Learning Cost-Effective and Interpretable Treatment Regimes

Total Page:16

File Type:pdf, Size:1020Kb

Learning Cost-Effective and Interpretable Treatment Regimes Learning Cost-Effective and Interpretable Treatment Regimes Himabindu Lakkaraju Cynthia Rudin Stanford University Duke University Abstract If Spiro-Test=Pos and Prev-Asthma=Yes and Cough=High then C Else if Spiro-Test=Pos and Prev-Asthma =No then Q Decision makers, such as doctors and judges, make crucial decisions such as recommending Else if Short-Breath =Yes and Gender=F and Age≥ 40 and Prev-Asthma=Yes then C treatments to patients, and granting bail to de- Else if Peak-Flow=Yes and Prev-RespIssue=No and Wheezing =Yes, then Q fendants on a daily basis. Such decisions typi- Else if Chest-Pain=Yes and Prev-RespIssue =Yes and Methacholine =Pos then C cally involve weighing the potential benefits of Else Q taking an action against the costs involved. In this work, we aim to automate this task of learn- Figure 1: Regime for treatment recommendations for ing cost-effective, interpretable and actionable asthma patients output by our framework;Q refers to treatment regimes. We formulate this as a prob- milder forms of treatment used for quick-relief, andC lem of learning a decision list – a sequence of corresponds to more intense treatments such as controller if-then-else rules – that maps characteristics of drugs (C is higher cost thanQ); Attributes in blue are least subjects (eg., diagnostic test results of patients) expensive. to treatments. This yields an end-to-end individ- ualized policy for tests and treatments. We pro- of medical tests etc.). For instance, a doctor first diagnoses pose a novel objective to construct a decision list the patient’s condition by studying the patient’s medical which maximizes outcomes for the population, history and ordering a set of relevant tests that are cru- and minimizes overall costs. Since we do not cial to the diagnosis. In doing so, she also factors in the observe the outcomes corresponding to counter- physical, mental, and monetary costs incurred due to each factual scenarios, we use techniques from causal of these tests. Based on the test results, she carefully de- inference literature to infer them. We model the liberates various treatment options, analyzes the potential problem of learning the decision list as a Markov side-effects as well as the effectiveness of each of these op- Decision Process (MDP) and employ a variant tions. Analogously, a judge deciding if a defendant should of the Upper Confidence Bound for Trees (UCT) be granted bail studies the criminal records of the defen- strategy which leverages customized checks for dant, and enquires for additional information (e.g., defen- pruning the search space effectively. Experimen- dant’s socio-economic status) if needed. She then recom- tal results on real world observational data cap- mends a course of action that trades off the risk with grant- turing judicial bail decisions and treatment rec- ing bail to the defendant (the defendant may commit a new ommendations for asthma patients demonstrate crime when out on bail) with the cost of denying bail (ad- the effectiveness of our approach. verse effects on defendant or defendant’s family, cost of jail to the county). 1 Introduction In practical situations, human decision makers often lever- Medical and judicial decisions can be complex: they in- age personal experience to make decisions, without consid- volve careful assessment of the subject’s condition, analyz- ering data, even if massive amounts of it exist for the prob- ing the costs associated with the possible actions, and the lem at hand. There exist domains where machine learn- nature of the consequent outcomes. Further, there might be ing models could potentially help – but they would need to costs associated with the assessment of the subject’s condi- consider all three aspects discussed above: predictions of tion itself (e.g., physical pain endured and monetary costs counterfactuals, costs of gathering information, and costs of treatments. Further, these models must be interpretable Proceedings of the 20th International Conference on Artificial in order to create any reasonable chance of a human deci- Intelligence and Statistics (AISTATS) 2017, Fort Lauderdale, sion maker actually using them. In this work, we address Florida, USA. JMLR: W&CP volume 54. Copyright 2017 by the problem of learning such cost-effective, interpretable the author(s). treatment regimes from observational data. Learning Cost-Effective and Interpretable Treatment Regimes Prior research addresses various aspects of the problem at ods. Regression-based methods [27, 31, 28, 32, 43, 27, 25] hand in isolation. For instance, there exists a large body model the conditional distribution of the outcomes given of literature on estimating treatment effects (namely the the treatment and characteristics of patients and choose the causal inference literature), recommending optimal treat- treatment resulting in the best possible outcome for each in- ments (see, e.g., [1, 33, 7]), and learning intelligible mod- dividual. Policy-search-based methods [28, 42, 41, 38, 39] els for prediction (e.g., [18, 15, 21, 4]). However, an ef- search for a policy (a function which assigns treatments to fective solution for the problem at hand should ideally in- individuals) within a pre-specified class of policies such corporate all of the aforementioned aspects. Furthermore, that the resulting expected outcome is maximized across existing solutions for learning treatment regimes neither ac- the population of interest. Furthermore, recent research count for the costs associated with gathering the required in personalized medicine has also focused on develop- information, nor the treatment costs. The goal of this work ing dynamic treatment regimes [14, 40, 33, 7] where the is to propose a framework which jointly addresses all of the goal is to learn treatment regimes that maximize outcomes aforementioned aspects. for patients in a given population by recommending a se- quence of appropriate treatments over time, based on the We address the problem at hand by formulating it as a task state of the patient. Very few of the aforementioned so- of learning a decision list that maps subject characteristics lutions [39, 24, 40] produce regimes that are intelligible. to tests and treatments (such as the one shown in Figure 1) None of the aforementioned approaches explicitly account such that it: 1) maximizes the expectation of a pre-specified for treatment costs and costs associated with gathering in- outcome when used to assign treatments to a population of formation pertaining to patient characteristics. interest 2) minimizes costs associated with assessing sub- jects’ conditions and 3) minimizes costs associated with the While most work on learning treatment regimes has been treatments themselves. Note that for each subject in our done in the context of medicine, the same ideas apply to data, we observe only the outcome for the treatment as- policies in other fields. To the best of our knowledge, this signed to that subject, not the counterfactual. We use the work is the first attempt in extending work on treatment doubly robust estimation technique to infer the counter- regimes to judicial bail decisions. factuals. We chose decision lists to express the treatment regime because they are interpretable, and allow for tests Subgroup Analysis. The goal of this line of research is to be performed sequentially. We propose a novel objective to find out whether there exist subgroups of individuals in function to learn a decision list optimized with respect to which a given treatment exhibits heterogeneous effects, and the criteria discussed above. We prove that the proposed if so, how the treatment effect varies across them. This objective is NP-hard by reducing it to the weighted exact problem has been well studied [30, 8, 19, 3, 9, 34]. How- cover problem. We then optimize this objective by model- ever, identifying subgroups with heterogeneous treatment ing it as a Markov Decision Process (MDP) and employing effects does not readily provide us with regimes. a variant of the Upper Confidence Bound for Trees (UCT) Interpretable Models. A large body of machine learning strategy which leverages customized checks for pruning the literature focuses on developing interpretable models for search space effectively. classification [18, 35, 15, 21, 4] and clustering [11, 17, 16]. We empirically evaluate the proposed framework on two To this end, various classes of models such as decision real world datasets: 1) judicial bail decisions 2) treatment lists [18], decision sets [15, 36], prototype (case) based recommendations for asthma patients. Our results demon- models [4], and generalized additive models [21] were strate that the regimes output by our framework result in proposed. These classes of models were not conceived improved outcomes compared to state-of-the-art baselines to model treatment effects. There has been recent work at much lower costs. The treatment regimes we found are on leveraging decision lists to describe estimated treat- not complicated and require few diagnostic checks to de- ment regimes [34, 24, 13, 39]. These solutions do not ac- termine the optimal treatment. count for the treatment costs or costs involved in gather- ing patient characteristics. Several of these techniques use greedy methods, which causes issues with the quality of 2 Related Work the models. Lastly, there has also been some work on cost- Below, we provide an overview of related research on sensitive learning of classification models such as decision learning treatment regimes, subgroup analysis, and inter- trees [20, 10]. This is, however, not applicable to the prob- pretable models. lem at hand because it does not model treatment effects. Treatment Regimes. The problem of learning treat- 3 Our Framework ment regimes has been extensively studied in the con- First, we formalize the notion of treatment regimes and dis- text of medicine and health care. Along the lines of cuss how to represent them as decision lists. We then pro- [39], literature on treatment regimes can be categorized as: pose an objective function for constructing cost-effective regression-based methods and policy-search-based meth- and interpretable treatment regimes.
