 0.22 2.02 2.10 0.08 833 3.54 3.49 0.05 3.39 3.24 0.15 1.88 1.89 0.01 881 3.49 3.50 0.01 3.41 3.25 0.16 1.83 1.74 0.09 979 3.75 3.84 0.09 3.59 3.51 0.08 1.88 1.80 0.08 1170 3.42 3.39 0.03 2.64 2.41 0.23 1.78 1.67 0.11 1188 2.75 2.67 0.08 2.70 2.88 0.18 1.70 1199 2.00 2.82 0.82 3.13 3.14 0.01 1.88 1.81 0.07 1230 3.49 3.56 0.07 3.20 3.10 0.10 2.00 1.90 0.10 1071 1318 2.61 2.54 0.07 1.69 1.71 0.02 958 3.29 3.37 0.08 3.19 3.14 0.05 1.66 1.61 0.05 994 2.80 2.90 0.10 2.78 2.78 0.00 1.78 1.76 0.02 1343 1.76 1.71 0.05 891 3.39 3.42 0.03 3.33 3.32 0.01 1.82 1.84 0.02 1211 3.46 3.46 0.00 2.67 2.68 0.01 1.99 1.97 0.02 1227 3.26 3.26 0.00 3.21 3.02 0.19 1.81 1.96 0.15 1293 3.29 3.30 0.01 3.14 3.01 0.13 1.75 1.79 0.04 1341 3.21 3.21 0.00 3.05 3.05 0.00 1.79 1.85 0.06 (919) 3.22 3.24 0.02 2.98 2.94 0.04 1.90 1.88 0.02 1235 3.60 3.65 0.05 3.29 3.23 0.06 1.92 1.91 0.01 1116 0.00 1.71 1.68 0.03 1270 2.71 2.51 1.81 1.92 0.11 1069 3.38 3.47 0.09 3.30 3.39 0.09 1.77 1.79 0.02

23

ID nasal nasal nasal width interorbital interorbital interorbital supraobital supraorbital supraorbital number width RT width LF difference width RT width LF difference width RT width LF difference 1020 0.51 0.55 0.04 2.31 2.43 0.12 2.91 2.97 0.06 1182 1.00 1.21 0.21 3.89 3.84 0.05 3.90 4.00 0.10 1316 1.47 1.57 0.10 4.41 4.16 0.25 3.98 3.98 0.00 950 1.63 1.68 0.05 5.27 5.23 0.04 5.54 5.48 0.06 995 1.38 1.39 0.01 4.17 4.26 0.09 4.58 4.51 0.07 1035 1.31 1.30 0.01 3.91 3.86 0.05 4.02 4.01 0.01 1200 4.34 4.15 0.19 4.47 4.37 0.10 1272 1.60 1.73 0.13 4.59 4.70 0.11 5.10 4.87 0.23 1299 4.03 4.62 0.59 4.99 4.71 0.28 1142 1.55 1.51 0.04 5.26 5.01 0.25 5.65 5.78 0.13 1152 1.61 1.51 0.10 4.61 4.58 0.03 4.51 4.42 0.09 1194 1.70 1.75 0.05 5.12 5.2 832 1.61 1.71 0.10 5.10 5.12 0.02 5.59 5.60 0.01 869 1.74 1.73 0.01 5.42 5.55 0.13 5.74 5.62 0.12 1037 1.40 1.53 0.13 5.20 5.10 0.10 5.18 5.19 0.01 1060 1.48 1.54 0.06 4.70 4.56 0.14 1061 1.55 1.68 0.13 5.41 5.44 0.03 5.41 5.52 0.11 1183 1.56 1.62 0.06 5.19 5.13 0.06 5.66 5.71 0.05 1186 1.80 1.69 0.11 5.05 5.05 0.00 6.12 6.01 0.11 1248 1.96 1.88 0.08 5.85 6.01 0.16 6.70 6.79 0.09 1249 1.91 1.91 0.00 5.87 5.86 0.01 1250 5.55 5.30 0.25 833 1.69 1.53 0.16 4.85 4.75 0.10 5.08 5.12 0.04 881 1.70 1.94 0.24 5.07 5.18 0.11 5.38 5.66 0.28 979 1.55 1.60 0.05 6.11 6.11 0.00 5.99 6.11 0.12 1170 5.21 5.30 1188 1.41 1.68 0.27 5.02 5.03 0.01 1199 1.56 1.58 0.02 5.45 5.42 0.03 1230 1.52 1.68 0.16 5.20 5.45 0.25 1071 1.02 1.69 0.67 5.51 5.42 0.09 5.61 5.63 0.02 1318 958 1.71 1.77 0.06 5.30 5.36 0.06 5.19 5.10 0.09 994 1.22 1.33 0.11 4.15 4.11 0.04 4.11 4.15 0.04 1343 1.52 1.54 0.02 4.61 4.62 0.01 891 1.51 1.78 0.27 5.34 5.35 0.01 1211 5.03 4.98 0.05 5.07 5.03 0.04 1227 1.88 1.61 0.27 5.45 5.22 0.23 5.41 5.38 0.03 1293 1.67 1.70 0.03 4.90 4.88 0.02 5.02 4.92 0.10 1341 1.72 1.80 0.08 4.95 4.81 0.14 5.00 5.09 0.09 (919) 4.92 4.98 0.06 4.70 4.90 0.20 1235 5.37 5.49 0.12 1116 1.63 1.60 0.03 5.43 5.29 0.14 1270 1.80 1.70 0.10 1069 1.67 1.61 0.06 5.38 5.30 0.08

