Kinetin — 45 Years On

Total Page:16

File Type:pdf, Size:1020Kb

Kinetin — 45 Years On Plant Science 148 (1999) 37–45 www.elsevier.com/locate/plantsci Kinetin — 45 years on Jan Barciszewski a,*, Suresh I.S. Rattan b, Gunhild Siboska b, Brian F.C. Clark b a Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland b Department of Molecular and Structural Biology, Uni6ersity of Aarhus, DK-8000 Aarhus C, Denmark Received 23 November 1998; received in revised form 14 June 1999; accepted 15 June 1999 Abstract Kinetin (N6-furfuryladenine) was the first cytokinin to be isolated almost 45 years ago from DNA as an artifactual rearrangement product of the autoclaving process. Since then its chemical structure and properties have been well described. Most importantly, a wide variety of biological effects of kinetin, including those on gene expression, on inhibition of auxin action, on stimulation of calcium flux, on cell cycle, and as an anti-stress and anti-ageing compound have been reported. Recently, views on this very well known plant growth factor have undergone substantial modifications. New data have appeared which show that kinetin is formed in cellular DNA as the product of the oxidative, secondary modification of DNA. Although the biological significance of the endogenous kinetin and the molecular mechanisms of its action are not completely understood at present, most of the experimental data point toward kinetin acting as a strong antioxidant in vitro and in vivo, with potential beneficial uses in agriculture and human healthcare. © 1999 Elsevier Science Ireland Ltd. All rights reserved. Keywords: Cytokinin; Reactive oxygen species; Oxidative damage; Anti-ageing 1. Introduction tagonistic and additive interactions between them have been observed. Although several general re- Kinetin (N6-furfuryladenine) was the first cy- views on cytokinins have been published [3–6], we tokinin isolated and identified in 1955 [1,2]. Cy- consider that there are at least three main reasons tokinin is the generic name used to designate a which justify a review focusing entirely on kinetin plant-growth substance that promotes cell division as timely. These are: (i) the recent identification of and may play a role in cell differentiation. Most kinetin in cellular DNA and plant tissue extracts; commonly, cytokinins comprise a group of N6- (ii) the new data on the biological properties of substituted adenine derivatives that induce divi- kinetin; and (iii) the commercial applications of sion and organogenesis in plant cell cultures and kinetin in cosmeceuticals. Here we review data on affect other physiological and developmental pro- the structure, properties and mechanism of action cesses. However, despite almost a half century of of kinetin along with a discussion of the major study, virtually nothing has been revealed about issues yet to be resolved. the mechanisms that mediate a variety of re- sponses to cytokinins in general and kinetin in particular. There is also a view that the effects of 2. Structure, chemical properties and natural cytokinins are never exclusively the result of cy- occurrence tokinin action, but are rather co-mediated by other factors and hormones, since synergistic, an- N6-furfuryladenine or kinetin was isolated for the first time in 1955 from autoclaved herring * Corresponding author. Tel.: +48-61-8528-503, ext. 132; fax: +48-61-8520-532. sperm DNA and has been thought to be an artifi- E-mail address: [email protected] (J. Barciszewski) cial DNA rearrangement product [1,2]. As the 0168-9452/99/$ - see front matter © 1999 Elsevier Science Ireland Ltd. All rights reserved. PII: S0168-9452(99)00116-8 38 J. Barciszewski et al. / Plant Science 148 (1999) 37–45 purine derivative (Fig. 1A) it can be easily split off refined to a R index of 0.06. The bond angles and DNA at slightly acidic conditions due to the abil- distances of adenine moiety are in good agreement ity