A Comparative Look at Structural Variation Among RC–LH1 'Core'
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Alpine Soil Bacterial Community and Environmental Filters Bahar Shahnavaz
Alpine soil bacterial community and environmental filters Bahar Shahnavaz To cite this version: Bahar Shahnavaz. Alpine soil bacterial community and environmental filters. Other [q-bio.OT]. Université Joseph-Fourier - Grenoble I, 2009. English. tel-00515414 HAL Id: tel-00515414 https://tel.archives-ouvertes.fr/tel-00515414 Submitted on 6 Sep 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE Pour l’obtention du titre de l'Université Joseph-Fourier - Grenoble 1 École Doctorale : Chimie et Sciences du Vivant Spécialité : Biodiversité, Écologie, Environnement Communautés bactériennes de sols alpins et filtres environnementaux Par Bahar SHAHNAVAZ Soutenue devant jury le 25 Septembre 2009 Composition du jury Dr. Thierry HEULIN Rapporteur Dr. Christian JEANTHON Rapporteur Dr. Sylvie NAZARET Examinateur Dr. Jean MARTIN Examinateur Dr. Yves JOUANNEAU Président du jury Dr. Roberto GEREMIA Directeur de thèse Thèse préparée au sien du Laboratoire d’Ecologie Alpine (LECA, UMR UJF- CNRS 5553) THÈSE Pour l’obtention du titre de Docteur de l’Université de Grenoble École Doctorale : Chimie et Sciences du Vivant Spécialité : Biodiversité, Écologie, Environnement Communautés bactériennes de sols alpins et filtres environnementaux Bahar SHAHNAVAZ Directeur : Roberto GEREMIA Soutenue devant jury le 25 Septembre 2009 Composition du jury Dr. -
Community Structure and Function of High-Temperature Chlorophototrophic Microbial Mats Inhabiting Diverse Geothermal Environments
ORIGINAL RESEARCH ARTICLE published: 03 June 2013 doi: 10.3389/fmicb.2013.00106 Community structure and function of high-temperature chlorophototrophic microbial mats inhabiting diverse geothermal environments Christian G. Klatt 1,2†,William P.Inskeep 1,2*, Markus J. Herrgard 3, Zackary J. Jay 1,2, Douglas B. Rusch4, Susannah G.Tringe 5, M. Niki Parenteau 6,7, David M. Ward 1,2, Sarah M. Boomer 8, Donald A. Bryant 9,10 and Scott R. Miller 11 1 Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, USA 2 Thermal Biology Institute, Montana State University, Bozeman, MT, USA 3 Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark 4 Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, USA 5 Department of Energy Joint Genome Institute, Walnut Creek, CA, USA 6 Search for Extraterrestrial Intelligence Institute, Mountain View, CA, USA 7 National Aeronautics and Space Administration Ames Research Center, Mountain View, CA, USA 8 Western Oregon University, Monmouth, OR, USA 9 Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA 10 Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA 11 Department of Biological Sciences, University of Montana, Missoula, MT, USA Edited by: Six phototrophic microbial mat communities from different geothermal springs (YNP) were Martin G. Klotz, University of North studied using metagenome sequencing and geochemical analyses. The primary goals of Carolina at Charlotte, USA this work were to determine differences in community composition of high-temperature Reviewed by: Andreas Teske, University of North phototrophic mats distributed across theYellowstone geothermal ecosystem, and to iden- Carolina at Chapel Hill, USA tify metabolic attributes of predominant organisms present in these communities that may Jesse Dillon, California State correlate with environmental attributes important in niche differentiation. -
The Eastern Nebraska Salt Marsh Microbiome Is Well Adapted to an Alkaline and Extreme Saline Environment
