The Role of Protein Arginine Methylation As Post-Translational Modification on Actin Cytoskeletal Components in Neuronal Structure and Function

Total Page:16

File Type:pdf, Size:1020Kb

The Role of Protein Arginine Methylation As Post-Translational Modification on Actin Cytoskeletal Components in Neuronal Structure and Function cells Review The Role of Protein Arginine Methylation as Post-Translational Modification on Actin Cytoskeletal Components in Neuronal Structure and Function Britta Qualmann * and Michael M. Kessels * Institute of Biochemistry I, Jena University Hospital—Friedrich Schiller University Jena, Nonnenplan 2-4, 07743 Jena, Germany * Correspondence: [email protected] (B.Q.); [email protected] (M.M.K.); Tel.: +49-3641-9396-300 (B.Q.); +49-3641-9396-310 (M.M.K.) Abstract: The brain encompasses a complex network of neurons with exceptionally elaborated morphologies of their axonal (signal-sending) and dendritic (signal-receiving) parts. De novo actin filament formation is one of the major driving and steering forces for the development and plasticity of the neuronal arbor. Actin filament assembly and dynamics thus require tight temporal and spatial control. Such control is particularly effective at the level of regulating actin nucleation-promoting factors, as these are key components for filament formation. Arginine methylation represents an important post-translational regulatory mechanism that had previously been mainly associated with controlling nuclear processes. We will review and discuss emerging evidence from inhibitor studies and loss-of-function models for protein arginine methyltransferases (PRMTs), both in cells and whole organisms, that unveil that protein arginine methylation mediated by PRMTs represents an important regulatory mechanism in neuritic arbor formation, as well as in dendritic spine induction, maturation Citation: Qualmann, B.; Kessels, and plasticity. Recent results furthermore demonstrated that arginine methylation regulates actin M.M. The Role of Protein Arginine cytosolic cytoskeletal components not only as indirect targets through additional signaling cascades, Methylation as Post-Translational but can also directly control an actin nucleation-promoting factor shaping neuronal cells—a key Modification on Actin Cytoskeletal process for the formation of neuronal networks in vertebrate brains. Components in Neuronal Structure and Function. Cells 2021, 10, 1079. https://doi.org/10.3390/cells10051079 Keywords: protein arginine methyltransferase (PRMT); post-translational modification; neuromor- phogenesis; actin cytoskeleton; actin nucleation; actin nucleator Cobl; arginine methylation; neuronal Academic Editors: Marco Rust and structure; dendritic spines Pirta Hotulainen Received: 25 March 2021 Accepted: 28 April 2021 1. Introduction Published: 1 May 2021 1.1. Protein Arginine Methylation Post-translational modifications are important molecular mechanisms to fine-tune Publisher’s Note: MDPI stays neutral protein structure and function, but also to reversibly and thus temporarily modulate the with regard to jurisdictional claims in activity and function of proteins. The methylation of arginine residues is catalyzed by published maps and institutional affil- protein arginine methyltransferases (PRMTs) resulting in !-NG-monomethylated arginine iations. (MMA), !-NG,NG-asymmetric dimethylarginine (ADMA) and !