of its glycosylic bond. Kinetin is an amphoteric with the corresponding values of the adenine with compound with pKa values 4 and 10. It is dis- exception of the C(6) (6) bond which is slightly solved in strong acids, alkalis, and glacial acetic longer in kinetin. The molecular conformation of acid, is slightly soluble in ethanol, butanol, ace- kinetin can be best characterised in term of two tone and ether, but is practically insoluble in dis- planes; one passing through the adenine moiety tilled water. It sublimes at 220°C at atmospheric and the other through the furfuryl group. The pressure and is unaffected by autoclaving either at dihedral angle between the two planes is 79°. Since pH 0.5 or 12 [2]. the N(6)-substituent is distal to the imidazole ring, Crystals of kinetin suitable for X-ray analysis hydrogen bonding of the Watson–Crick type is have been obtained by slow cooling of a hot not seen in crystals of the base. In contrast, the ethanol solution. The structure of kinetin was orientation of the substituent leads to the Hoogs- Fig. 1. N6-furfuryladenine or kinetin. (A) Chemical formula; (B) UV spectrum; and (C) mass spectrum. J. Barciszewski et al. / Plant Science 148 (1999) 37–45 39 teen type of base pairing across crystallographic kinetin in an extract of the root nodules of Ca- centres of inversion by N6H…N7 and suarina equisetifolia, produced by the inoculation N9H…N3 hydrogen bonds resulting in continu- of Frankia. Actinomyces that make up the genus ous ribbons of purine bases with the furfuryl ring Frankia are distinguished by their ability to induce pointing up and down from these sheets [7,8]. The N-fixing root nodules on certain non-leguminous distal orientation of the N6-substituent with re- plants [14]. Also palmarosa (Cymbopogon martinii spect to the imidazole ring is similar to other var. motia) roots contain 6-furfuryladenine, the substituted N6 adenines. An interesting conse- amount of which increased significantly after inoc- quence of Hoogsten type bonding is a hydrogen ulation of Glomus species [15]. bond interaction between C(8)H(8)…0(15) at The finding of kinetin in DNA and cell extracts 2.64 A,. Any substituent on N1 significantly re- raised the obvious question about its synthetic stricts conformational freedom of the N6CH2 pathway. Furfural has been suggested as a puta- bond because of the steric repulsion of these posi- tive precursor of kinetin [13]. It has been found tions [7–9]. that furfural is formed during hydroxyl radical A significant contribution to identification of oxidation of the C5% of deoxyribose in DNA kinetin in natural products was provided by dis- [16,17]. This aldehyde has also been found among covering its electrochemical properties [10]. This many of the reaction products of metallophor- gave the first approach for a chromatographic phyrins with DNA [18]. The C5% radical is formed analysis of kinetin in DNA and cell extracts using by H5% abstraction from the deoxyribose residue of an HPLC system with an electrochemical detector. DNA in addition to an oxidative attack at C1%, It is known that the basic components of nucleic which constitutes the principal mechanism of that acids are not electrochemically active at potentials reaction [17]. The calculated amount of furfural of about 300–700 mV. The electrochemical prop- (C5% hydroxylation reaction) relative to 5- erties of kinetin at about 650–900 mV potential methylene-2-furanone (C1% hydroxylation deriva- are due to the presence of the furfuryl substituent tive) catalysed by phorphirins was found to be at the exocyclic amine group of purine [10]. Simi- 15% and was suggested that furfural residue is one larly, the guanine residue after modification at C8 of the primary products of hydroxy radical dam- with the hydroxyl group (OH) acquires electro- age of DNA. chemical properties, which are currently used for Those mechanistic considerations have been identification