21Nuclear Chemistry

Total Page:16

File Type:pdf, Size:1020Kb

21Nuclear Chemistry 21Nuclear Chemistry A nuclear submarine uses energy released by nuclear reactions. 746 S ON CU O F TEKS CHEMYSTERY 12B An Ice-Age Baby In 2007, a reindeer herder in north-central Russia thought he spotted the frozen remains of a reindeer. What he found was a perfectly preserved baby wooly mammoth about the size of a large dog. The only thing missing was its shaggy coat. Scientists named the mammoth Lyuba, which means “love” in Russian. Wooly mammoths are an extinct species related to modern elephants. These large mammals had curved tusks and long hair. They lived on Earth from about 1.8 million years ago until about 11,500 years ago. How do scientists know when Lyuba lived and died? As you read about radioactive decay, think about how the process can help scientists find the age of a wooly mammoth fossil. Take a trip back in time with the Untamed Science crew to “meet” the scientist who first used the term radioactivity and to learn more about the radioactive decay process. Texas Essential Knowledge and Skills ReaDiNeSS TEKS: 12B Describe radioactive decay process in terms of balanced nuclear equations. SUPPOrtiNG TEKS: 12A Describe the characteristics of alpha, beta, and gamma radiation. 12C Compare fission and fusion reactions. TEKS: 3D Evaluate the impact of research on scientific thought, society, and the environment. 2I Communicate valid conclusions supported by the data through methods such as lab reports, labeled drawings, graphs, journals, summaries, oral reports, and technology-based reports. 2H Organize, analyze, evaluate, make inferences, and predict trends from data. Nuclear Chemistry 747 21.1 Nuclear Radiation In this lesson, you will learn how to describe radioactive decay process in terms of balanced nuclear equations (TEKS 12B). You will also learn about the characteristics of alpha, beta, and gamma radiation (TEKS 12A). Also TEKS 3D. CHEMISTRY & YOU Q: What makes some types of radiation more dangerous than other types? Atoms emit electromagnetic radiation when an electron moves from a higher energy level to a lower energy level. Most electromagnetic radiation, such as visible light, has low energy, low penetrating power, and is not dangerous. X-rays are an exception. Lengthy or frequent exposure to X-rays can damage cells in your body. This lesson will help you understand the basic processes of Key Questions nuclear chemistry and why exposure is also a concern with nuclear radiation. How do nuclear reactions differ from chemical reactions? Radioactive Decay TEKS 12B, 3D What are three types of How do nuclear reactions differ from chemical reactions? nuclear radiation? In 1896, the French chemist Antoine Henri Becquerel made an accidental Vocabulary discovery. He was studying the ability of uranium salts that had been • radioactivity exposed to sunlight to fog photographic film plates. During bad weather, • nuclear radiation when Becquerel could not expose a sample to sunlight, he left the sample on • radioisotope top of the photographic plate. When he developed the plate, he discovered • alpha particle that the uranium salt still fogged the film. Bequerel’s research impacted the • beta particle scientific thought of his associates Marie and Pierre Curie. The Curies were • gamma ray able to show that rays emitted by uranium atoms caused the film to fog. • nuclear equation Marie Curie is shown in Figure 21.1. She used the term radioactivity to refer Figure 21.1 Marie Curie to the spontaneous emission of rays or particles from certain elements, such Marie Curie and her husband as uranium. Radioactivity is also known as radioactive decay. The rays and Pierre shared the 1903 Nobel Prize particles emitted from a radioactive source are called nuclear radiation. in physics with Becquerel for their Radioactive decay is an example of a nuclear reaction. In both chemical pioneering work on radioactivity. reactions and nuclear reactions, atoms become more stable. The word stable means “constant” or “not likely to change.” In a chemical reaction, atoms tend to attain a more stable electron configuration by transferring or sharing electrons. Nuclear reactions begin with unstable isotopes, or radioisotopes. Atoms of these isotopes become more stable when changes occur in their nuclei. The changes are always accompanied by the emission of large amounts of energy. Unlike chemical reactions, nuclear reactions are not affected by changes in temperature, pressure, or the presence of catalysts. Also, nuclear reactions of a given radioisotope cannot be slowed down, sped up, or stopped. Radioactive decay is a spontaneous process that does not require an input of energy. If the product of a nuclear reaction is unstable, it will decay too. The process continues until unstable isotopes of one element are changed, or transformed, into stable isotopes of a different element. These stable isotopes are not radioactive. 