24

length of length of length depth of depth of depth of length of length upper ID mandible mandible mandible mandible mandible mandible upper tooth of upper tooth row number RT LF difference RT LF difference row RT tooth difference row LF 1020 4.61 4.61 0.00 1.89 1.93 0.04 2.41 2.43 0.02 1182 9.97 9.3 0.67 4.17 4.28 0.11 3.65 3.91 0.26 1316 4.70 4.70 0.00 950 13.20 13.27 0.07 6.76 6.73 0.03 5.48 5.44 0.04 995 10.65 10.61 0.04 5.10 5.09 0.01 5.19 5.17 0.02 1035 10.11 10.05 0.06 4.73 4.71 0.02 4.86 4.88 0.02 1200 1272 11.75 11.70 0.05 5.67 5.75 0.08 5.12 5.13 0.01 1299 12.11 11.89 0.22 5.59 5.61 0.02 5.05 5.08 0.03 1142 14.15 14.2 0.05 6.73 6.9 0.17 5.5 5.43 0.07 1152 12.37 12.26 0.11 6.36 6.27 0.09 5.28 5.17 0.11 1194 13.19 13.11 0.08 6.32 6.48 0.16 5.31 5.31 0.00 832 13.16 13.23 0.07 7.05 7.00 0.05 5.52 5.51 0.01 869 13.73 13.72 0.01 7.19 7.01 0.18 5.65 5.61 0.04 1037 12.4 12.4 0.00 6.39 6.42 0.03 5.2 5.22 0.02 1060 13.10 12.95 0.15 6.86 6.92 0.06 5.15 5.10 0.05 1061 5.36 5.38 0.02 1183 12.54 12.35 0.19 5.72 5.97 0.25 5.02 5.01 0.01 1186 12.55 12.42 0.13 6.3 6.19 0.11 5.39 5.26 0.13 1248 14.38 14.49 0.11 7.72 7.72 0.00 6.82 6.99 0.17 1249 14.49 14.35 0.14 7.58 7.66 0.08 5.86 5.8 0.06 1250 14.1 14.11 0.01 7.32 7.31 0.01 5.01 5.5 0.49 833 13.13 13.11 0.02 6.77 6.83 0.06 5.44 5.43 0.01 881 13.48 13.52 0.04 7.09 7.16 0.07 5.54 5.41 0.13 979 14.31 14.20 0.11 7.14 7.37 0.23 5.90 5.79 0.11 1170 13.51 6.72 6.82 0.10 5.7 1188 12.96 12.6 0.36 6.56 6.41 0.15 5.57 5.67 0.10 1199 13.12 13.24 0.12 6.31 5.98 0.33 5.01 5.21 0.20 1230 13.46 13.14 0.32 6.8 6.79 0.01 5.31 5.35 0.04 1071 13.44 6.74 5.29 5.38 0.09 1318 9.52 958 12.08 12.10 0.02 6.07 6.02 0.05 5.29 5.28 0.01 994 9.61 9.75 0.14 4.68 4.69 0.01 4.63 4.57 0.06 1343 11.71 11.73 0.02 5.32 5.39 0.07 4.84 4.74 0.10 891 12.32 12.44 0.12 6.24 5.96 0.28 5.07 5.06 0.01 1211 12.23 12.26 0.03 5.99 5.84 0.15 5.18 5.23 0.05 1227 13.2 13.27 0.07 6.4 6.32 0.08 5.41 5.41 0.00 1293 12.8 12.71 0.09 6.01 5.8 0.21 5.38 5.38 0.00 1341 12.81 12.97 0.16 5.85 5.95 0.10 5.05 5.1 0.05 (919) 12.04 12.02 0.02 5.90 5.78 0.12 5.40 5.39 0.01 1235 12.79 12.91 0.12 6.48 6.56 0.08 5.42 5.49 0.07 1116 12.50 12.57 0.07 6.23 6.24 0.01 5.21 5.21 0.00 1270 12.61 12.88 0.27 6.11 6.22 0.11 5.29 5.28 0.01 1069 12.21 12.20 0.01 6.07 6.13 0.06