of 8-oxodeoxyguanosine (8oxodG) based on the bleomycin mechanism or on product in DNA at the level of four residues of 8-oxo-dG analysis of DNA constituents that were treated per 106 deoxyguanosine residues [11]. with ionising radiation. Recently, deuterium ki- The crucial evidence for the presence of N6-fur- netic isotope effects on the rate of cleavage of furyladenine in natural products came from the DNA by the hydroxyl radical were measured. mass spectrometric analysis of DNA components These experiments demonstrate that the hydroxyl (Fig. 1C). The molecular signal of 215 m/e has radical reacts with the various hydrogen atoms of been identified and the pattern of mass signals the deoxyribose in the order 5%H\4%H\3%H= interpreted [10]. The spectra obtained for an iso- 2%H=1%H [19,20]. This order of reactivity not only lated product and that of N6-furfuryladenine al- parallels the exposure to solvent of the deoxyri- ready deposited in the mass spectra library at USA bose hydrogens, but also provides information on National Institute of Standards and Technology the mechanism of DNA damage. It is clear that were identical [12,13]. The presence of kinetin in the C5% hydroxylation and spontaneous cleavage DNA has been identified also by GC/MS analysis of the DNA backbone with b-elimination leads to of trimethylsilyl (TMS) derivatives of nucleic acids the furfural formation. The presence of furfural in bases, obtained after acidic hydrolysis of DNA. the extracts of various cells was confirmed by its Kinetin modified with one or two TMS groups reaction with 0-(2,3,4,5,6-pentafluorobenzyl) hy- showed the m/e signals of 287 and 359, respec- droxylamine hydrochloride [21,22]. The oxime tively [Dizdaroglu, personal communication]. Re- derivative obtained was then converted to TMS cently, new examples of kinetin’s presence in derivatives and analysed by mass spectrometry, natural products have been reported [14,15]. The which confirmed the furfural presence in the cell mass spectrometry and HPLC analyses showed extracts [23].
Recommended publications
  • Auxins Cytokinins and Gibberellins TD-I Date: 3/4/2019 Cell Enlargement in Young Leaves, Tissue Differentiation, Flowering, Fruiting, and Delay of Aging in Leaves
    Informational TD-I Revision 2.0 Creation Date: 7/3/2014 Revision Date: 3/4/2019 Auxins, Cytokinins and Gibberellins Isolation of the first Cytokinin Growing cells in a tissue culture medium composed in part of coconut milk led to the realization that some substance in coconut milk promotes cell division. The “milk’ of the coconut is actually a liquid endosperm containing large numbers of nuclei. It was from kernels of corn, however, that the substance was first isolated in 1964, twenty years after its presence in coconut milk was known. The substance obtained from corn is called zeatin, and it is one of many cytokinins. What is a Growth Regulator? Plant Cell Growth regulators (e.g. Auxins, Cytokinins and Gibberellins) - Plant hormones play an important role in growth and differentiation of cultured cells and tissues. There are many classes of plant growth regulators used in culture media involves namely: Auxins, Cytokinins, Gibberellins, Abscisic acid, Ethylene, 6 BAP (6 Benzyladenine), IAA (Indole Acetic Acid), IBA (Indole-3-Butyric Acid), Zeatin and trans Zeatin Riboside. The Auxins facilitate cell division and root differentiation. Auxins induce cell division, cell elongation, and formation of callus in cultures. For example, 2,4-dichlorophenoxy acetic acid is one of the most commonly added auxins in plant cell cultures. The Cytokinins induce cell division and differentiation. Cytokinins promote RNA synthesis and stimulate protein and enzyme activities in tissues. Kinetin and benzyl-aminopurine are the most frequently used cytokinins in plant cell cultures. The Gibberellins is mainly used to induce plantlet formation from adventive embryos formed in culture.