Recommended publications
  • Nber Working Paper Series Human Decisions And
    NBER WORKING PAPER SERIES HUMAN DECISIONS AND MACHINE PREDICTIONS Jon Kleinberg Himabindu Lakkaraju Jure Leskovec Jens Ludwig Sendhil Mullainathan Working Paper 23180 http://www.nber.org/papers/w23180 NATIONAL BUREAU OF ECONOMIC RESEARCH 1050 Massachusetts Avenue Cambridge, MA 02138 February 2017 We are immensely grateful to Mike Riley for meticulously and tirelessly spearheading the data analytics, with effort well above and beyond the call of duty. Thanks to David Abrams, Matt Alsdorf, Molly Cohen, Alexander Crohn, Gretchen Ruth Cusick, Tim Dierks, John Donohue, Mark DuPont, Meg Egan, Elizabeth Glazer, Judge Joan Gottschall, Nathan Hess, Karen Kane, Leslie Kellam, Angela LaScala-Gruenewald, Charles Loeffler, Anne Milgram, Lauren Raphael, Chris Rohlfs, Dan Rosenbaum, Terry Salo, Andrei Shleifer, Aaron Sojourner, James Sowerby, Cass Sunstein, Michele Sviridoff, Emily Turner, and Judge John Wasilewski for valuable assistance and comments, to Binta Diop, Nathan Hess, and Robert Webberfor help with the data, to David Welgus and Rebecca Wei for outstanding work on the data analysis, to seminar participants at Berkeley, Carnegie Mellon, Harvard, Michigan, the National Bureau of Economic Research, New York University, Northwestern, Stanford and the University of Chicago for helpful comments, to the Simons Foundation for its support of Jon Kleinberg's research, to the Stanford Data Science Initiative for its support of Jure Leskovec’s research, to the Robert Bosch Stanford Graduate Fellowship for its support of Himabindu Lakkaraju and to Tom Dunn, Ira Handler, and the MacArthur, McCormick and Pritzker foundations for their support of the University of Chicago Crime Lab and Urban Labs. The main data we analyze are provided by the New York State Division of Criminal Justice Services (DCJS), and the Office of Court Administration.
    [Show full text]
  • Himabindu Lakkaraju
    Himabindu Lakkaraju Contact Information 428 Morgan Hall Harvard Business School Soldiers Field Road Boston, MA 02163 E-mail: [email protected] Webpage: http://web.stanford.edu/∼himalv Research Interests Transparency, Fairness, and Safety in Artificial Intelligence (AI); Applications of AI to Criminal Justice, Healthcare, Public Policy, and Education; AI for Decision-Making. Academic & Harvard University 11/2018 - Present Professional Postdoctoral Fellow with appointments in Business School and Experience Department of Computer Science Microsoft Research, Redmond 5/2017 - 6/2017 Visiting Researcher Microsoft Research, Redmond 6/2016 - 9/2016 Research Intern University of Chicago 6/2014 - 8/2014 Data Science for Social Good Fellow IBM Research - India, Bangalore 7/2010 - 7/2012 Technical Staff Member SAP Research, Bangalore 7/2009 - 3/2010 Visiting Researcher Adobe Systems Pvt. Ltd., Bangalore 7/2007 - 7/2008 Software Engineer Education Stanford University 9/2012 - 9/2018 Ph.D. in Computer Science Thesis: Enabling Machine Learning for High-Stakes Decision-Making Advisor: Prof. Jure Leskovec Thesis Committee: Prof. Emma Brunskill, Dr. Eric Horvitz, Prof. Jon Kleinberg, Prof. Percy Liang, Prof. Cynthia Rudin Stanford University 9/2012 - 9/2015 Master of Science (MS) in Computer Science Advisor: Prof. Jure Leskovec Indian Institute of Science (IISc) 8/2008 - 7/2010 Master of Engineering (MEng) in Computer Science & Automation Thesis: Exploring Topic Models for Understanding Sentiments Expressed in Customer Reviews Advisor: Prof. Chiranjib
    [Show full text]
  • Overview on Explainable AI Methods Global‐Local‐Ante‐Hoc‐Post‐Hoc