life Article The Eastern Nebraska Salt Marsh Microbiome Is Well Adapted to an Alkaline and Extreme Saline Environment Sierra R. Athen, Shivangi Dubey and John A. Kyndt * College of Science and Technology, Bellevue University, Bellevue, NE 68005, USA; [email protected] (S.R.A.); [email protected] (S.D.) * Correspondence: [email protected] Abstract: The Eastern Nebraska Salt Marshes contain a unique, alkaline, and saline wetland area that is a remnant of prehistoric oceans that once covered this area. The microbial composition of these salt marshes, identified by metagenomic sequencing, appears to be different from well-studied coastal salt marshes as it contains bacterial genera that have only been found in cold-adapted, alkaline, saline environments. For example, Rubribacterium was only isolated before from an Eastern Siberian soda lake, but appears to be one of the most abundant bacteria present at the time of sampling of the Eastern Nebraska Salt Marshes. Further enrichment, followed by genome sequencing and metagenomic binning, revealed the presence of several halophilic, alkalophilic bacteria that play important roles in sulfur and carbon cycling, as well as in nitrogen fixation within this ecosystem. Photosynthetic sulfur bacteria, belonging to Prosthecochloris and Marichromatium, and chemotrophic sulfur bacteria of the genera Sulfurimonas, Arcobacter, and Thiomicrospira produce valuable oxidized sulfur compounds for algal and plant growth, while alkaliphilic, sulfur-reducing bacteria belonging to Sulfurospirillum help balance the sulfur cycle. This metagenome-based study provides a baseline to understand the complex, but balanced, syntrophic microbial interactions that occur in this unique Citation: Athen, S.R.; Dubey, S.; inland salt marsh environment. -
Optimization and Characterization of the Growth Of
OPTIMIZATION AND CHARACTERIZATION OF THE GROWTH OF THE PHOTOSYNTHETIC BACTERIUM BLASTOCHLORIS VIRIDIS AND A BRIEF SURVEY OF ITS POTENTIAL AS A REMEDIATIVE TOOL A Dissertation Submitted to the Graduate School of the University of Notre Dame in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Darcy Danielle LaClair, B.S. ___________________________________ Agnes E. Ostafin, Director Graduate Program in Chemical and Biomolecular Engineering Notre Dame, Indiana April 2006 OPTIMIZATION AND CHARACTERIZATION OF THE GROWTH OF THE PHOTOSYNTHETIC BACTERIUM BLASTOCHLORIS VIRIDIS AND A BRIEF SURVEY OF THEIR POTENTIAL AS A REMEDIATIVE TOOL Abstract by Darcy Danielle LaClair The growth of B. viridis was characterized in an undefined rich medium and a well-defined medium, which was later selected for further experimentation to insure repeatability. This medium presented a significant problem in obtaining either multigenerational or vigorous growth because of metabolic limitations; therefore optimization of the medium was undertaken. A primary requirement to obtain good growth was a shift in the pH of the medium from 6.9 to 5.9. Once this shift was made, it was possible to obtain growth in subsequent generations, and the media formulation was optimized. A response curve suggested optimum concentrations of 75 mM carbon, supplemented as sodium malate, 12.5 mM nitrogen, supplemented as ammonium sulfate, Darcy Danielle LaClair and 12.7 mM phosphate buffer. In addition, the vitamins p-Aminobenzoic acid, Thiamine, Biotin, B12, and Pantothenate were important to achieving good growth and good pigment formation. Exogenous carbon dioxide, added as 2.5 g sodium bicarbonate per liter media also enhanced growth and reduced the lag time. -
BBA - Bioenergetics 1860 (2019) 461–468