    [Show full text]
  • Addition of Abscisic Acid Increases the Production of Chitin Deacetylase By
    Process Biochemistry 51 (2016) 959–966 Contents lists available at ScienceDirect Process Biochemistry jo urnal homepage: www.elsevier.com/locate/procbio Addition of abscisic acid increases the production of chitin deacetylase by Colletotrichum gloeosporioides in submerged culture a a b b Angelica Ramos-Puebla , Carolina De Santiago , Stéphane Trombotto , Laurent David , c a,∗ Claudia Patricia Larralde-Corona , Keiko Shirai a Universidad Autonoma Metropolitana-Iztapalapa, Biotechnology Department, Laboratory of Biopolymers and Pilot Plant of Bioprocessing of Agro-Industrial and Food By-Products, Av. San Rafael Atlixco, No. 186, 09340 Mexico City, Mexico b Ingénierie des Matériaux Polymères IMP@Lyon1 UMR CNRS 5223, Université Claude Bernard Lyon 1, Université de Lyon, 15 bd A. Latarjet, Villeurbanne Cedex, France c Centro de Biotecnología Genómica Instituto Politécnico Nacional, Tamaulipas, Mexico a r t i c l e i n f o a b s t r a c t Article history: The activity of chitin deacetylase from Colletotrichum gloeosporioides was studied by the addition of phy- Received 26 December 2015 tohormones (gibberellic acid, indole acetic acid, and abscisic acid) and amino sugars (glucosamine and Received in revised form 1 May 2016 N-acetyl glucosamine) in culture media. Abscisic acid exerted a positive and significant effect on enzyme Accepted 2 May 2016 −1 −1 production with 9.5-fold higher activity (1.05 U mg protein ) than the control (0.11 U mg protein ). Available online 3 May 2016 Subsequently, this phytohormone was used in batch culture with higher chitin deacetylase activity being found at acidic pH (3.5) than at neutral pH (7). Furthermore, the highest activity was determined at the Chemical compounds studied in this article: acceleration growth phase.
    [Show full text]
  • The Effects of Cytokinin Types and Their Concentration on in Vitro Multiplication of Sweet Cherry Cv
    The effects of cytokinin types and their concentration on in vitro multiplication of sweet cherry cv. Lapins (Prunus avium L.) Dj. V. Ružić, T. I. Vujović Fruit Research Institute, Čačak, Republic of Serbia ABSTRACT: Determination of the most optimal types and concentrations of plant growth regulators as medium constituents is one of the most important aspects of successful micropropagation, among other in vitro factors. With the aim of optimization of in vitro multiplication of sweet cherry cv. Lapins the effect of following cytokinins has been studied: benzyladenine (BA), isopentenyl adenine (2iP), kinetin (KIN) and thidiazuron (TDZ) at concentrations of 1, 2, 5, 10 and 15μM, combined with auxine, indole-3-butyric acid (IBA) at concentrations of 0, 0.5, 2.5 and 5μM. Murashige and Skoog (1962) was the basic medium used in all the combinations. The following multiplication pa- rameters were monitored: multiplication index, length of axial and lateral shoots. Fresh and dry shoot weight (callus, stem and leaves – S + L) were determined. Some specific issues, such as colour, leaf and callus size, leaf roll, incidence of chlorosis or necrosis along with occurrence of rhizogenesis, i.e. roots unusual for this phase of micropropagation, were also monitored. The highest multiplication index as well as length of axial and lateral shoots was obtained on media with BA. Very poor multiplication, with large sized shoots and big leaves, was achieved on media with 2iP, TDZ and KIN, whereas in many combinations with 2iP, and particularly in those with KIN, rhizogenesis was induced. Obtained results suggest that the choice of cytokinins for the phase of multiplication of sweet cherry is limited to BA.