-NG, N’G-symmetric dimethylarginine (SDMA) (Figure1)[ 1]. Protein arginine methylation is brought about by members of the protein arginine methyltransferase family, assigned to three subfamilies according to their modes of methylation (Figures1 and2). Copyright: © 2021 by the authors. All subtypes catalyze the monomethylation of guanidino nitrogen atoms of arginine Licensee MDPI, Basel, Switzerland. residues utilizing the methyl donor S-adenosylmethionine. Additional dimethylation of This article is an open access article the monomethylated arginine is brought about solely by type I and II PRMTs, whereas distributed under the terms and the only known type III PRMT, PRMT7, solely exhibits monomethylation catalytic activity conditions of the Creative Commons because of its distinctive structural characteristics. Type I (PRMT1, PRMT2, PRMT3 and Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ PRMT4—also known as CARM1, PRMT6 and PRMT8) PRMT enzymes can additionally 4.0/). catalyze the formation of asymmetric dimethylarginine as an end-product, while type II Cells 2021, 10, 1079. https://doi.org/10.3390/cells10051079 https://www.mdpi.com/journal/cells Cells 2021, 10, x 2 of 15 Cells 2021, 10, 1079 2 of 15 PRMT4—also known as CARM1, PRMT6 and PRMT8) PRMT enzymes can additionally catalyze the formation of asymmetric dimethylarginine as an end-product, while type II PRMTs (PRMT5 and PRMT9) form in a second, subsequent step a symmetric PRMTs (PRMT5 and PRMT9) form in a second, subsequent step a symmetric dimethylargi- dimethylarginine [1,2] (Figure 1). Two potential further PRMTs, PRMT10 and PRMT11, nine [1,2] (Figure1) . Two potential further PRMTs, PRMT10 and PRMT11, have not yet have not yet been validated but were predicted to display type II PRMT activity [3]. been validated but were predicted to display type II PRMT activity [3]. PRMTs exhibit different substrate specificities, whereby a certain preference for PRMTs exhibit different substrate specificities, whereby a certain preference for glycine–arginine-richglycine–arginine-rich motifs motifs has has been been noted for some familyfamily members (PRMT1, PRMT3 andand PRMT6). PRMT6). The The substrates substrates of of PRMTs PRMTs known known thus thus far far mainly mainly play play a a role role in in chromatin- chromatin- mediatedmediated signaling signaling and and biogenesis and the maturation of ribosomes, in DNA damage responsesresponses and and in mRNA processing and transport. PRMTs PRMTs have been associated with various pathologies, particularly cancer, cancer, in inflammationflammation and immune responses [[2,4].2,4]. The rolerole ofof PRMTsPRMTs in in the the development development and and prognosis prognosis of cancer of cancer pathologies pathologies is currently is currently a major a majorfocus offocus basic of andbasic translational and translational science. science. ArginineArginine methylation methylation does does not not perturb the overall positive charge of the arginine guanidiniumguanidinium group. group. Instead, Instead, the the addition addition of of methyl groups reduces potential hydrogen bondbond interactions andand furthermorefurthermore significantlysignificantly changes changes the the shape shape and and increases increases the the size size of ofthe the modified modified arginine. arginine. Thus, Thus, arginine arginine methylation methylation mainly mainly results results in stericin steric effects effects as as well well as aschanges changes in in hydrogen hydrogen bond bond interactions interactions [5]. [5]. Figure 1. Protein Arginine Methylation by PRMTs. All three types of PRMTs (types I–III)I–III) are able to methylate one of the equivalent, terminal (!ω) nitrogen atoms (!ω-N-NG andand ω!-N’-N’GG) using) using S-adenosylmethionine S-adenosylmethionine (SAM; (SAM; AdoMet) AdoMet) as as a a methyl methyl donor. donor. The reaction leads to the generation of S-adenosylhomocysteinS-adenosylhomocystein (AdoHcys) and and monomethylarginine monomethylarginine (MMA). (MMA). TypeType III PRMTs (PRMT7) exclusively catalyze this initial step. Type Type I PRMTs (PRMT1–4, 6 and 8) can in addition methylate the already monomethylated guanidine nitrogen atom of MMA MMA fu further,rther, leading leading to to an an asymmetric asymmetric dimethylarginine dimethylarginine (ADMA). (ADMA). In contrast,contrast, typetype II II PRMTs PRMTs (PRMT5 (PRMT5 and and PRMT9) PRMT9) methylate methylate the second, the second, thusfar thus not far methylated, not meth terminalylated, terminal guanidine guanidine nitrogen nitrogen atom of MMA (ω-N’G) and thereby give rise to a symmetric dimethylarginine (SDMA). atom of MMA (!