748 Table 21.1 Characteristics of Alpha, Beta, and Gamma Radiation Type Consists of Symbol Charge Mass (amu) Common source Penetrating power Low Alpha particles Alpha radiation α, 4 2+ 4 Radium-226 (0.05 mm body (helium nuclei) 2He tissue) Beta particles Moderate (4 mm Beta radiation β, 0 1− 1/1837 Carbon-14 (electrons) −1e body tissue) High-energy Very high Gamma radiation electromagnetic γ 0 0 Cobalt-60 (penetrates body radiation easily) Types of Radiation TEKS 12A, 12B What are three types of nuclear radiation? Radiation is emitted during radioactive decay. Three types of nuclear ELPS 4.F.3 radiation are alpha radiation, beta radiation, and gamma radiation. With a partner, use the diagrams Table 21.1 describes the characteristics of alpha, beta, and gamma radiation. on pages 750 and 751 to explain some key differences among the Alpha Radiation Some radioactive sources emit helium nuclei, which are different types of radiation. As you also called alpha particles. Each alpha particle contains two protons and differentiate, keep in mind the order two neutrons and has a double positive charge. An alpha particle is of the three symbols alpha, beta, 4 and gamma as the first, second, and written 2He or α. third letters of the Greek alphabet. The radioisotope uranium-238 emits alpha radiation and is transformed into another radioisotope, thorium-234. When an atom loses an alpha particle, the atomic number of the product is lower by two and its mass number is lower by four. Figure 21.2 illustrates this process. 238 Radioactive 234 4 92U decay 90Th + 2He (α emission) Uranium-238 Thorium-234 Alpha particle Alpha particle Figure 21.2 Alpha Decay 4He Uranium-238 decays and forms 2 thorium-234. The radiation emitted is an alpha particle. Interpret Diagrams 234 Th Describe the structure of 90 an alpha particle. 238 92U A nuclear equation is a representation of a nuclear reaction; the symbols of the reactants are connected by an arrow with the symbols of the products. You can describe radioactive decay processes in terms of balanced nuclear equations. In a balanced nuclear equation, the sum of the mass numbers (superscripts) on the right equals the sum on the left. The same is true for the atomic numbers (subscripts). Because of their large mass and charge, alpha particles do not travel very far and are not very penetrating. The surface of your skin can stop them. Nuclear Chemistry 749 Beta Radiation An electron resulting from the breaking apart of a neutron in an atom is called a beta particle. The neutron breaks apart into a proton, which remains in the nucleus, and a fast-moving Beta particle 0 electron, which is released. –1 e 1 1 0 0n 1p + −1e Neutron Proton Electron 14 6 C (beta particle) The symbol for the electron has a subscript of −1 and a superscript 14 N 7 of 0. The −1 represents the charge on the electron. The 0 represents the extremely small mass of the electron compared to the mass of Figure 21.3 Beta Decay a proton. When a carbon-14 atom Carbon-14 is a radioisotope. It emits a beta particle as it decays decays, the products are and forms nitrogen-14. Figure 21.3 illustrates this reaction. nitrogen-14 and a beta particle. 14 14 0 6C 7N + −1e (β emission) Carbon-14 Nitrogen-14 Beta particle (radioactive) (stable) The nitrogen-14 atom has the same mass number as carbon-14, but its atomic number has increased by 1. It contains an additional proton and one fewer neutron. The nuclear equation is balanced. A beta particle has less charge than an alpha particle and much less mass than an alpha particle. Thus, beta particles are more pen- etrating than alpha particles. Beta particles can pass through paper but are stopped by aluminum foil or thin pieces of wood. Because of their opposite charges, alpha and beta radiation can be separated by an electric field, as shown in Figure 21.4. Lead block Aligning slot Alpha particles (positive charge) – Gamma rays (no charge) + Electric field Radioactive source Beta particles Detecting screen (negative charge) Figure 21.4 The Effect of an Electric Field on Radiation An electric field has a different effect on each type of radiation. Alpha and beta particles move in opposite directions. Alpha particles move toward the negative plate and beta particles move toward the positive plate. Gamma rays are not deflected as they pass between the plates. Apply Concepts Why are gamma rays not deflected? 750 Chapter 21 • Lesson 1 Figure 21.5 Relative Penetrating Lead block Paper Wood Lead Power of Nuclear Radiation Because of their large mass and charge, alpha particles (red) are the least penetrating of the three main types of nuclear radiation. Gamma rays (yellow) have no mass or charge Some and are the most penetrating. gamma Compare How penetrating are rays beta particles (green) compared to Radioactive source alpha particles and gamma rays? Gamma Radiation A high-energy photon emitted by a radioisotope is called a gamma ray.