    00‐FRONTMATTER Seminar Explainable AI Module 4 Overview on Explainable AI Methods Birds‐Eye View Global‐Local‐Ante‐hoc‐Post‐hoc Andreas Holzinger Human‐Centered AI Lab (Holzinger Group) Institute for Medical Informatics/Statistics, Medical University Graz, Austria and Explainable AI‐Lab, Alberta Machine Intelligence Institute, Edmonton, Canada a.holzinger@human‐centered.ai 1 Last update: 11‐10‐2019 Agenda . 00 Reflection – follow‐up from last lecture . 01 Basics, Definitions, … . 02 Please note: xAI is not new! . 03 Examples for Ante‐hoc models (explainable models, interpretable machine learning) . 04 Examples for Post‐hoc models (making the “black‐box” model interpretable . 05 Explanation Interfaces: Future human‐AI interaction . 06 A few words on metrics of xAI (measuring causability) a.holzinger@human‐centered.ai 2 Last update: 11‐10‐2019 01 Basics, Definitions, … a.holzinger@human‐centered.ai 3 Last update: 11‐10‐2019 Explainability/ Interpretability – contrasted to performance Zachary C. Lipton 2016. The mythos of model interpretability. arXiv:1606.03490. Inconsistent Definitions: What is the difference between explainable, interpretable, verifiable, intelligible, transparent, understandable … ? Zachary C. Lipton 2018. The mythos of model interpretability. ACM Queue, 16, (3), 31‐57, doi:10.1145/3236386.3241340 a.holzinger@human‐centered.ai 4 Last update: 11‐10‐2019 The expectations of xAI are extremely high . Trust – interpretability as prerequisite for trust (as propagated by Ribeiro et al (2016)); how is trust defined? Confidence? . Causality ‐ inferring causal relationships from pure observational data has been extensively studied (Pearl, 2009), however it relies strongly on prior knowledge . Transferability – humans have a much higher capacity to generalize, and can transfer learned skills to completely new situations; compare this with e.g.
    [Show full text]
  • Algorithms, Platforms, and Ethnic Bias: an Integrative Essay
    BERKELEY ROUNDTABLE ON THE INTERNATIONAL ECONOMY BRIE Working Paper 2018-3 Algorithms, Platforms, and Ethnic Bias: An Integrative Essay Selena Silva and Martin Kenney Algorithms, Platforms, and Ethnic Bias: An Integrative Essay In Phylon: The Clark Atlanta University Review of Race and Culture (Summer/Winter 2018) Vol. 55, No. 1 & 2: 9-37 Selena Silva Research Assistant and Martin Kenney* Distinguished Professor Community and Regional Development Program University of California, Davis Davis & Co-Director Berkeley Roundtable on the International Economy & Affiliated Professor Scuola Superiore Sant’Anna * Corresponding Author The authors wish to thank Obie Clayton for his encouragement and John Zysman for incisive and valuable comments on an earlier draft. Keywords: Digital bias, digital discrimination, algorithms, platform economy, racism 1 Abstract Racially biased outcomes have increasingly been recognized as a problem that can infect software algorithms and datasets of all types. Digital platforms, in particular, are organizing ever greater portions of social, political, and economic life. This essay examines and organizes current academic and popular press discussions on how digital tools, despite appearing to be objective and unbiased, may, in fact, only reproduce or, perhaps, even reinforce current racial inequities. However, digital tools may also be powerful instruments of objectivity and standardization. Based on a review of the literature, we have modified and extended a “value chain–like” model introduced by Danks and London, depicting the potential location of ethnic bias in algorithmic decision-making.1 The model has five phases: input, algorithmic operations, output, users, and feedback. With this model, we identified nine unique types of bias that might occur within these five phases in an algorithmic model: (1) training data bias, (2) algorithmic focus bias, (3) algorithmic processing bias, (4) transfer context bias, (5) misinterpretation bias, (6) automation bias, (7) non-transparency bias, (8) consumer bias, and (9) feedback loop bias.