25

length of length of length of diameter diameter diameter of length of length of length of upper upper upper tooth of upper of upper upper upper p3 upper p3 upper p3 ID tooth row tooth row row and canine RT canine LF canine RT LF difference number and and incisors difference incisors incisors difference RT LF 1020 2.99 3.00 0.01 0.44 0.42 0.02 0.56 0.47 0.09 1182 4.76 5.00 0.24 0.54 0.56 0.02 1.60 1.61 0.01 1316 5.68 5.72 0.04 950 6.97 6.96 0.01 1.29 1.30 0.01 1.35 1.36 0.01 995 6.29 6.25 0.04 1.18 1.09 0.09 1.41 1.34 0.07 1035 5.99 6.02 0.03 1.13 1.11 0.02 1.44 1.40 0.04 1200 1272 6.52 6.40 0.12 1.06 1.16 0.10 1.42 1.46 0.04 1299 6.20 6.25 0.05 1.10 1.15 0.05 1.4 1.39 0.01 1142 6.99 7.00 0.01 1.16 1.15 0.01 1.54 1.53 0.01 1152 6.58 6.54 0.04 1.22 1.26 0.04 1.34 1.25 0.09 1194 6.60 6.53 0.07 1.14 1.19 0.05 1.57 1.53 0.04 832 7.02 7.04 0.02 1.40 1.36 0.04 1.34 1.25 0.09 869 7.09 7.05 0.04 1.31 1.29 0.02 1.45 1.49 0.04 1037 6.58 6.76 0.18 1.05 1.06 0.01 1.00 1.56 0.56 1060 6.46 6.48 0.02 1.17 1.12 0.05 1.28 1.27 0.01 1061 6.74 6.85 0.11 1.29 1.30 0.01 1.32 1.36 0.04 1183 6.31 6.38 0.07 1.01 1.37 1.38 0.01 1186 6.75 6.78 0.03 1.15 1.19 0.04 1.58 1.53 0.05 1248 7.31 7.41 0.10 1.29 1.26 0.03 1.51 1.51 0.00 1249 7.49 7.40 0.09 1.33 1.34 0.01 1.51 1.55 0.04 1250 6.94 6.99 0.05 1.18 1.19 0.01 1.56 1.55 0.01 833 6.88 6.86 0.02 1.26 1.34 0.08 1.38 1.48 0.10 881 6.91 6.86 0.05 1.27 1.31 0.04 1.39 1.38 0.01 979 7.43 7.44 0.01 1.40 1.39 0.01 1.55 1.60 0.05 1170 7.00 1.29 1.57 1188 6.75 6.72 0.03 1.16 1.15 0.01 1.50 1.41 0.09 1199 6.61 6.62 0.01 1.19 1.22 0.03 1.51 1.50 0.01 1230 6.55 6.56 0.01 1.13 1.12 0.01 1.57 1.59 0.02 1071 6.85 6.90 0.05 1.32 1.31 0.01 1.35 1.25 0.10 1318 1.52 1.25 0.27 958 6.60 6.59 0.01 1.13 1.08 0.05 1.38 1.39 0.01 994 5.86 5.87 0.01 0.95 0.93 0.02 1.39 1.40 0.01 1343 5.91 5.93 0.02 1.18 1.09 0.09 1.30 1.38 0.08 891 6.47 6.43 0.04 1.08 1.18 0.10 1.25 1.27 0.02 1211 6.68 6.67 0.01 1.14 1.15 0.01 1.39 1.39 0.00 1227 6.65 6.75 0.10 1.11 1.10 0.01 1.41 1.41 0.00 1293 6.57 6.61 0.04 1.18 1.15 0.03 1.48 1.61 0.13 1341 6.28 6.27 0.01 1.09 1.13 0.04 1.45 1.45 0.00 (919) 6.74 6.76 0.02 1.05 1.08 0.03 1.28 1.29 0.01 1235 6.87 6.90 0.03 1.31 1.30 0.01 1.33 1.32 0.01 1116 6.69 6.71 0.02 1.13 1.15 0.02 1.34 1.36 0.02 1270 6.50 6.48 0.02 1.19 1.10 0.09 1.49 1.49 0.00 1069 1.30 1.31 0.01 1.35 1.38 0.03