Recommended publications
  • Understanding Variation in Partition Coefficient, Kd, Values: Volume II
    United States Office of Air and Radiation EPA 402-R-99-004B Environmental Protection August 1999 Agency UNDERSTANDING VARIATION IN PARTITION COEFFICIENT, Kd, VALUES Volume II: Review of Geochemistry and Available Kd Values for Cadmium, Cesium, Chromium, Lead, Plutonium, Radon, Strontium, Thorium, Tritium (3H), and Uranium UNDERSTANDING VARIATION IN PARTITION COEFFICIENT, Kd, VALUES Volume II: Review of Geochemistry and Available Kd Values for Cadmium, Cesium, Chromium, Lead, Plutonium, Radon, Strontium, Thorium, Tritium (3H), and Uranium August 1999 A Cooperative Effort By: Office of Radiation and Indoor Air Office of Solid Waste and Emergency Response U.S. Environmental Protection Agency Washington, DC 20460 Office of Environmental Restoration U.S. Department of Energy Washington, DC 20585 NOTICE The following two-volume report is intended solely as guidance to EPA and other environmental professionals. This document does not constitute rulemaking by the Agency, and cannot be relied on to create a substantive or procedural right enforceable by any party in litigation with the United States. EPA may take action that is at variance with the information, policies, and procedures in this document and may change them at any time without public notice. Reference herein to any specific commercial products, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government. ii FOREWORD Understanding the long-term behavior of contaminants in the subsurface is becoming increasingly more important as the nation addresses groundwater contamination. Groundwater contamination is a national concern as about 50 percent of the United States population receives its drinking water from groundwater.
    [Show full text]
  • Experimental Γ Ray Spectroscopy and Investigations of Environmental Radioactivity
    Experimental γ Ray Spectroscopy and Investigations of Environmental Radioactivity BY RANDOLPH S. PETERSON 216 α Po 84 10.64h. 212 Pb 1- 415 82 0- 239 β- 01- 0 60.6m 212 1+ 1630 Bi 2+ 1513 83 α β- 2+ 787 304ns 0+ 0 212 α Po 84 Experimental γ Ray Spectroscopy and Investigations of Environmental Radioactivity Randolph S. Peterson Physics Department The University of the South Sewanee, Tennessee Published by Spectrum Techniques All Rights Reserved Copyright 1996 TABLE OF CONTENTS Page Introduction ....................................................................................................................4 Basic Gamma Spectroscopy 1. Energy Calibration ................................................................................................... 7 2. Gamma Spectra from Common Commercial Sources ........................................ 10 3. Detector Energy Resolution .................................................................................. 12 Interaction of Radiation with Matter 4. Compton Scattering............................................................................................... 14 5. Pair Production and Annihilation ........................................................................ 17 6. Absorption of Gammas by Materials ..................................................................... 19 7. X Rays ..................................................................................................................... 21 Radioactive Decay 8. Multichannel Scaling and Half-life .....................................................................