-N’G) and thereby give rise to a symmetric dimethylarginine (SDMA). 1.2.1.2. PRMTs PRMTs in the Central Nervous System AlmostAlmost 50 50 years ago, it was first first recognized that arginine-methylated proteins are abundantabundant inin brain brain extracts extracts [6]. [6]. During During the following the following decades, decades, PRMTs havePRMTs been have implicated been implicatedin the pathogenesis in the pathogenesis of different of neurological different neurological diseases, including diseases, amyotrophic including amyotrophic lateral scle- lateralrosis, glioblastomassclerosis, glioblastomas and Huntington’s and Huntington’s disease [ 1disease]. In the [1]. central In the nervouscentral nervous system system (CNS), (CNS),they have they been have attributed been attributed to functions to function in cells in maturation cell maturation and differentiationand differentiation but alsobut alsoneurodegeneration neurodegeneration [2,7, 8[2,7,8].]. Particularly, Particularly, PRMT1, PRMT1, PRMT4 PRMT4 and PRMT5 and PRMT5 have been have tightly been tightlyassociated associated with oligodendrocyte with oligodendrocyte and astroglial and astroglial maturation maturation and differentiation, and differentiation, as well as wellaxon as myelination, axon myelination, and have and been have implicated been imp inlicated neurodegenerative, in neurodegenerative, demyelinating demyelinating disease, disease,and multiple and multiple sclerosis sclerosis [9]. PRMT1 [9]. isPRMT1 essential is foressential the development for the development of neurons, of astrocytes neurons, and oligodendrocytes [8] and is required for CNS development at embryonic and perina- tal stages. CNS-specific Prmt1 knockout mice exhibited morphological abnormalities of Cells 2021, 10, x 3 of 15 Cells 2021, 10,
Recommended publications
  • The Cross-Talk Between Methylation and Phosphorylation in Lymphoid-Specific Helicase Drives Cancer Stem-Like Properties
    Signal Transduction and Targeted Therapy www.nature.com/sigtrans ARTICLE OPEN The cross-talk between methylation and phosphorylation in lymphoid-specific helicase drives cancer stem-like properties Na Liu1,2,3, Rui Yang1,2, Ying Shi1,2, Ling Chen1,2, Yating Liu1,2, Zuli Wang1,2, Shouping Liu1,2, Lianlian Ouyang4, Haiyan Wang1,2, Weiwei Lai1,2, Chao Mao1,2, Min Wang1,2, Yan Cheng5, Shuang Liu4, Xiang Wang6, Hu Zhou7, Ya Cao1,2, Desheng Xiao1 and Yongguang Tao1,2,6 Posttranslational modifications (PTMs) of proteins, including chromatin modifiers, play crucial roles in the dynamic alteration of various protein properties and functions including stem-cell properties. However, the roles of Lymphoid-specific helicase (LSH), a DNA methylation modifier, in modulating stem-like properties in cancer are still not clearly clarified. Therefore, exploring PTMs modulation of LSH activity will be of great significance to further understand the function and activity of LSH. Here, we demonstrate that LSH is capable to undergo PTMs, including methylation and phosphorylation. The arginine methyltransferase PRMT5 can methylate LSH at R309 residue, meanwhile, LSH could as well be phosphorylated by MAPK1 kinase at S503 residue. We further show that the accumulation of phosphorylation of LSH at S503 site exhibits downregulation of LSH methylation at R309 residue, which eventually promoting stem-like properties in lung cancer. Whereas, phosphorylation-deficient LSH S503A mutant promotes the accumulation of LSH methylation at R309 residue and attenuates stem-like properties, indicating the critical roles of LSH PTMs in modulating stem-like properties. Thus, our study highlights the importance of the crosstalk between LSH PTMs in determining its activity and function in lung cancer stem-cell maintenance.