BBA - Bioenergetics 1860 (2019) 461–468 Contents lists available at ScienceDirect BBA - Bioenergetics journal homepage: www.elsevier.com/locate/bbabio Phospholipid distributions in purple phototrophic bacteria and LH1-RC core complexes T S. Nagatsumaa, K. Gotoua, T. Yamashitaa, L.-J. Yub, J.-R. Shenb, M.T. Madiganc, Y. Kimurad, ⁎ Z.-Y. Wang-Otomoa, a Faculty of Science, Ibaraki University, Mito 310-8512, Japan b Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan c Department of Microbiology, Southern Illinois University, Carbondale, IL 62901, USA d Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Nada, Kobe 657-8501, Japan ARTICLE INFO ABSTRACT Keywords: In contrast to plants, algae and cyanobacteria that contain glycolipids as the major lipid components in their Thermochromatium tepidum photosynthetic membranes, phospholipids are the dominant lipids in the membranes of anoxygenic purple Light-harvesting phototrophic bacteria. Although the phospholipid compositions in whole cells or membranes are known for a Reaction center limited number of the purple bacteria, little is known about the phospholipids associated with individual Antenna complex photosynthetic complexes. In this study, we investigated the phospholipid distributions in both membranes and Cardiolipin the light-harvesting 1-reaction center (LH1-RC) complexes purified from several purple sulfur and nonsulfur bacteria. 31P NMR was used for determining the phospholipid compositions and inductively coupled plasma atomic emission spectroscopy was used for measuring the total phosphorous contents. Combining these two techniques, we could determine the numbers of specific phospholipids in the purified LH1-RC complexes. A total of approximate 20–30 phospholipids per LH1-RC were detected as the tightly bound lipids in all species. -
Diversity of Anoxygenic Phototrophs in Contrasting Extreme Environments
ÓäÎ ÛiÀÃÌÞÊvÊÝÞ}iVÊ* ÌÌÀ« ÃÊÊ ÌÀ>ÃÌ}Ê ÝÌÀiiÊ ÛÀiÌà -ICHAEL4-ADIGAN \$EBORAH/*UNG\%LIZABETH!+ARR 7-ATTHEW3ATTLEY\,AURIE!!CHENBACH\-ARCEL4*VANDER-EER $EPARTMENTOF-ICROBIOLOGY 3OUTHERN)LLINOIS5NIVERSITY #ARBONDALE $EPARTMENTOF-ICROBIOLOGY /HIO3TATE5NIVERSITY #OLUMBUS $EPARTMENTOF-ARINE"IOGEOCHEMISTRYAND4OXICOLOGY .ETHERLANDS)NSTITUTEFOR3EA2ESEARCH.)/: $EN"URG 4EXEL 4HE.ETHERLANDS #ORRESPONDING!UTHOR $EPARTMENTOF-ICROBIOLOGY 3OUTHERN)LLINOIS5NIVERSITY #ARBONDALE ), 0HONE&AX% MAILMADIGAN MICROSIUEDU Óä{ "/ ,Ê ""9Ê Ê " -/,9Ê Ê9 "7-/" Ê /" Ê*, -/, /ÊÊ 4HISCHAPTERDESCRIBESTHEGENERALPROPERTIESOFSEVERALANOXYGENICPHOTOTROPHICBACTERIAISOLATEDFROMEXTREMEENVIRONMENTS 4HESEINCLUDEPURPLEANDGREENSULFURBACTERIAFROM9ELLOWSTONEAND.EW:EALANDHOTSPRINGS ASWELLASPURPLENONSULFUR BACTERIAFROMAPERMANENTLYFROZEN!NTARCTICLAKE4HECOLLECTIVEPROPERTIESOFTHESEEXTREMOPHILICBACTERIAHAVEYIELDEDNEW INSIGHTSINTOTHEADAPTATIONSNECESSARYTOCARRYOUTPHOTOSYNTHESISINCONSTANTLYHOTORCOLDENVIRONMENTS iÞÊ7À`à Ì>ÀVÌVÊ ÀÞÊ6>iÞà ÀL>VÕÕÊ ÀLÕ®Ê Ìi«`Õ «ÕÀ«iÊL>VÌiÀ> , `viÀ>ÝÊ>Ì>ÀVÌVÕà ,ÃiyiÝÕÃÊë° / iÀV À>ÌÕÊÌi«`Õ Diversity of Anoxygenic Phototrophs 205 1.0 INTRODUCTION Antarctic purple bacteria were enriched using standard Anoxygenic phototrophic bacteria inhabit a variety liquid enrichment methods (Madigan 1988) from the of extreme environments, including thermal, polar, water column of Lake Fryxell, a permanently frozen lake hypersaline, acidic, and alkaline aquatic and terrestrial in the Taylor Valley, McMurdo Dry Valleys, Antarctica habitats (Madigan 2003). Typically, one finds -
Rhodopseudomonas Viridis and Rhodopseudomonas Sulfoviridis to the Genus Blastochloris Gen
INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, Jan. 1997, p. 217-219 Vol. 47, No. 1 0020-7713/97/$04.00+ 0 Copyright 0 1997, International Union of Microbiological Societies Transfer of the Bacteriochlorophyll &Containing Phototrophic Bacteria Rhodopseudomonas viridis and Rhodopseudomonas sulfoviridis to the Genus Blastochloris gen. nov. AKIRA HIMISHI* Department of Ecological Engineering, Toyohashi University of Technology, Toyohashi 441, and Laboratory of Environmental Biotechnology, Konishi Co., Tokyo 130, Japan The phylogenetic positions of the bacteriochlorophyll (BChl) b-producing budding phototrophic bacteria Rhodopseudomonas viridis and Rhodopseudomonas sulfoviridis were studied on the basis of 16s rRNA gene sequence information. These bacteria formed a tight cluster with the genus Rhodoplanes as a sister group within the alpha-2 subgroup of the Proteobacteria. Genomic DNA-DNA hybridization assays showed that R. viridis and R. sulfoviridis were closely related but were different species. Creation of the genus Blastochloris gen. nov. is proposed to accommodate these BChl b-producing species of phototrophic bacteria. In 1984 some species of the classically defined genus Rho- tion of the organisms. For Rhodopseudomonas sulfoviridis, the dopseudomonas were reclassified into new genera, including medium was supplemented with 10 mM glucose, 2 mM sodium the new genera Rhodobacter and Rhodopila, on the basis of sulfide (neutralized), and 2 mM thiosulfate. The medium was modern taxonomic criteria (17). In recent years, the taxonomy supplemented with 10 mM pyruvate (filter sterilized) for Rho- of the genus Rhodopseudomonas has been further reevaluated doplanes roseus. The organisms were grown at 30°C in screw- on the basis of increasing molecular and chemotaxonomic in- cap test tubes under anaerobic conditions in the light. -
Anoxygenic Phototrophic Bacterial Diversity Within Wastewater Stabilization Plant During ‘Red Water’ Phenomenon
Int. J. Environ. Sci. Technol. (2013) 10:837–846 DOI 10.1007/s13762-012-0163-2 ORIGINAL PAPER Anoxygenic phototrophic bacterial diversity within wastewater stabilization plant during ‘red water’ phenomenon A. Belila • I. Fazaa • A. Hassen • A. Ghrabi Received: 22 November 2011 / Revised: 2 October 2012 / Accepted: 21 October 2012 / Published online: 13 February 2013 Ó Islamic Azad University (IAU) 2013 Abstract The molecular diversity of the purple photo- Introduction synthetic bacteria was assessed during temporal pigmen- tation changes in four interconnected wastewater Wastewater stabilization ponds (WSPs) are an extremely stabilization ponds treating domestic wastewater by dena- effective, natural form of wastewater treatment. They turant gel gradient electrophoresis method applying pufM combine simplicity, robustness, low cost, and a very high gene. Results revealed high phylogenetic diversity of the degree of disinfection. WSPs are usually designed as one or purple phototrophic anoxygenic bacteria community char- more series of anaerobic, facultative, and maturation acterized by the presence of the purple non-sulfur, purple ponds. Their low operation and maintenance costs have sulfur, and purple aerobic photosynthetic anoxygenic bac- made them a popular choice for wastewater treatment, teria. This phototrophic bacterial assemblage was domi- particularly in developing countries since there is little nated by the purple non-sulfur bacteria group (59.3 %) need for specialized skills to operate the system. One of the with six different genera followed by the purple sulfur major problems which can cause malfunction of the WSP community (27.8 %) with four genera and finally 12.9 % is the massive growth of purple color producing bacteria of the pufM gene sequences were assigned throughout the (Belila et al. -
Microbial Degradation of Organic Micropollutants in Hyporheic Zone Sediments