    [Show full text]
  • A Living Radon Reference Manual
    A LIVING RADON REFERENCE MANUAL Robert K. Lewis Pennsylvania Department of Environmental Protection Bureau of Radiation Protection, Radon Division and Paul N. Houle, PhD University Educational Services, Inc. Abstract This “living” manual is a compilation of facts, figures, tables and other information pertinent and useful to the radon practitioner, some of which can be otherwise difficult to find. It is envisioned as a useful addition to one’s desk and radon library. This reference manual is also intended to be a “living” document, where its users may supply additional information to the editors for incorporation in revisions as well as updates to this document on-line. Topics contained within the current version include radon chemistry and physics, radon units, radon fans, epidemiology, ambient radon, diagnostics, dosimetry, history, lung cancer, radon in workplace and radon statistics. In some cases motivations and explanations to the information are given. References are included. Introduction This reference manual is a compilation of facts, figures, tables and information on various aspects of radon science. It is hoped that this manual may prove useful to federal and state employees, groups such as AARST and CRCPD, and industry. There are numerous other reference manuals that have been produced on the various aspects of radon science; however, we hope that this manual will have a more “applied” use to all of the various radon practitioners who may use it. Many of the snippets on the various pages are highlights from referenced sources. The snippet will obviously only provide one with the briefest of information. To learn more about that item go to the reference and read the whole paper.
    [Show full text]
  • Mathematical Model of Radon Activity Measurements
    2015 International Nuclear Atlantic Conference - INAC 2015 São Paulo, SP, Brazil, October 4-9, 2015 ASSOCIAÇÃO BRASILEIRA DE ENERGIA NUCLEAR - ABEN ISBN: 978-85-99141-06-9 MATHEMATICAL MODEL OF RADON ACTIVITY MEASUREMENTS Sergei A. Paschuk1, Janine N. Corrêa1, Jaqueline Kappke1, Pedro Zambianchi1 and Valeriy Denyak2 1 Federal University of Technology - Paraná Av. Sete de Setembro, 3165 80230-901, Curitiba, PR [email protected], [email protected] 2 Pelé Pequeno Príncipe Research Institute, Av. Silva Jardim, 1632, Curitiba 80250-200, PR, Brazil [email protected] ABSTRACT Present work describes a mathematical model that quantifies the time dependent amount of 222Rn and 220Rn altogether and their activities within an ionization chamber as, for example, AlphaGUARD, which is used to measure activity concentration of Rn in soil gas. The differential equations take into account tree main processes, namely: the injection of Rn into the cavity of detector by the air pump including the effect of the traveling time Rn takes to reach the chamber; Rn release by the air exiting the chamber; and radioactive decay of Rn within the chamber. Developed code quantifies the activity of 222Rn and 220Rn isotopes separately. Following the standard methodology to measure Rn activity in soil gas, the air pump usually is turned off over a period of time in order to avoid the influx of Rn into the chamber. Since 220Rn has a short half-life time, approximately 56s, the model shows that after 7 minutes the activity concentration of this isotope is null. Consequently, the measured activity refers to 222Rn, only. Furthermore, the model also addresses the activity of 220Rn and 222Rn progeny, which being metals represent potential risk of ionization chamber contamination that could increase the background of further measurements.