26

length of length of length of width of width of width of width of width of width of ID upper p4 upper p4 upper p4 upper p4 upper p4 upper p4 upper upper upper number RT LF difference RT LF difference incisor incisors incisors RT LF difference 1020 0.51 0.55 0.04 0.35 0.38 0.03 0.62 0.60 0.02 1182 0.91 0.91 0.00 0.49 0.48 0.01 0.89 0.82 0.07 1316 950 2.21 2.24 0.03 0.78 0.80 0.02 1.01 0.98 0.03 995 2.24 2.22 0.02 0.82 0.81 0.01 1.11 1.08 0.03 1035 2.19 2.22 0.03 1.02 1.10 0.08 1200 1272 2.33 2.33 0.00 0.81 0.83 0.02 1.05 1.00 0.05 1299 2.29 2.21 0.08 0.79 0.77 0.02 0.99 1.01 0.02 1142 2.36 2.35 0.01 0.75 0.78 0.03 1.09 1.12 0.03 1152 2.23 2.20 0.03 0.78 0.79 0.01 0.98 1.01 0.03 1194 2.33 2.4 0.07 0.79 0.78 0.01 1.11 1.11 0.00 832 2.36 2.35 0.01 0.84 0.85 0.01 1.11 1.07 0.04 869 2.38 2.34 0.04 1.04 1.05 0.01 1037 2.40 2.40 0.00 0.86 0.85 0.01 1.05 1.05 0.00 1060 2.20 2.21 0.01 0.74 0.70 0.04 0.97 1.00 0.03 1061 2.32 2.27 0.05 0.77 0.75 0.02 1.02 1.06 0.04 1183 2.42 2.49 0.07 0.79 0.79 0.00 0.90 0.90 0.00 1186 2.60 2.54 0.06 0.84 0.79 0.05 1.05 1.01 0.04 1248 2.35 2.38 0.03 0.78 0.74 0.04 1.08 1.09 0.01 1249 2.34 2.36 0.02 0.59 0.56 0.03 1.06 1.03 0.03 1250 2.42 2.49 0.07 0.82 0.82 0.00 1.17 1.12 0.05 833 2.39 2.33 0.06 0.84 0.85 0.01 1.09 1.06 0.03 881 2.22 2.21 0.01 0.81 0.83 0.02 1.10 1.10 0.00 979 2.41 2.40 0.01 0.85 0.80 0.05 1.15 1.14 0.01 1170 2.51 0.81 0.95 1188 2.31 2.31 0.00 0.76 0.73 0.03 0.99 0.95 0.04 1199 2.21 2.39 0.18 0.80 0.76 0.04 1.13 1.10 0.03 1230 2.46 2.43 0.03 0.80 0.81 0.01 1.09 1.04 0.05 1071 2.11 2.12 0.01 0.60 0.65 0.05 1.09 1.05 0.04 1318 958 2.40 2.42 0.02 0.80 0.77 0.03 1.01 1.09 0.08 994 2.05 2.07 0.02 0.71 0.72 0.01 1.07 1.05 0.02 1343 2.06 2.17 0.11 0.69 0.70 0.01 1.01 0.98 0.03 891 2.09 2.08 0.01 0.76 0.76 0.00 1.03 1.07 0.04 1211 2.34 2.34 0.00 0.79 0.80 0.01 0.98 1.05 0.07 1227 2.30 2.38 0.08 0.75 0.72 0.03 0.98 1.01 0.03 1293 2.41 2.41 0.00 0.81 0.81 0.00 1.05 1.04 0.01 1341 2.2 2.25 0.05 0.70 0.70 0.00 1.00 0.98 0.02 (919) 2.35 2.33 0.02 0.72 0.70 0.02 1.00 0.99 0.01 1235 2.22 2.31 0.09 0.84 0.82 0.02 1.06 1.08 0.02 1116 2.29 2.20 0.09 0.78 0.74 0.04 1.02 1.03 0.01 1270 2.41 2.41 0.00 0.81 0.81 0.00 1.10 1.08 0.02 1069 1.24 1.10 0.14