    [Show full text]
  • Bayesian Sensitivity Analysis for Offline Policy Evaluation
    Bayesian Sensitivity Analysis for Offline Policy Evaluation Jongbin Jung Ravi Shroff [email protected] [email protected] Stanford University New York University Avi Feller Sharad Goel UC-Berkeley [email protected] [email protected] Stanford University ABSTRACT 1 INTRODUCTION On a variety of complex decision-making tasks, from doctors pre- Machine learning algorithms are increasingly used by employ- scribing treatment to judges setting bail, machine learning algo- ers, judges, lenders, and other experts to guide high-stakes de- rithms have been shown to outperform expert human judgments. cisions [2, 3, 5, 6, 22]. These algorithms, for example, can be used to One complication, however, is that it is often difficult to anticipate help determine which job candidates are interviewed, which defen- the effects of algorithmic policies prior to deployment, as onegen- dants are required to pay bail, and which loan applicants are granted erally cannot use historical data to directly observe what would credit. When determining whether to implement a proposed policy, have happened had the actions recommended by the algorithm it is important to anticipate its likely effects using only historical been taken. A common strategy is to model potential outcomes data, as ex-post evaluation may be expensive or otherwise imprac- for alternative decisions assuming that there are no unmeasured tical. This general problem is known as offline policy evaluation. confounders (i.e., to assume ignorability). But if this ignorability One approach to this problem is to first assume that treatment as- assumption is violated, the predicted and actual effects of an al- signment is ignorable given the observed covariates, after which a gorithmic policy can diverge sharply.
    [Show full text]
  • Designing Alternative Representations of Confusion Matrices to Support Non-Expert Public Understanding of Algorithm Performance
    153 Designing Alternative Representations of Confusion Matrices to Support Non-Expert Public Understanding of Algorithm Performance HONG SHEN, Carnegie Mellon University, USA HAOJIAN JIN, Carnegie Mellon University, USA ÁNGEL ALEXANDER CABRERA, Carnegie Mellon University, USA ADAM PERER, Carnegie Mellon University, USA HAIYI ZHU, Carnegie Mellon University, USA JASON I. HONG, Carnegie Mellon University, USA Ensuring effective public understanding of algorithmic decisions that are powered by machine learning techniques has become an urgent task with the increasing deployment of AI systems into our society. In this work, we present a concrete step toward this goal by redesigning confusion matrices for binary classification to support non-experts in understanding the performance of machine learning models. Through interviews (n=7) and a survey (n=102), we mapped out two major sets of challenges lay people have in understanding standard confusion matrices: the general terminologies and the matrix design. We further identified three sub-challenges regarding the matrix design, namely, confusion about the direction of reading the data, layered relations and quantities involved. We then conducted an online experiment with 483 participants to evaluate how effective a series of alternative representations target each of those challenges in the context of an algorithm for making recidivism predictions. We developed three levels of questions to evaluate users’ objective understanding. We assessed the effectiveness of our alternatives for accuracy in answering those questions, completion time, and subjective understanding. Our results suggest that (1) only by contextualizing terminologies can we significantly improve users’ understanding and (2) flow charts, which help point out the direction ofreading the data, were most useful in improving objective understanding.
    [Show full text]
  • Human Decisions and Machine Predictions*
    HUMAN DECISIONS AND MACHINE PREDICTIONS* Jon Kleinberg Himabindu Lakkaraju Jure Leskovec Jens Ludwig Sendhil Mullainathan August 11, 2017 Abstract Can machine learning improve human decision making? Bail decisions provide a good test case. Millions of times each year, judges make jail-or-release decisions that hinge on a prediction of what a defendant would do if released. The concreteness of the prediction task combined with the volume of data available makes this a promising machine-learning application. Yet comparing the algorithm to judges proves complicated. First, the available data are generated by prior judge decisions. We only observe crime outcomes for released defendants, not for those judges detained. This makes it hard to evaluate counterfactual decision rules based on algorithmic predictions. Second, judges may have a broader set of preferences than the variable the algorithm predicts; for instance, judges may care specifically about violent crimes or about racial inequities. We deal with these problems using different econometric strategies, such as quasi-random assignment of cases to judges. Even accounting for these concerns, our results suggest potentially large welfare gains: one policy simulation shows crime reductions up to 24.7% with no change in jailing rates, or jailing rate reductions up to 41.9% with no increase in crime rates. Moreover, all categories of crime, including violent crimes, show reductions; and these gains can be achieved while simultaneously reducing racial disparities. These results suggest that while machine learning can be valuable, realizing this value requires integrating these tools into an economic framework: being clear about the link between predictions and decisions; specifying the scope of payoff functions; and constructing unbiased decision counterfactuals.