    [Show full text]
  • Using Plant Growth Regulators (PGR) in Citrus
    Using Plant Growth Regulators (PGR) in Citrus Ashraf El-Kereamy UCCE Specialist & UCLREC director Department of Botany and Plant Sciences UC Riverside [email protected] 08/19/2020 Presentation outline • Overview of Plant Growth Regulators (PGR) • Synthesis and function of different plant hormones • Plant hormones vs PGR • Categories and the mode of action of PGR • Handling of registered PGR in citrus • PGRs role in preventing fruit disorder • Using PGR to improve fruit set and fruit size • Reducing fruit drop by PGRs • PGR and alternate bearing in citrus • PGR to control suckering and tree size • Discussion and participants perspectives PGR vs Hormones Plant Growth Regulators (PGR): - Synthetic form of the plant hormones which can be used to control or modify plant growth, also called plant growth substances or growth factors Plant hormones: - Endogenous organic compounds active at very low concentration - Essential for regulating plant growth and development - Produced in one tissue and translocated to another tissue - Have a specific function at specific stages and concentrations - They act together in a complex pathway Classical plant hormones synthesis and function Hormone Where produced or found Function Auxin -Embryos -Stimulates stem elongation at low concentration -Meristems of apical buds and young leaves -Delays color and ripening -Retards abscission Cytokinin -Roots -Affects root growth -Stimulates cell division and branching -Delays ripening and senescence -Increases fruit set Gibberellins -Embryos -Promote bud growth and seed
    [Show full text]
  • Plant Growth Regulator ANALYSIS (0.150% KINETIN, 0.075% IBA, 0.050% GIBBERELLIC ACID)
    Plant Growth Regulator ANALYSIS (0.150% KINETIN, 0.075% IBA, 0.050% GIBBERELLIC ACID) WHAT IS IT? • Elite is a CFIA registered plant growth regulator (Fert. Act # 2016005A) • It contains auxins (Indole-3-Butyric Acid, IBA), cytokinins (6-Furfurylaminopurine, Kinetin) and gibberellins (Gibberellic acid, GA). • The product is available in 2 x 6L cases. WHEN & WHY USE IT? • Elite is recommended on a variety of field crops, vegetables and fruit trees. • Elite is for use with in-furrow applied starter fertilizer, through drip irrigation or as a foliar. • The product contains auxin, which is known to activate cell elongation by increasing the level of elasticity of the cell walls. • Auxins stimulate ethylene production and inhibit the growth of buds. • They also promote adventitious and lateral root growth and development. • Elite also contains kinetin, which is the only Canadian registered cytokinin that can be used on a variety of crop species. • Kinetin increases the rate of cell division, differentiation and growth. • It delays senescence in plant tissues, increases flower set, fruit formation and side branching. • The GA contained in Elite enables seed to overcome dormancy and promote the activity of the alpha-amylase, sprouting and emergence. Application Guidelines • GA affects cell elongation and can increase seed and fruit set when applied appropriately. • Rate varies from 62ml/ac to 162 ml/ac • The combination of these three families of plant growth regulators, at the right depending on application method dosage, under stress condition, can lead to a substantial enhancement of growth and stage of the crop. and development, seed and fruit set and ultimately yield.
    [Show full text]
  • The Properties and Interaction of Auxins and Cytokinins Influence Rooting of Shoot Cultures of Eucalyptus
    African Journal of Biotechnology Vol. 11(100), pp. 16568-16578, 13 December, 2012 Available online at http://www.academicjournals.org/AJB DOI: 10.5897/AJB12.1523 ISSN 1684–5315 ©2012 Academic Journals Full Length Research Paper The properties and interaction of auxins and cytokinins influence rooting of shoot cultures of Eucalyptus Muhammad Nakhooda1*, M. Paula Watt1 and David Mycock2 1School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa. 2School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa. Accepted 16 October, 2012 Success in Eucalyptus micropropagation varies with genotype. Although some protocols have proven suitable for suites of clones, many genotypes are recalcitrant to rooting. Their micropropagation is addressed empirically through the manipulation of auxins and cytokinins, which work antagonistically to produce roots and shoots, respectively. Rooting success of three genotypes with 0.1 mg/l indole-3- butyric acid (IBA) was initially recorded as 87, 45 and 41% for clones 1, 2 and 3, respectively. Further studies using the auxin signal transduction inhibitor ρ-chlorophenoxyisobutyric acid (PCIB) or the auxin conjugation inhibitor dihydroxyacetophenone (DHAP) indicated that the poor rooting response of clone 2 was not due to deficient auxin signal perception or auxin conjugation. Omitting kinetin during elongation, followed by auxin-free rooting, significantly increased root production in clone 2 (from 45 to 80.3%), but had no effect on clone 1. Gas chromatography-mass spectrometry (GC-MS) analysis of auxins and kinetin of shoots, prior to rooting, revealed a strong relationship (R2 = 0.943) between rootability and the shoot kinetin:auxin. Replacing kinetin with the less stable trans-zeatin significantly increased rooting of clone 2 (from 19 to 45%) and clone 3 (31 to 52%).