27

width of width of width of length length length of length of length of length of upper upper upper of lower of lower lower lower lower lower ID incisors incisors incisors tooth tooth tooth row tooth tooth tooth row number plus plus plus row RT row LF difference row and row and and canines canines canines incisors incisors incisors RT LF difference RT LF difference 1020 1.10 1.09 0.01 1.79 1.79 0.00 2.74 2.70 0.04 1182 2.09 2.16 0.07 3.80 3.81 0.01 5.35 5.18 0.17 1316 2.37 2.34 0.03 950 3.08 3.09 0.01 4.59 4.67 0.08 6.80 6.82 0.02 995 2.51 2.46 0.05 4.55 4.49 0.06 6.10 6.04 0.06 1035 2.35 2.35 0.00 4.27 4.11 0.16 5.80 5.86 0.06 1200 1272 2.71 2.54 0.17 4.39 4.44 0.05 1299 2.66 2.56 0.10 4.30 4.28 0.02 6.02 6.03 0.01 1142 2.99 3.01 0.02 4.62 4.67 0.05 6.39 6.65 0.26 1152 2.80 2.79 0.01 4.40 4.41 0.01 6.39 6.33 0.06 1194 2.80 2.81 0.01 4.45 4.50 0.05 6.21 6.21 0.00 832 3.11 3.10 0.01 4.70 4.75 0.05 6.72 6.76 0.04 869 3.10 3.13 0.03 4.82 4.79 0.03 6.86 6.85 0.01 1037 2.71 2.65 0.06 4.75 4.61 0.14 6.26 6.22 0.04 1060 2.72 2.77 0.05 4.45 4.52 0.07 6.64 6.72 0.08 1061 3.00 3.12 0.12 4.42 4.37 0.05 1183 2.42 2.60 0.18 4.41 6.18 6.23 0.05 1186 2.69 2.70 0.01 4.69 4.63 0.06 6.18 6.3 0.12 1248 3.17 3.02 0.15 4.84 4.86 0.02 7.21 7.21 0.00 1249 3.04 3.10 0.06 4.94 4.87 0.07 7.28 7.22 0.06 1250 2.80 2.82 0.02 4.75 4.70 0.05 6.59 6.51 0.08 833 3.06 3.08 0.02 4.82 4.77 0.05 6.71 6.66 0.05 881 3.09 3.02 0.07 4.65 4.62 0.03 6.65 6.60 0.05 979 3.35 3.33 0.02 5.01 4.96 0.05 7.28 7.30 0.02 1170 2.97 4.92 4.82 0.10 7.05 1188 2.71 2.70 0.01 4.46 4.49 0.03 6.18 6.42 0.24 1199 2.89 2.89 0.00 4.41 4.30 0.11 6.16 6.15 0.01 1230 2.70 2.82 0.12 4.00 4.59 0.59 6.19 6.16 0.03 1071 3.03 3.03 0.00 4.51 6.64 1318 958 2.80 2.71 0.09 4.50 4.51 0.01 6.25 6.28 0.03 994 2.32 2.28 0.04 4.01 3.94 0.07 5.67 5.68 0.01 1343 2.56 2.59 0.03 4.10 4.10 0.00 5.72 5.66 0.06 891 2.73 2.75 0.02 4.22 4.34 0.12 6.16 6.25 0.09 1211 2.75 2.74 0.01 4.48 4.57 0.09 6.50 6.55 0.05 1227 2.71 2.79 0.08 4.55 4.50 0.05 6.38 6.40 0.02 1293 2.69 2.70 0.01 4.42 4.41 0.01 6.38 6.12 0.26 1341 2.59 2.62 0.03 4.35 4.25 0.10 5.92 5.89 0.03 (919) 2.62 2.65 0.03 4.34 4.36 0.02 6.29 6.34 0.05 1235 3.00 2.97 0.03 4.64 4.67 0.03 6.68 6.72 0.04 1116 2.83 2.85 0.02 4.41 4.41 0.00 6.39 6.33 0.06 1270 2.69 2.69 0.00 4.30 4.30 0.00 6.21 6.23 0.02 1069 2.83 2.92 0.09 4.61 4.58 0.03 6.61 6.51 0.10