    [Show full text]
  • Radiation Weighting Factors
    Sources of Radiation Exposure Sources of Radiation Exposure to the US Population (from U.S. NRC, Glossary: Exposure. [updated 21 July 2003, cited 26 March 2004] http://www.nrc.gov/reading-rm/basic-ref/glossary/exposure.html In the US, the annual estimated average effective dose to an adult is 3.60 mSv. Sources of exposure for the general public • Natural radiation of terrestrial origin • Natural radiation of cosmic origin • Natural internal radioisotopes • Medical radiation • Technologically enhanced natural radiation • Consumer products • Fallout • Nuclear power Other 1% Occupational 3% Fallout <0.3% Nuclear Fuel Cycle 0.1% Miscellaneous 0.1% Radioactivity in Nature Our world is radioactive and has been since it was created. Over 60 radionuclides can be found in nature, and they can be placed in three general categories: Primordial - been around since the creation of the Earth Singly-occurring Chain or series Cosmogenic - formed as a result of cosmic ray interactions Primordial radionuclides When the earth was first formed a relatively large number of isotopes would have been radioactive. Those with half-lives of less than about 108 years would by now have decayed into stable nuclides. The progeny or decay products of the long-lived radionuclides are also in this heading. Primordial nuclide examples Half-life Nuclide Natural Activity (years) Uranium 7.04 x 108 0.72 % of all natural uranium 235 Uranium 99.27 % of all natural uranium; 0.5 to 4.7 ppm total 4.47 x 109 238 uranium in the common rock types Thorium 1.6 to 20 ppm in the common
    [Show full text]
  • Radon in Icelandic Cold Groundwater and Low-Temperature Geothermal Water
    Available online at www.sciencedirect.com ScienceDirect Procedia Earth and Planetary Science 17 ( 2017 ) 229 – 232 15th Water-Rock Interaction International Symposium, WRI-15 Radon in Icelandic Cold Groundwater and Low-Temperature Geothermal Water Finnbogi Óskarssona,1, Ragnheiður St. Ásgeirsdóttira aIceland GeoSurvey (ISOR), Grensasvegur 9, IS-108 Reykjavik, Iceland Abstract Samples of hot and cold water for radon analysis were collected from boreholes and springs in Iceland in 2014 and 2015. The majority of the samples was collected from municipal district heating services or potable water utilities. The total number of samples was 142, covering most towns and villages in Iceland. Radon activity is generally rather low, in most cases less than 5 Bq/L. Only 12 samples had a measured radon activity higher than 5 Bq/L, with a maximum activity of 10.8 Bq/L. The hot water samples generally have a higher radon activity than cold water samples, but samples from boiling borholes have a lower radon activity as radon fractionates into the vapour phase. The geographical distribution of the samples indicates that radon activity is generally lower within the active rift zones. This is most likely due to the very low uranium content of the tholeiites typically erupted within the rift zones. Higher radon values (> 5 Bq/L) are in most cases close to extinct central volcanoes and thus it seems plausible that the water sampled has been in contact with felsic rocks. © 20172017 The The Authors. Authors. Published Published by Elsevierby Elsevier B.V. B.V. This is an open access article under the CC BY-NC-ND license Peer(http://creativecommons.org/licenses/by-nc-nd/4.0/-review under responsibility of the organizing).
    [Show full text]
  • Uncertainties in Cancer Risk Coefficients for Environmental Exposure to Radionuclides
    OAK RIDGE ORNL/TM-2006/583 NATIONAL LABORATORY MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY Uncertainties in Cancer Risk Coefficients for Environmental Exposure to Radionuclides An Uncertainty Analysis for Risk Coefficients Reported in Federal Guidance Report No. 13 January 2007 Prepared by D. J. Pawela R. W. Leggettb K. F. Eckermanb C. B. Nelsona aOffice of Radiation and Indoor Air U.S. Environmental Protection Agency Washington, DC 20460 bOak Ridge National Laboratory Oak Ridge, Tennessee 37831 DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge: Web site: http://www.osti.gov/bridge Reports produced before January 1, 1996, may be purchased by members of the public from the following source: National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Telephone: 703-605-6000 (1-800-553-6847) TDD: 703-487-4639 Fax: 703-605-6900 E-mail: [email protected] Web site: http://www.ntis.gov/support/ordernowabout.htm Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange (ETDE) representatives, and International Nuclear Information System (INIS) representatives from the following source: Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831 Telephone: 865-576-8401 Fax: 865-576-5728 E-mail: [email protected] Web site: http://www.osti.gov/contact.html This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.