    [Show full text]
  • Give Your Turf a Boost
    for Turf & Ornamentals Give Your Turf A Boost Agra-Rouse™ is a blend of bio-stimulants containing naturally-occurring and synthetic plant growth regulators and plant hormones that give you a boost of healthy, sustained growth on your turf, trees and ornamentals. How it works: Agra-Rouse is a mix of plant hormones and bio-stimulants known to enhance plant yields, promote cell division and encourage root development and propagation. It works with the plant’s own natural physiology to stimulate growth, vigor and health. Agra-Rouse may be used as a supplement to fertilizers either as part of the Performance Foliar Treatment™ What it does: program or applied as part of the Performance Soil Treatment™. • Stimulates plant growth and development Where to use it: • Enhances cell division Lawns • Trees • Golf Courses • Parks • Athletic Fields • Greenhouse & Field Ornamentals Turf Seed Production • Sod Production • Increases cell differentiation • Promotes cell enlargement Turf • Develops root growth Agra-Rouse has the ability to help turf recover after periods of heavy traffic or high stress. On newly applied sod, Agra-Rouse improves establishment by encouraging new root growth and • Aids nutrient use efficiency root penetration of the soil. It also aids to improve resistance to winter kill and frost damage. Agra-Rouse helps to break the dormancy of Bermudagrass, Zoysiagrass and Paspalums. In high traffic areas, in weak areas otherwise slow to recover, and on tee complexes, Agra- Benefits you may expect: Rouse promotes growth. When sprayed prior to aerification, Agra-Rouse helps core holes • Faster seed germination to close faster. It aids in the recovery from pesiticide damange and can even heal from the bronzing effect caused by some PGR’s.
    [Show full text]
  • Kinetin Improves Barrier Function of the Skin by Modulating Keratinocyte Differentiation Markers
    S An, et al pISSN 1013-9087ㆍeISSN 2005-3894 Ann Dermatol Vol. 29, No. 1, 2017 https://doi.org/10.5021/ad.2017.29.1.6 ORIGINAL ARTICLE Kinetin Improves Barrier Function of the Skin by Modulating Keratinocyte Differentiation Markers Sungkwan An, Hwa Jun Cha, Jung-Min Ko, Hyunjoo Han, Su Young Kim, Kyung-Suk Kim, Song Jeong Lee, In-Sook An1, Sangwon Kim2, Hae Jeong Youn3, Kyu Joong Ahn3,*, Soo-Yeon Kim* Korea Institute for Skin and Clinical Sciences, Konkuk University, Seoul, 1KISCS Incorporated, Cheongju, Korea, 2Orangewood Christian School, Maitland, FL, USA, 3Department of Dermatology, Konkuk University School of Medicine, Seoul, Korea Background: Kinetin is a plant hormone that regulates texture. Conclusion: Kinetin induced the expression of kera- growth and differentiation. Keratinocytes, the basic building tinocyte differentiation markers, suggesting that it may affect blocks of the epidermis, function in maintaining the skin differentiation to improve skin moisture content, TEWL, and barrier. Objective: We examined whether kinetin induces other signs of skin aging. Therefore, kinetin is a potential new skin barrier functions in vitro and in vivo. Methods: To eval- component for use in cosmetics as an anti-aging agent that uate the efficacy of kinetin at the cellular level, expression of improves the barrier function of skin. (Ann Dermatol 29(1) 6∼ keratinocyte differentiation markers was assessed. Moreover, 12, 2017) we examined the clinical efficacy of kinetin by evaluating skin moisture, transepidermal water loss (TEWL), and skin -Keywords- surface roughness in patients who used kinetin-containing Cell culture techniques, Differentiation, Keratinocytes, Kine- cream. We performed quantitative real-time polymerase tin, Skin barrier chain reaction to measure the expression of keratinocyte dif- ferentiation markers in HaCaT cells following treatment.