    [Show full text]
  • Dendritic Spine Remodeling Accompanies Alzheimer's Disease
    Neurobiology of Aging 73 (2019) 92e103 Contents lists available at ScienceDirect Neurobiology of Aging journal homepage: www.elsevier.com/locate/neuaging Dendritic spine remodeling accompanies Alzheimer’s disease pathology and genetic susceptibility in cognitively normal aging Benjamin D. Boros a,b, Kelsey M. Greathouse a,b, Marla Gearing c, Jeremy H. Herskowitz a,b,* a Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA b Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA c Department of Pathology, Department of Neurology, Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia article info abstract Article history: Subtle alterations in dendritic spine morphology can induce marked effects on connectivity patterns of Received 1 May 2018 neuronal circuits and subsequent cognitive behavior. Past studies of rodent and nonhuman primate aging Received in revised form 5 September 2018 revealed reductions in spine density with concomitant alterations in spine morphology among pyramidal Accepted 6 September 2018 neurons in the prefrontal cortex. In this report, we visualized and digitally reconstructed the three- Available online 21 September 2018 dimensional morphology of dendritic spines from the dorsolateral prefrontal cortex in cognitively normal individuals aged 40e94 years. Linear models defined relationships between spines and age, MinieMental Keywords: ε ’ ’ State Examination, apolipoprotein E (APOE) 4 allele status, and Alzheimer s disease (AD) pathology. Alzheimer s disease fi Aging Similar to ndings in other mammals, spine density correlated negatively with human aging. Reduced spine e Dendritic spine head diameter associated with higher Mini Mental State Examination scores. Individuals harboring an APOE APOE ε4 allele displayed greater numbers of dendritic filopodia and structural alterations in thin spines.
    [Show full text]
  • Distinct Contributions of DNA Methylation and Histone Acetylation to the Genomic Occupancy of Transcription Factors
    Downloaded from genome.cshlp.org on October 8, 2021 - Published by Cold Spring Harbor Laboratory Press Research Distinct contributions of DNA methylation and histone acetylation to the genomic occupancy of transcription factors Martin Cusack,1 Hamish W. King,2 Paolo Spingardi,1 Benedikt M. Kessler,3 Robert J. Klose,2 and Skirmantas Kriaucionis1 1Ludwig Institute for Cancer Research, University of Oxford, Oxford, OX3 7DQ, United Kingdom; 2Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, United Kingdom; 3Target Discovery Institute, University of Oxford, Oxford, OX3 7FZ, United Kingdom Epigenetic modifications on chromatin play important roles in regulating gene expression. Although chromatin states are often governed by multilayered structure, how individual pathways contribute to gene expression remains poorly under- stood. For example, DNA methylation is known to regulate transcription factor binding but also to recruit methyl-CpG binding proteins that affect chromatin structure through the activity of histone deacetylase complexes (HDACs). Both of these mechanisms can potentially affect gene expression, but the importance of each, and whether these activities are inte- grated to achieve appropriate gene regulation, remains largely unknown. To address this important question, we measured gene expression, chromatin accessibility, and transcription factor occupancy in wild-type or DNA methylation-deficient mouse embryonic stem cells following HDAC inhibition. We observe widespread increases in chromatin accessibility at ret- rotransposons when HDACs are inhibited, and this is magnified when cells also lack DNA methylation. A subset of these elements has elevated binding of the YY1 and GABPA transcription factors and increased expression. The pronounced ad- ditive effect of HDAC inhibition in DNA methylation–deficient cells demonstrates that DNA methylation and histone deacetylation act largely independently to suppress transcription factor binding and gene expression.
    [Show full text]
  • Small Nucleolar Rnas Determine Resistance to Doxorubicin in Human Osteosarcoma
    International Journal of Molecular Sciences Article Small Nucleolar RNAs Determine Resistance to Doxorubicin in Human Osteosarcoma Martina Godel 1, Deborah Morena 1, Preeta Ananthanarayanan 1, Ilaria Buondonno 1, Giulio Ferrero 2,3 , Claudia M. Hattinger 4, Federica Di Nicolantonio 1,5 , Massimo Serra 4 , 1 2 1, , 1, , Riccardo Taulli , Francesca Cordero , Chiara Riganti * y and Joanna Kopecka * y 1 Department of Oncology, University of Torino, 1026 Torino, Italy; [email protected] (M.G.); [email protected] (D.M.); [email protected] (P.A.); [email protected] (I.B.); [email protected] (F.D.N.); [email protected] (R.T.) 2 Department of Computer Science, University of Torino, 10149 Torino, Italy; [email protected] (G.F.); [email protected] (F.C.) 3 Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Italy 4 Laboratory of Experimental Oncology, Pharmacogenomics and Pharmacogenetics Research Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; [email protected] (C.M.H.); [email protected] (M.S.) 5 Candiolo Cancer Institute, FPO–IRCCS, 10060 Candiolo, Italy * Correspondence: [email protected] (C.R.); [email protected] (J.K.); Tel.: +39-0116705857 (C.R.); +39-0116705849 (J.K.) These authors equally contributed to this work. y Received: 31 May 2020; Accepted: 21 June 2020; Published: 24 June 2020 Abstract: Doxorubicin (Dox) is one of the most important first-line drugs used in osteosarcoma therapy. Multiple and not fully clarified mechanisms, however, determine resistance to Dox. With the aim of identifying new markers associated with Dox-resistance, we found a global up-regulation of small nucleolar RNAs (snoRNAs) in human Dox-resistant osteosarcoma cells.