    [Show full text]
  • Examining Wikipedia with a Broader Lens
    Examining Wikipedia With a Broader Lens: Quantifying the Value of Wikipedia’s Relationships with Other Large-Scale Online Communities Nicholas Vincent Isaac Johnson Brent Hecht PSA Research Group PSA Research Group PSA Research Group Northwestern University Northwestern University Northwestern University [email protected] [email protected] [email protected] ABSTRACT recruitment and retention strategies (e.g. [17,18,59,62]), and The extensive Wikipedia literature has largely considered even to train many state-of-the-art artificial intelligence Wikipedia in isolation, outside of the context of its broader algorithms [12,13,25,26,36,58]. Indeed, Wikipedia has Internet ecosystem. Very recent research has demonstrated likely become one of the most important datasets and the significance of this limitation, identifying critical research environments in modern computing [25,28,36,38]. relationships between Google and Wikipedia that are highly relevant to many areas of Wikipedia-based research and However, a major limitation of the vast majority of the practice. This paper extends this recent research beyond Wikipedia literature is that it considers Wikipedia in search engines to examine Wikipedia’s relationships with isolation, outside the context of its broader online ecosystem. large-scale online communities, Stack Overflow and Reddit The importance of this limitation was made quite salient in in particular. We find evidence of consequential, albeit recent research that suggested that Wikipedia’s relationships unidirectional relationships. Wikipedia provides substantial with other websites are tremendously significant value to both communities, with Wikipedia content [15,35,40,57]. For instance, this work has shown that increasing visitation, engagement, and revenue, but we find Wikipedia’s relationships with other websites are important little evidence that these websites contribute to Wikipedia in factors in the peer production process and, consequently, have impacts on key variables of interest such as content return.
    [Show full text]
  • Graph Evolution: Densification and Shrinking Diameters
    Graph Evolution: Densification and Shrinking Diameters JURE LESKOVEC Carnegie Mellon University JON KLEINBERG Cornell University and CHRISTOS FALOUTSOS Carnegie Mellon University How do real graphs evolve over time? What are normal growth patterns in social, technological, and information networks? Many studies have discovered patterns in static graphs, identifying properties in a single snapshot of a large network or in a very small number of snapshots; these include heavy tails for in- and out-degree distributions, communities, small-world phenomena, and others. However, given the lack of information about network evolution over long periods, it has been hard to convert these findings into statements about trends over time. Here we study a wide range of real graphs, and we observe some surprising phenomena. First, most of these graphs densify over time with the number of edges growing superlinearly in the number of nodes. Second, the average distance between nodes often shrinks over time in contrast to the conventional wisdom that such distance parameters should increase slowly as a function of the number of nodes (like O(log n)orO(log(log n)). Existing graph generation models do not exhibit these types of behavior even at a qualitative level. We provide a new graph generator, based on a forest fire spreading process that has a simple, intuitive justification, requires very few parameters (like the flammability of nodes), and produces graphs exhibiting the full range of properties observed both in prior work and in the present study. This material is based on work supported by the National Science Foundation under Grants No. IIS-0209107 SENSOR-0329549 EF-0331657IIS-0326322 IIS- 0534205, CCF-0325453, IIS-0329064, CNS-0403340, CCR-0122581; a David and Lucile Packard Foundation Fellowship; and also by the Pennsylvania Infrastructure Technology Alliance (PITA), a partnership of Carnegie Mellon, Lehigh University and the Commonwealth of Pennsylvania’s Department of Community and Economic Development (DCED).
    [Show full text]
  • CURRICULUM Vitae Jure LESKOVEC
    CURRICULUM vitae Jure LESKOVEC Department of Computer Science Phone: (650) 723 - 2273 Stanford University Cell: (412) 478 - 8329 353 Serra Mall E-mail: [email protected] Stanford CA 93405 http://www.cs.stanford.edu/∼jure Positions held Stanford University, Stanford , CA. Assistant Professor. Department of Computer Science. August 2009. Cornell University, Ithaca, NY. Postdoctoral researcher. Department of Computer Science. September 2008 – July 2009. Education Carnegie Mellon University, Pittsburgh, PA. Ph.D. in Computational and Statistical Learning, Machine Learning Department, School of Computer Science. September 2008. University of Ljubljana, Slovenia. Diploma [B.Sc.] in Computer Science (Summa Cum Laude), May 2004. Research Applied machine learning and large-scale data mining, focusing on the analysis and interests modeling of large real-world networks. Academic ACM SIGKDD Dissertation Award 2009 honors Best Research Paper Award at ASCE Journal of Water Resources Planning and Man- agement Engineering, 2009. Best student paper award at 13th ACM SIGKDD International Conference on Knowl- edge Discovery and Data Mining, KDD 2007. Best solution of Battle of the Water Sensor Networks (BWSN) competition on sensor placement in water distribution networks, 2007. Microsoft Graduate Research Fellowship, 2006 - 2008. Best research paper award at 11th ACM SIGKDD International Conference on Knowl- edge Discovery and Data Mining, KDD 2005. Slovenian Academy of Arts and Sciences Fellowship, 2004. University of Ljubljana Preserenˇ Award (highest university award for students given to 10 out of 40,000 sutdents), 2004. Winner of the KDD Cup 2003 on estimating the download rate of scientific articles on Arxiv. KDD Cup is a data mining competition held in conjunction with the Annual ACM SIGKDD Conference.