28

diameter diameter diameter length length length of width of width of width of ID of lower of lower of lower of lower of lower lower lower lower lower number canine canine canine molar molar molar molar molar molar RT LF difference RT LF difference RT LF difference 1020 0.37 0.33 0.04 0.92 0.88 0.04 0.31 0.30 0.01 1182 0.59 0.51 0.08 1.59 1.60 0.01 1316 950 1.20 1.17 0.03 1.89 1.86 0.03 0.79 0.78 0.01 995 0.99 0.98 0.01 1.79 1.80 0.01 0.81 0.79 0.02 1035 1.02 0.99 0.03 1.79 1.82 0.03 1200 1272 0.98 0.91 0.07 1.79 1.78 0.01 0.77 0.72 0.05 1299 0.99 1.00 0.01 1.72 1.79 0.07 0.72 0.75 0.03 1142 0.90 0.96 0.06 1.81 1.81 0.00 0.79 0.80 0.01 1152 1.15 1.09 0.06 1.81 1.93 0.12 0.80 0.82 0.02 1194 0.89 0.96 0.07 1.81 1.80 0.01 0.80 0.81 0.01 832 1.20 1.20 0.00 1.74 1.78 0.04 0.83 0.81 0.02 869 1.12 1.18 0.06 1.83 1.82 0.01 0.80 0.78 0.02 1037 1.00 0.99 0.01 1.89 1.82 0.07 0.80 0.81 0.01 1060 1.20 1.15 0.05 1.87 1.88 0.01 0.79 0.75 0.04 1061 1.00 1.07 0.07 1.89 1.82 0.07 0.76 0.75 0.01 1183 0.89 0.93 0.04 1.76 1.78 0.02 0.72 0.71 0.01 1186 1.07 1.05 0.02 2.01 1.97 0.04 0.80 0.81 0.01 1248 1.11 1.09 0.02 1.87 1.82 0.05 0.67 0.68 0.01 1249 1.27 1.24 0.03 1.84 1.81 0.03 0.77 0.80 0.03 1250 1.12 1.11 0.01 1.92 1.98 0.06 0.81 0.83 0.02 833 1.28 1.30 0.02 1.93 1.89 0.04 0.85 0.84 0.01 881 1.29 1.20 0.09 1.89 1.90 0.01 0.81 0.81 0.00 979 1.43 1.41 0.02 2.05 2.01 0.04 0.85 0.81 0.04 1170 1.01 1.02 0.01 1.98 1188 0.90 0.95 0.05 1.90 1.90 0.00 0.80 0.81 0.01 1199 0.98 0.95 0.03 1.71 1.70 0.01 0.74 0.75 0.01 1230 1.000 1.01 0.01 1.89 1.95 0.06 0.81 0.80 0.01 1071 1.19 1.82 0.59 1318 1.76 958 1.10 1.09 0.01 1.74 1.71 0.03 0.75 0.76 0.01 994 0.60 0.58 0.02 1.81 1.87 0.06 0.74 0.76 0.02 1343 0.89 0.89 0.00 1.7 1.70 0.00 0.70 0.70 0.00 891 1.07 1.02 0.05 1.69 1.73 0.04 1211 1227 1.02 1.04 0.02 1.79 1.76 0.03 0.71 0.74 0.03 1293 0.99 1.01 0.02 1.81 1.86 0.05 0.70 0.77 0.07 1341 0.89 0.88 0.01 1.65 1.70 0.05 0.71 0.71 0.00 (919) 0.92 0.94 0.02 1.66 1.70 0.04 0.80 0.80 0.00 1235 1.19 1.22 0.03 1.95 1.93 0.02 0.81 0.80 0.01 1116 1.09 1.02 0.07 1.79 1.76 0.03 0.77 0.75 0.02 1270 0.95 0.95 0.00 1.82 1.86 0.04 0.86 0.81 0.05 1069 1.08 1.10 0.02 1.86 1.91 0.05 0.79 0.80 0.01