Microbial degradation of organic micropollutants in hyporheic zone sediments Dissertation To obtain the Academic Degree Doctor rerum naturalium (Dr. rer. nat.) Submitted to the Faculty of Biology, Chemistry, and Geosciences of the University of Bayreuth by Cyrus Rutere Bayreuth, May 2020 This doctoral thesis was prepared at the Department of Ecological Microbiology – University of Bayreuth and AG Horn – Institute of Microbiology, Leibniz University Hannover, from August 2015 until April 2020, and was supervised by Prof. Dr. Marcus. A. Horn. This is a full reprint of the dissertation submitted to obtain the academic degree of Doctor of Natural Sciences (Dr. rer. nat.) and approved by the Faculty of Biology, Chemistry, and Geosciences of the University of Bayreuth. Date of submission: 11. May 2020 Date of defense: 23. July 2020 Acting dean: Prof. Dr. Matthias Breuning Doctoral committee: Prof. Dr. Marcus. A. Horn (reviewer) Prof. Harold L. Drake, PhD (reviewer) Prof. Dr. Gerhard Rambold (chairman) Prof. Dr. Stefan Peiffer In the battle between the stream and the rock, the stream always wins, not through strength but by perseverance. Harriett Jackson Brown Jr. CONTENTS CONTENTS CONTENTS ............................................................................................................................ i FIGURES.............................................................................................................................. vi TABLES .............................................................................................................................. -
Abiotic and Biotic Influences on Travertine Formation at Mammoth
Sedimentology (2011) 58, 170–219 doi: 10.1111/j.1365-3091.2010.01209.x Hot-spring Systems Geobiology: abiotic and biotic influences on travertine formation at Mammoth Hot Springs, Yellowstone National Park, USA BRUCE W. FOUKE Departments of Geology, Microbiology, and Institute for Genomic Biology, University of Illinois Urbana-Champaign, 1301 West Green Street, Urbana, IL 61801, USA and Thermal Biology Institute, Montana State University, Leon Johnson Hall, Bozeman, MT 59717, USA (E-mail: [email protected]) Associate Editor – Jim Best ABSTRACT Multiple abiotic and biotic factors combine in nature to influence the formation of calcium carbonate limestone deposits. Systems Geobiology studies of how micro-organisms respond to, or sometimes even control, the coupled effects of environmental change and mineralization will permit more accurate interpretation of the fossil record of ancient microbial life. Mammoth Hot Springs in Yellowstone National Park, USA, serves as a natural laboratory for tracking how the dynamic interplay of physical, chemical and biological factors come together to form hot-spring limestone (called ‘travertine’). Systematic downstream correlations occur at Mammoth Hot Springs between travertine deposition (geomorphology, crystalline structure and geochemistry), microbial communities (mat morphology, pigmentation, and phylogenetic and metabolic diversity) and spring-water conditions (temperature, pH, geochemistry and flow). Field-based microscale and mesoscale experimentation indicates that microbes directly influence travertine growth rate and crystalline structure. At the macroscale, time-lapse field photography and numerical modelling suggest that travertine terrace geomorphology is influenced strongly by hydrology, heat dispersion and geochemistry. These results from Mammoth Hot Springs allow establishment of a conceptual framework across broad spatial and temporal scales in which to track how multiple geological and biological factors combine to control CaCO3 crystal precipitation and the resulting formation of travertine deposits. -
Denitrification and the Hypoxic Response in Obligate Aerobic Methane-Oxidizing Bacteria