    [Show full text]
  • Jure Leskovec
    Jure Leskovec Computer Science Department Stanford University Includes joint work with Deepay Chakrabarti, Anirban Dasgupta, Christos Faloutsos, Jon Kleinberg, Kevin Lang and Michael Mahoney Workshop on Complex Networks in Information & Knowledge Management, CIKM 2009 Interaction graph model of networks: . Nodes represent “entities” . Edges represent “interactions” between pairs of entities Thinking of data in a form of a network makes the difference: . Google realized web-pages are connected . Collective classification, targeting Jure Leskovec, CNIKM '09 2 Online social networks Collaboration networks Systems biology networks arXiv DBLP Communication networks Web graph & citation networks Internet Jure Leskovec, CNIKM '09 3 Complex networks as phenomena, not just designed artifacts What are the common patterns that emerge? Flickr social network Scale free networks n= 584,207, m=3,555,115 many more hubs than expected Jure Leskovec, CNIKM '09 4 Network data spans many orders of magnitude: . 436-node network of email exchange over 3-months at corporate research lab [Adamic-Adar, SocNets ‘03] . 43,553-node network of email exchange over 2 years at a large university [Kossinets-Watts, Science ‘06] . 4.4-million-node network of declared friendships on a blogging community [Backstrom et at., KDD ‘06] . 240-million-node network of all IM communication over a month on Microsoft Instant Messenger [Leskovec-Horvitz, WWW ‘08] Jure Leskovec, CNIKM '09 5 [Leskovec et al. KDD 05] How do network properties scale with the size of the network? Citations Citations ) a=1.6 E(t diameter N(t) time Densification Shrinking diameter Average degree increases Path lengths get shorter Jure Leskovec, CNIKM '09 6 What do we hope to achieve by analyzing networks? .
    [Show full text]
  • Counterfactual Predictions Under Runtime Confounding
    Counterfactual Predictions under Runtime Confounding Amanda Coston Edward H. Kennedy Heinz College & Machine Learning Dept. Department of Statistics Carnegie Mellon University Carnegie Mellon University [email protected] [email protected] Alexandra Chouldechova Heinz College Carnegie Mellon University [email protected] April 19, 2021 Abstract Algorithms are commonly used to predict outcomes under a particular decision or intervention, such as predicting likelihood of default if a loan is approved. Generally, to learn such counterfactual prediction models from observational data on historical decisions and corresponding outcomes, one must measure all factors that jointly affect the outcome and the decision taken. Motivated by decision support applications, we study the counterfactual prediction task in the setting where all relevant factors are captured in the historical data, but it is infeasible, undesirable, or impermissible to use some such factors in the prediction model. We refer to this setting as runtime confounding. We propose a doubly-robust procedure for learning counterfactual prediction models in this setting. Our theoretical analysis and experimental results suggest that our method often outperforms competing approaches. We also present a validation procedure for evaluating the performance of counterfactual prediction methods. 1 Introduction Algorithmic tools are increasingly prevalent in domains such as health care, education, lending, criminal justice, and child welfare [4, 8, 16, 19, 39]. In many cases, the tools are not intended to replace human decision-making, but rather to distill rich case information into a simpler form, arXiv:2006.16916v2 [stat.ML] 16 Apr 2021 such as a risk score, to inform human decision makers [3, 10]. The type of information that these tools need to convey is often counterfactual in nature.
    [Show full text]