    [Show full text]
  • Ubiquitination/Deubiquitination and Acetylation/Deacetylation
    Acta Pharmacologica Sinica (2011) 32: 139–140 npg © 2011 CPS and SIMM All rights reserved 1671-4083/11 $32.00 www.nature.com/aps Research Highlight Ubiquitination/deubiquitination and acetylation/ deacetylation: Making DNMT1 stability more coordinated Qi HONG, Zhi-ming SHAO* Acta Pharmacologica Sinica (2011) 32: 139–140; doi: 10.1038/aps.2011.3 n mammals, DNA methylation plays important role in human cancers[7, 8]. abundance of DNMT1 mutant lacking Ia crucial role in the regulation of Ubiquitin­proteasome pathway is sig­ the HAUSP interaction domain, but not gene expression, telomere length, cell nificant in the stability of DNMT1[8], but the full­length protein. These results differentiation, X chromosome inactiva­ ubiquitin­mediated protein degradation show the coordination between ubiquit­ tion, genomic imprinting and tumori­ can be enhanced or attenuated by some ination of DNMT1 by UHRF1 and deu­ genesis[1]. DNA methylation patterns modifications like acetylation/deacety­ biquitination by HAUSP. Furthermore, are established de novo by DNA meth­ lation, protein methylation/demethyla­ they found that knockdown of HDAC1 yltransferases (DNMTs) 3a and 3b, tion, phosphorylation and S­nitrosy­ increased DNMT1 acetylation, and whereas DNMT1 maintains the parent­ lation[9–11]. Estève et al demonstrated reduced DNMT1 abundance. Addition­ specific methylation from parental cells that SET7­mediated lysine methy lation ally, acetyltransferase Tip60 which was to their progeny[2]. After DNA replica­ of DNMT1 decreased DNMT1 level found to acetylate DNMT1 promoted its tion, the new DNA strand is unmethy­ by ubiquitin­mediated degradation[10]. ubiquitination, then destabilized it. At lated. Thus with the mother methylated Furthermore, an early study[12] showed last, Tip60 and HAUSP were found to strand, the DNA is hemimethylated.