    [Show full text]
  • Lecture Chapter3 Class New 2020
    Chapter 3: Radioactivity Alpha Decay Key concepts • Coulomb barrier and energy release through alpha decay. • Energy spectrum of alpha particles. • Major health hazards related to alpha emission 61 NPRE 441, Principles of Radiation Protection Nuclear Binding Energy The nuclear binding energy In this case, the binding energy for the deuterium nucleus is given by 62 NPRE 441, Principles of Radiation Protection Average Binding Energy Per Nucleon 63 NPRE 441, Principles of Radiation Protection Chapter 3: Radioactivity Alpha Emission • An alpha particle is a highly energetic helium nucleus consisting of two neutrons and 2 protons. • It is normally emitted from isotopes when the neutron- to-proton ratio is too low – called the alpha decay. • Atomic number and atomic mass number are conserved in alpha decays 64 NPRE 441, Principles of Radiation Protection Chapter 3: Radioactivity Alpha Decay – An Example • Half-life: 138.376 days; Decay mode: alpha-decay (branching ratio: 100%); Energy release: 5.407MeV • 210Po has a neutron-to-proton ratio of 126 to 84 (1.5:1) and 206Pb has a neutron-to-proton ratio of 124 to 82 (~1.51:1)à increased neutron-to- proton ratio. • Alpha decay is also accompanied by the loss of two orbital electrons. 65 NPRE 441, Principles of Radiation Protection Ways to Achieve Increased Nuclear Stability and the Origin of Nuclear Radiation Alpha decay 210 206 4 84 Po® 82 Pb+2 He A A 0 Z X → Z+1Y + −1 β +υ Beta decay 22 22 0 Positron decay 11 Na®10 Ne+1b +u A - A Elec. capture Z X + e ®Z -1Y +u 66 NPRE 441, Principles of Radiation Protection Potential Energy of Nucleus • Nucleons are bounded together in nucleus by the strong force, which has a short range of ~10-15m.
    [Show full text]
  • Geological Disposal: Guidance on the Packaging of Radon Generating Wastes April 2015
    WPSGD no. WPS/902/02 Geological Disposal: Guidance on the packaging of radon generating wastes April 2015 WPSGD no. WPS/902/02 Geological Disposal: Guidance on the packaging of radon generating wastes April 2015 WPS/902/02 Conditions of Publication This report is made available under the Radioactive Waste Management Limited Transparency Policy. In line with this policy, Radioactive Waste Management Limited is seeking to make information on its activities readily available, and to enable interested parties to have access to and influence on its future programmes. The report may be freely used for non-commercial purposes. However, all commercial uses, including copying and re publication, require permission from the Nuclear Decommissioning Authority (NDA). All copyright, database rights and other intellectual property rights reside with the NDA. Applications for permission to use the report commercially should be made to the NDA Information Manager. Although great care has been taken to ensure the accuracy and completeness of the information contained in this publication, the NDA cannot assume any responsibility for consequences that may arise from its use by other parties. © Nuclear Decommissioning Authority 2015. All rights reserved. Bibliography If you would like to see other reports available from Radioactive Waste Management Limited and the NDA, a complete listing can be viewed at our website www.nda.gov.uk, or please write to our Communications department at the address below. Feedback Readers are invited to provide feedback to the Radioactive Waste Management Limited on the contents, clarity and presentation of this report and on the means of improving the range of reports published.
    [Show full text]
  • Evaluation of Radon´S Emission in Ornamental Rocks
    EVALUATION OF RADON´S EMISSION IN ORNAMENTAL ROCKS Gavioli, Y. S.1, Correia, J. C. G.1, Caranassios, A.1, Ribeiro, R.C.C. 1, Lamego, F. F. 2, Melo, V. P.2 1Centro de Tecnologia Mineral -CETEM-RJ. Av. Pedro Calmon, 900, Ilha da Cidade Universitária, Rio de Janeiro - RJ. CEP 21941-590. Tel. (21) 3865-7276 / Fax : (21) 2260-9835. e-mail: [email protected] 2Instituto de Radioproteção e Dosimetria (IRD) - RJ Av. Salvador Allende s/n - Jacarepaguá - Rio de Janeiro - RJ – CEP - 22780-160 Tel: (21) 2442-1927 / Fax: (21) 2442-1950 Abstract The representative organizations of the sector of ornamental rocks had looked the Commission of Nuclear Energy by means of the Center of Mineral Technology - Espirito Santo (CETEM-ES) requesting aid how much the evaluation of levels of radiation in Brazilian ornamental rocks, exported to U.S.A. for use as material coverings in residences. Exhalation of radon (Rn) from these exotic granites may expose the occupants to an increased risk of contracting lung cancer. The objective of this work was to evaluate the risk associated with the exhalation of radon of indoor covering plates in environments, by means of nuclear techniques and to use models of calculation of dose endorsed internationally. For in such a way, the characterizations radiometric and mineralogical of three types of silicatic rocks used for covering have been carried through, determining the rates of exhalation and concentration of radon´s activity in the chosen materials. Introduction The Brazilian industrial sector produces a great variety of granites, marbles, quartzite etc., reaching to all about 500 different types of rocks.