    [Show full text]
  • (Nacl) Stresses on the Germination of Barley and Lettuce Seeds
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Phyton, Annales Rei Botanicae, Horn Jahr/Year: 1990 Band/Volume: 30_1 Autor(en)/Author(s): Kabar Kudrek, Balteppe Sener Artikel/Article: Effects of Kinetin and Gibberellic acid in Overcoming High Temperature and Salinity (NaCl) Stresses on the Germination of Barley and Lettuce Seeds. 65-74 ©Verlag Ferdinand Berger & Söhne Ges.m.b.H., Horn, Austria, download unter www.biologiezentrum.at Phyton (Horn, Austria) Vol. 30 Fasc. 1 65-74 29. 6. 1990 Effects of Kinetin and Gibberellic acid in Overcoming High Temperature and Salinity (NaCl) Stresses on the Germination of Barley and Lettuce Seeds Kudred KABAR* and Sener BALTEPE** o With 2 Figures Received May 24, 1989 Key words: Germination, gibberellic acid, kinetin, salinity stress, temperature stress, Hordeum distichon, Lactuca sativa. Summary KABAR K. & BALTEPE S. 1990. Effects of kinetin and gibberellic acid in overcom- ing high temperature and salinity (NaCl) stresses on the germination of barley and lettuce seeds. - Phyton (Horn, Austria) 30 (1): 65-74, 2 figures. - English with German summary. Gibberellic acid (GA3), kinetin, and a combination of these two hormones applied axternally to dry seeds of barley (Hordeum distichon L.) and lettuce (Lactuca sativa L.) removed high temperature and/or salinity (NaCl) stresses on the germina- tion of these seeds to varying extents. Kinetin alone had more effect on lettuce, while GA3 was more effective on barley. However, as the germination temperature and salt levels were increased, the synergistic effect of GA3 and kinetin combination was required. The application of high temperature stress (35° C) was found as reversible in lettuce, and as irreversible in barley.
    [Show full text]
  • Cytokinins Modulate Auxin-Induced Organogenesis in Plants Via Regulation of the Auxin Efflux
    Cytokinins modulate auxin-induced organogenesis in plants via regulation of the auxin efflux Marke´ ta Pernisova´ a, Petr Klímab, Jakub Hora´ ka, Martina Va´ lkova´ a, Jirˇí Malbeckb,Prˇemysl Soucˇekc, Pavel Reichmana, Kla´ ra Hoyerova´ b, Jaroslava Dubova´ a, Jirˇí Frimla, Eva Zazˇímalova´ b, and Jan Heja´ tkoa,1 aLaboratory of Molecular Plant Physiology, Department of Functional Genomics and Proteomics, Institute of Experimental Biology, Faculty of Science, Masaryk University, CZ-625 00 Brno, Czech Republic; bInstitute of Experimental Botany, The Academy of Sciences of the Czech Republic, CZ-165 02 Prague, Czech Republic; and cInstitute of Biophysics, The Academy of Sciences of the Czech Republic, CZ-612 65 Brno, Czech Republic Edited by Marc C. E. Van Montagu, Ghent University, Ghent, Belgium, and approved December 30, 2008 (received for review November 14, 2008) Postembryonic de novo organogenesis represents an important com- two-component phosphorelay in Arabidopsis (for an in-depth re- petence evolved in plants that allows their physiological and devel- cent review, see ref. 26). However, the molecular factors acting opmental adaptation to changing environmental conditions. The downstream of the CK signaling pathway remain mostly unknown. phytohormones auxin and cytokinin (CK) are important regulators of Here, we use de novo auxin-induced organogenesis (AIO) as a the developmental fate of pluripotent plant cells. However, the model for characterization of the interactions between CKs and molecular nature of their interaction(s) in control of plant organo- auxin in regulation of plant development. We show that auxin genesis is largely unknown. Here, we show that CK modulates triggers organogenesis and that CK modulates its output through its auxin-induced organogenesis (AIO) via regulation of the efflux- effect on auxin distribution, which is realized by CK-dependent dependent intercellular auxin distribution.