    [Show full text]
  • Role of STAT1 in the Resistance of HBV to IFN‑Α
    EXPERIMENTAL AND THERAPEUTIC MEDICINE 21: 550, 2021 Role of STAT1 in the resistance of HBV to IFN‑α BINGFA XU1, BO TANG2 and JIAJIA WEI3 1Department of Pharmacy, The Third Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230061; 2Department of Pharmacy, Huainan First People's Hospital, Huainan, Anhui 232007; 3Department of Pharmacy, The First People's Hospital of Changzhou, Changzhou, Jiangsu 213000, P.R. China Received February 26, 2020; Accepted February 17, 2021 DOI: 10.3892/etm.2021.9982 Abstract. The objective of the present study was to explore of the receptor. This subsequently changes the intracellular the mechanism of hepatitis B virus (HBV) resistance to inter‑ conformation of the receptor and activates janus kinase (JAK). feron (IFN), and the role of signal transducer and activator JAK phosphorylates signal transducer and activator of tran‑ of transcription 1 (STAT1). HepG2.2.15 cells were stimulated scription (STAT) in the cytoplasm, which then forms STAT1/2 with a long‑term (6‑24 weeks) low‑dose interferon (IFN)α‑2b heterodimers and is transported to the nucleus to interact with (10‑70 IU/ml), so as to construct and screen a HepG2.2.15 IFN‑stimulated response elements (ISRE). This initiates the cell model resistant to IFNα‑2b. The changes of STAT1 and transcription of IFN‑stimulated genes (ISGs), resulting in other proteins in the JAK‑STAT signaling pathway, before and proteins which exert direct or indirect antiviral effects (8), after drug resistance, were compared. The phosphorylation of such as double‑stranded RNA‑dependent protease (Protein STAT1 in HepG2.2.15 cells resistant to IFNα‑2b was signifi‑ Kinase r; RKR) and 2',5'‑oligoadenylate synthetase 1 (OAS1), cantly decreased, and the expression level of 2',5'‑oligoadenylate anti‑myxovirus protein (myxovirus resistance protein A; synthetase 1 was downregulated.
    [Show full text]
  • 1519038862M28translationand
    Paper No. : 15 Molecular Cell Biology Module : 28 Translation and Post-translation Modifications in Eukaryotes Development Team Principal Investigator : Prof. Neeta Sehgal Department of Zoology, University of Delhi Co-Principal Investigator : Prof. D.K. Singh Department of Zoology, University of Delhi Paper Coordinator : Prof. Kuldeep K. Sharma Department of Zoology, University of Jammu Content Writer : Dr. Renu Solanki, Deen Dayal Upadhyaya College Dr. Sudhida Gautam, Hansraj College, University of Delhi Mr. Kiran K. Salam, Hindu College, University of Delhi Content Reviewer : Prof. Rup Lal Department of Zoology, University of Delhi 1 Molecular Genetics ZOOLOGY Translation and Post-translation Modifications in Eukaryotes Description of Module Subject Name ZOOLOGY Paper Name Molecular Cell Biology; Zool 015 Module Name/Title Cell regulatory mechanisms Module Id M28: Translation and Post-translation Modifications in Eukaryotes Keywords Genome, Proteome diversity, post-translational modifications, glycosylation, phosphorylation, methylation Contents 1. Learning Objectives 2. Introduction 3. Purpose of post translational modifications 4. Post translational modifications 4.1. Phosphorylation, the addition of a phosphate group 4.2. Methylation, the addition of a methyl group 4.3. Glycosylation, the addition of sugar groups 4.4. Disulfide bonds, the formation of covalent bonds between 2 cysteine amino acids 4.5. Proteolysis/ Proteolytic Cleavage 4.6. Subunit binding to form a multisubunit protein 4.7. S-nitrosylation 4.8. Lipidation 4.9. Acetylation 4.10. Ubiquitylation 4.11. SUMOlytion 4.12. Vitamin C-Dependent Modifications 4.13. Vitamin K-Dependent Modifications 4.14. Selenoproteins 4.15. Myristoylation 5. Chaperones: Role in PTM and mechanism 6. Role of PTMs in diseases 7. Detecting and Quantifying Post-Translational Modifications 8.
    [Show full text]
  • PRMT5-CATALYZED ARGININE METHYLATION of NF-Κb P65 IN
    PRMT5-CATALYZED ARGININE METHYLATION OF NF-κB p65 IN THE ENDOTHELIAL CELL INDUCTION OF PRO-INFLAMMATORY CHEMOKINES by DANIEL PELLERIN HARRIS Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Dissertation Advisor: Paul E. DiCorleto, Ph.D. Department of Physiology and Biophysics CASE WESTERN RESERVE UNIVERSITY January, 2016 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of Daniel P. Harris candidate for the Doctor of Philosophy degree *. Thomas N. Nosek, Ph.D., Committee Chair Paul E. DiCorleto, Ph.D. Cathleen R. Carlin, Ph.D. George R. Dubyak, Ph.D. Paul L. Fox, Ph.D. Mukesh K. Jain, M.D. July 27th, 2015 *We also certify that written approval has been obtained for any proprietary material contained therein. iii DEDICATION This dissertation is dedicated to my great-grandparents, Mark and Madeline Pellerin, and my parents Steve and Madeline Harris, for showing me how to live with grace and kindness. i TABLE OF CONTENTS List of Tables ....................................................................................................... 4 List of Figures ...................................................................................................... 5 Acknowledgements ............................................................................................ 6 List of Abbreviations ......................................................................................... 11 Abstract .............................................................................................................