    [Show full text]
  • Environmental Thoron and Related Issues – Jing Chen
    RADIOCHEMISTRY AND NUCLEAR CHEMISTRY – Environmental Thoron and Related Issues – Jing Chen ENVIRONMENTAL THORON AND RELATED ISSUES Jing Chen Radiation Protection Bureau, Health Canada, Ottawa K1A 0K9, Canada Keywords: radon, thoron, 222Rn, 220Rn, naturally occurring radiation, public exposure, risk assessment, guidance levels, radiation protection. Contents 1. Introduction 2. Isotopes of radon and radioactive decays 3. Radiation doses and health effects 4. Thoron in the environment 5. Measuring thoron levels in homes 6. Protection against indoor exposure to thoron Acknowledgements Glossary Bibliography Biographical Sketch Summary Exposure to radon has been identified as the second leading cause of lung cancer after tobacco smoking. Thoron (radon-220) is an isotope of radon. This chapter focuses on indoor exposure to thoron. However, environmental thoron is part of the issues of environmental radon. The chapter starts, therefore, with discussion on characteristics of thoron in comparison to other isotopes of radon, followed by radiation doses to the lung and associated health effect. An overview is given for thoron levels in the environment and its contribution to the total exposure to indoor radon (radon-222) and thoron (radon-220). Because exposure to thoron is a health hazard, the chapter discusses the reasons for the increased attention to thoron issues, and the effective and practical control of indoor exposure to thoron. While reducing indoor radon and thoron as low as practically achievable, we should always remember the fact that choosing to not smoke is the most effective way to reduce the risk of developing lung cancer. 1. Introduction Radon is a naturally occurring radioactive gas generated by the decay of uranium and thorium bearing minerals in rocks and soils.
    [Show full text]
  • Safety Reports Series No.64
    Safety Reports Series This Safety Report provides the methodological and technical details of the design and operation of monitoring programmes and systems for different Safety Reports Series radionuclides, environmental media and types of facility. It complements the IAEA Safety Standard, Environmental and Source Monitoring for Purposes of Radiation N o. 6 4 Protection, and covers source and environmental monitoring for the purpose of radiation protection in No.64 Programmes and Systems for Source and Environmental Radiation Monitoring planned and existing exposure situations. In addition, this report discusses general issues of emergency monitoring, it gives an outline of dose assessment procedures based on monitoring data and the reporting of information to the regulatory body, and it provides advice on monitoring programmes and systems for various types of facility. The extensive reference list and bibliography provide sources for international and national technical standards and methodologies, as well as suggestions for further reading. P r o g r a m m e s a n d S y s t e m s f o r S o u r c e a n d E n v i r o n m e n t a l Radiation Monitoring INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA ISBN 978–92–0–112409–8 ISSN 1020–6450 09-45611_P1427_cover.indd 1 2010-07-13 13:38:09 RELATED PUBLICATIONS IAEA SAFETY RELATED PUBLICATIONS EnvironmEntal and SourcE monitoring for PurPoSES of radiation ProtEction IAEA SAFETY STANDARDS Safety guide iaEa Safety Standards Series no. rS-g-1.8 Under the terms of Article III of its Statute, the IAEA is authorized to establish STI/PUB/1216 (119 pp.; 2005) or adopt standards of safety for protection of health and minimization of danger to life ISBN 92-0-113404-5 €26.00 and property, and to provide for the application of these standards.
    [Show full text]