Denitrification and the hypoxic response in obligate aerobic methane-oxidizing bacteria By Kerim Dimitri Kits A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy In Microbiology and Biotechnology Department of Biological Sciences University of Alberta Kerim Dimitri Kits, 2016 Abstract Aerobic methanotrophic bacteria lessen the impact of the greenhouse gas methane (CH4) not only because they are a sink for atmospheric methane but also because they oxidize it before it is emitted to the atmospheric reservoir. Aerobic methanotrophs, unlike anaerobic methane oxidizing archaea, have a dual need for molecular oxygen (O2) for respiration and CH4 oxidation. Nevertheless, methanotrophs are highly abundant and active in environments that are extremely hypoxic and even anaerobic. While the O2 requirement in these organisms for CH4 oxidation is inflexible, recent genome sequencing efforts have uncovered the presence of putative denitrification genes in many aerobic methanotrophs. Being able to use two different terminal electron acceptors – hybrid respiration – would be massively advantageous to aerobic methanotrophs as it would allow them to halve their O2 requirement. But, the function of these genes that hint at an undiscovered respiratory anaerobic metabolism is unknown. Moreover, past work on pure cultures of aerobic methanotrophs ruled out the possibility that these organisms - denitrify. An organism that can couple CH4 oxidation to NO3 respiration so far does not exist in pure culture. So while the role of aerobic methanotrophs in the carbon cycle is appreciated, the hypoxic metabolism and contribution of these specialized microorganisms to the nitrogen cycle is not understood. Here we demonstrate using cultivation dependent approaches, microrespirometry, and whole genome, transcriptome, and proteome analysis that an aerobic - methanotroph – Methylomonas denitrificans FJG1 – couples CH4 oxidation to NO3 respiration - with N2O as the terminal product via the intermediates NO2 and NO. -
Phaeobacterium Nitratireducens Gen. Nov., Sp. Nov., a Phototrophic
International Journal of Systematic and Evolutionary Microbiology (2015), 65, 2357–2364 DOI 10.1099/ijs.0.000263 Phaeobacterium nitratireducens gen. nov., sp. nov., a phototrophic gammaproteobacterium isolated from a mangrove forest sediment sample Nupur,1 Naga Radha Srinivas Tanuku,2 Takaichi Shinichi3 and Anil Kumar Pinnaka1 Correspondence 1Microbial Type Culture Collection and Gene Bank, CSIR – Institute of Microbial Technology, Anil Kumar Pinnaka Sector 39A, Chandigarh – 160 036, India [email protected] 2CSIR – National Institute of Oceanography, Regional Centre, 176, Lawsons Bay Colony, Visakhapatnam – 530017, India 3Nippon Medical School, Department of Biology, Kosugi-cho, Nakahara, Kawasaki 211-0063, Japan A novel brown-coloured, Gram-negative-staining, rod-shaped, motile, phototrophic, purple sulfur bacterium, designated strain AK40T, was isolated in pure culture from a sediment sample collected from Coringa mangrove forest, India. Strain AK40T contained bacteriochlorophyll a and carotenoids of the rhodopin series as major photosynthetic pigments. Strain AK40T was able to grow photoheterotrophically and could utilize a number of organic substrates. It was unable to grow photoautotrophically and did not utilize sulfide or thiosulfate as electron donors. Thiamine and riboflavin were required for growth. The dominant fatty acids were C12 : 0,C16 : 0, C18 : 1v7c and summed feature 3 (C16 : 1v7c and/or iso-C15 : 0 2-OH). The polar lipid profile of strain AK40T was found to contain diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and eight unidentified lipids. Q-10 was the predominant respiratory quinone. The DNA G+C content of strain AK40T was 65.5 mol%. 16S rRNA gene sequence comparisons indicated that the isolate represented a member of the family Chromatiaceae within the class Gammaproteobacteria.