    [Show full text]
  • METALEARNING, NEUROMODULATION and EMOTION Papers and Presentations 【Basic Concepts】 Doya, K
    METALEARNING, NEUROMODULATION AND EMOTION Papers and Presentations 【Basic Concepts】 Doya, K. (2002). Metalearning and Neuromodulation. Neural Networks, 15(4). Doya, K. (2000). Metalearning, neuromodulation, and emotion. In G. Hatano, N. Okada and H. Tanabe (Eds.), Affective Minds, pp. 101-104. Elsevier Science B. V. Doya, K. (2000). Possible roles of neuromodulators in the regulation of learning processes. 30th Annual Meeting, Society for Neuroscience. 【System Integration Group】 1999 Doya, K. (1999). Metalearning, neuromodulation and emotion. The 13th Toyota Conference on Affective Minds, 46-47. 2000 Bapi, R. S., Graydon, F. X.,Doya, K. (2000). Time course of learning of motor sequence representation. 30th Annual Meeting, Society for Neuroscience, 26, 707. Doya, K. (2000). Metalearning, Neuromodulation and Emotion. Humanoid Challenge, JST Inter-field Exchange Forum, 87-88. Doya, K. (2000). Possible roles of neuromodulators in the regulation of learning processes. 30th Annual Meeting, Society for Neuroscience, 26, 2103. Doya, K. (2000). A possible role of serotonin in regulating the time scale of reward prediction. Serotonin: From the Molecule to the Clinic, 89. Doya, K. (2000). Metalearning, neuromodulation, and emotion. G. Hatanao, et al. (eds) Affective Minds, Elsevier Science, B.V., 101-104. Doya, K. (2000). Complementary roles of basal ganglia and cerebellum in learning and motor control. Current Opinion in Neurobiology, 10(6), 732-739. Doya, K., Katagiri, K., Wolpert, D. M., Kawato, M. (2000). Recognition and imitation of movement paterns by a multiple predictor-controller architecture. Technical Report of IEICE, TL2000(11), 33-40. Doya, K., Samejima, K., Katagiri, K., Kawato, M. (2000). Multiple model-based reinforcement learning. Kawato Dynamic Brain Project Technical Report, KDB-TR-08, 1-20.
    [Show full text]
  • From 1957 to Nowadays: a Brief History of Epigenetics
    International Journal of Molecular Sciences Review From 1957 to Nowadays: A Brief History of Epigenetics Paul Peixoto 1,2, Pierre-François Cartron 3,4,5,6,7,8, Aurélien A. Serandour 3,4,6,7,8 and Eric Hervouet 1,2,9,* 1 Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France; [email protected] 2 EPIGENEXP Platform, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France 3 CRCINA, INSERM, Université de Nantes, 44000 Nantes, France; [email protected] (P.-F.C.); [email protected] (A.A.S.) 4 Equipe Apoptose et Progression Tumorale, LaBCT, Institut de Cancérologie de l’Ouest, 44805 Saint Herblain, France 5 Cancéropole Grand-Ouest, Réseau Niches et Epigénétique des Tumeurs (NET), 44000 Nantes, France 6 EpiSAVMEN Network (Région Pays de la Loire), 44000 Nantes, France 7 LabEX IGO, Université de Nantes, 44000 Nantes, France 8 Ecole Centrale Nantes, 44300 Nantes, France 9 DImaCell Platform, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France * Correspondence: [email protected] Received: 9 September 2020; Accepted: 13 October 2020; Published: 14 October 2020 Abstract: Due to the spectacular number of studies focusing on epigenetics in the last few decades, and particularly for the last few years, the availability of a chronology of epigenetics appears essential. Indeed, our review places epigenetic events and the identification of the main epigenetic writers, readers and erasers on a historic scale. This review helps to understand the increasing knowledge in molecular and cellular biology, the development of new biochemical techniques and advances in epigenetics and, more importantly, the roles played by epigenetics in many physiological and pathological situations.