    [Show full text]
  • Non-Targeted Metabolic Profiling of BW312 Hordeum Vulgare Semi
    www.nature.com/scientificreports OPEN Non-targeted metabolic profling of BW312 Hordeum vulgare semi dwarf mutant using UHPLC coupled Received: 8 January 2018 Accepted: 8 August 2018 to QTOF high resolution mass Published: xx xx xxxx spectrometry Claire Villette1, Julie Zumsteg1, Hubert Schaller2 & Dimitri Heintz1 Barley (Hordeum vulgare) is the fourth crop cultivated in the world for human consumption and animal feed, making it important to breed healthy and productive plants. Among the threats for barley are lodging, diseases, and pathogens. To avoid lodging, dwarf and semi-dwarf mutants have been selected through breeding processes. Most of these mutants are afected on hormonal biosynthesis or signalling. Here, we present the metabolic characterization of a brassinosteroid insensitive semi-dwarf mutant, BW312. The hormone profle was determined through a targeted metabolomics analysis by UHPLC- triple quadrupole-MS/MS, showing an induction of gibberellic acid and jasmonic acid in the semi- dwarf mutant. A non-targeted metabolomics analysis by UHPLC-QTOF-MS/MS revealed a diferential metabolic profle, with 16 and 9 metabolites showing higher intensities in the mutant and wild-type plants respectively. Among these metabolites, azelaic acid was identifed. Gibberellic acid, jasmonic acid, and azelaic acid are involved in pathogen resistance, showing that this semi-dwarf line has an enhanced basal pathogen resistance in absence of pathogens, and therefore is of interest in breeding programs to fght against lodging, but also probably to increase pathogen resistance. Barley (Hordeum vulgare) is one of the major cereals cultivated in the world, along with maize, rice and wheat (www.fao.org/faostat). It has been domesticated several times in distinct regions spanning over the Fertile Crescent about 10,000 years ago1,2, which provided modern cultivars bearing exceptional agronomical traits regarding climate adaptation in diferent environments.
    [Show full text]
  • Indole-3 Butyric Acid
    Page 1 of 33 Hortus USA Corp. PO BOX 1956 OLD CHELSEA STATION NEW YORK NY 10113 (212) 929-0927 FAX (212) 624-0202 [email protected] August 8, 2012 Dr. Lisa Brines National List Manager, Standards Division USDA/AMS/NOP, Standards Division Attention: Stacy Jones King 1400 Independence Ave. SW Room 2945 South Building Washington, DC 20250-0268 Direct: 202-821-9683 [email protected] Dear Dr. Brines Attached find our new Petition of substance for inclusion on the National List of Substances allowed in Organic Production and Handling Indole-3-butyric acid, IBA To be allowed in ‘Organic Production’ for purposes of plant propagation from cuttings, for use on annual, perennial and woody plants. Application shall be made in enclosed structures. Rates shall be limited to aqueous solution up to 2500 ppm IBA and dry powder up to 0.8% IBA. Please reference our prior NOP petition for IBA, The NOP Technical Report, and NSOP recommendations. Regards Joel Kroin President Page 2 of 33 Officer: Dr. Lisa Brines Agency: National List Manager, Standards Division USDA/AMS/NOP, Standards Division Address: Attention: Stacy Jones King 1400 Independence Ave. SW Room 2945 South Building Washington, DC 20250-0268 Phone: Direct: 202-821-9683 [email protected] Direct: 202-821-9683 Fax: 202-720-3252 PETITIONER: Company: Hortus USA Corp. Address: PO Box 1956 Old Chelsea Station New York NY 10113 Email address: [email protected] Phone: (212) 929-0927 Fax: (212) 624-0202 Contact person: Joel Kroin Title: President DATE: August 8, 2012 RE: Agricultural Marketing Service, 7 CFR Part 205, [Docket No.
    [Show full text]