29

width of width of width of lower width of width of width of lower lower incisors lower incisors incisors lower incisors lower incisors incisors and ID number RT LF difference and canines and canines canines RT LF difference 1020 0.40 0.39 0.01 0.78 0.73 0.05 1182 0.80 0.76 0.04 1.11 1.17 0.06 1316 950 0.77 0.77 0.00 1.71 1.68 0.03 995 0.69 0.71 0.02 1.44 1.49 0.05 1035 0.65 0.64 0.01 1.46 1.49 0.03 1200 1272 1299 0.69 0.69 0.00 1.30 1.36 0.06 1142 0.79 0.71 0.08 1.30 1.41 0.11 1152 0.65 0.59 0.06 1.51 1.54 0.03 1194 0.70 0.78 0.08 1.30 1.30 832 0.72 0.70 0.02 1.81 1.75 0.06 869 0.73 0.76 0.03 1.81 1.78 0.03 1037 0.81 0.78 0.03 1.48 1.49 0.01 1060 0.79 0.75 0.04 1.74 1.70 0.04 1061 1183 0.62 0.62 0.00 1.49 1.38 0.11 1186 0.62 0.65 0.03 1.31 1.36 0.05 1248 0.77 0.77 0.00 1.70 1.70 1249 0.72 0.81 0.09 1.76 1.74 0.02 1250 0.89 0.93 0.04 1.56 1.58 0.02 833 0.77 0.79 0.02 1.80 1.79 0.01 881 0.73 0.74 0.01 1.75 1.72 0.03 979 0.74 0.79 0.05 1.88 1.91 0.03 1170 0.81 0.80 0.01 1.69 1.60 0.09 1188 0.72 0.71 0.01 1.57 1.65 0.08 1199 0.08 0.08 1.46 1.49 0.03 1230 0.77 0.78 0.01 1.27 1.26 0.01 1071 0.75 1.68 1318 958 0.70 0.70 0.00 1.56 1.51 0.05 994 0.73 0.70 0.03 1.31 1.29 0.02 1343 0.6 0.60 0.00 1.14 1.20 0.06 891 0.70 0.72 0.02 1.49 1.51 0.02 1211 1.41 1.41 1227 0.70 0.81 0.11 1.38 1.46 0.08 1293 0.82 0.83 0.01 1.55 1.48 0.07 1341 0.70 0.70 1.21 1.22 0.01 (919) 0.71 0.70 0.01 1.40 1.47 0.07 1235 0.72 0.68 0.04 1.62 1.64 0.02 1116 0.69 0.70 0.01 1.51 1.50 0.01 1270 0.88 0.90 0.02 1.49 1.47 0.02 1069

30