    [Show full text]
  • Transcriptional Regulation by Histone Ubiquitination and Deubiquitination
    Downloaded from genesdev.cshlp.org on September 30, 2021 - Published by Cold Spring Harbor Laboratory Press PERSPECTIVE Transcriptional regulation by histone ubiquitination and deubiquitination Yi Zhang1 Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, North Carolina 27599, USA Ubiquitin (Ub) is a 76-amino acid protein that is ubiqui- The fact that histone ubiquitination occurs in the largely tously distributed and highly conserved throughout eu- monoubiquitinated form and is not linked to degrada- karyotic organisms. Whereas the extreme C-terminal tion, in combination with the lack of information regard- four amino acids are in a random coil, its N-terminal 72 ing the responsible enzymes, prevented us from under- amino acids have a tightly folded globular structure (Vi- standing the functional significance of this modification. jay-Kumar et al. 1987; Fig. 1A). Since its discovery ∼28 Recent identification of the E2 and E3 proteins involved years ago (Goldknopf et al. 1975), a variety of cellular in H2B ubiquitination (Robzyk et al. 2000; Hwang et al. processes including protein degradation, stress response, 2003; Wood et al. 2003a) and the discovery of cross-talk cell-cycle regulation, protein trafficking, endocytosis sig- between histone methylation and ubiquitination (Dover naling, and transcriptional regulation have been linked et al. 2002; Sun and Allis 2002) have set the stage for to this molecule (Pickart 2001). Ubiquitylation is pro- functional analysis of histone ubiquitination. In a timely posed to serve as a signaling module, and the informa- paper published in the previous issue of Genes & Devel- tion transmitted by this tag may depend on the nature of opment, Shelley Berger and colleagues (Henry et al.
    [Show full text]
  • Bidirectional Influence of Sodium Channel Activation on NMDA
    Bidirectional influence of sodium channel activation on NMDA receptor–dependent cerebrocortical neuron structural plasticity Joju Georgea, Daniel G. Badenb, William H. Gerwickc, and Thomas F. Murraya,1 aDepartment of Pharmacology, Creighton University School of Medicine, Omaha, NE 68178; bCenter for Marine Science, University of North Carolina, Wilmington, NC 28409; and cCenter for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 92093 Edited by William A. Catterall, University of Washington School of Medicine, Seattle, WA, and approved October 16, 2012 (received for review July 31, 2012) Neuronal activity regulates brain development and synaptic plastic- NMDA receptors (NMDARs) and downstream signaling path- ity through N-methyl-D-aspartate receptors (NMDARs) and calcium- ways (9, 10). Previous studies have indicated that changes in in- + + dependent signaling pathways. Intracellular sodium ([Na ]i)also tracellular sodium concentration ([Na ]i) produced in soma and + exerts a regulatory influence on NMDAR channel activity, and [Na ]i dendrites as a result of neuronal activity may play a role in ac- may, therefore, function as a signaling molecule. In an attempt to tivity-dependent synaptic plasticity. Synaptic stimulation causes fl + mimic the in uence of neuronal activity on synaptic plasticity, we [Na ]i increments of 10 mM in dendrites and of up to 35–40 mM used brevetoxin-2 (PbTx-2), a voltage-gated sodium channel (VGSC) in dendritic spines (11). In hippocampal neurons, intracellular fi + + gating modi er, to manipulate [Na ]i in cerebrocortical neurons. [Na ] increments greater than 5–10 mM have been demonstrated The acute application of PbTx-2 produced concentration-dependent to increase NMDAR-mediated whole-cell currents and single- + 2+ increments in both intracellular [Na ] and [Ca ].
    [Show full text]