Idiv Conference 2016

Total Page:16

File Type:pdf, Size:1020Kb

Idiv Conference 2016 iDiv Conference 2016 Abstracts Talks T-Adam Adam, Nora Biodiversity Functions Monday, 7 November 2016, 11:00 Past I - Thomas Eisner 10 min Nora Adam (MPI CE) Sex ratio of mirid populations shifts in response to hostplant co-infestation or altered cytokinin signaling Herbivore species sharing a host plant often compete. In this study, we show that host plant-mediated interaction between two insect herbivores – a generalist and a specialist – results in a sex ratio shift of the specialist’s offspring. We studied demographic parameters of the specialist Tupiocoris notatus (Hemiptera: Miridae) when co-infesting the host plant Nicotiana attenuata (Solanaceae) with the generalist leafhopper Empoasca sp. (Hemiptera: Cicadellidae). We show that the usually female-biased sex ratio of T. notatus shifts toward a higher male proportion in the offspring on plants co-infested by Empoasca sp. This sex ratio change did not occur after oviposition, nor is it due differential mortality of female and male nymphs. Based on pyrosequencing and PCR of bacterial 16S rRNA amplicons, we concluded that sex ratio shifts were unlikely to be due to infection with Wolbachia or other known sex ratio- distorting endosymbionts. Finally, we used transgenic lines of N. attenuata to evaluate if the sex ratio shift could be mediated by changes in general or specialized host plant metabolites. We found that the sex ratio shift occurred on plants deficient in two cytokinin receptors (irCHK2/3). Thus, cytokinin- regulated traits can alter the offspring sex ratio of the specialist T. notatus. Co-Authors Theresa Erler, Mario Kallenbach, Martin Kaltenpoth, Grit Kunert, Ian T. Baldwin, and Meredith C. Schuman (MPI CE) Keywords interspecific competition, sex ratio, jasmonic acid, cytokinin T-Ascen Ascensão, Fernando Biodiversity Patterns Monday, 7 November 2016, 10:35 Past I - Thomas Eisner 10 min Fernando Ascensão (CIBIO-InBio) Predicting wildlife-vehicle collisions using occupancy models 1. Wildlife-vehicle collisions (WVC) are more expected where species are more likely to occur. However, in many studies, the information regarding species’ presence and abundance in road surroundings is absent. On the other hand, WVC may be undetected in roadkill surveys. When this information is absent, it may lead to biased conclusions that ultimately jeopardize conservation actions. 2. We suggest using occupancy models, assuming occupancy as the probability of individuals using the immediate vicinity of a road section or using it for crossing (road-kill risk); and detectability as the combination of the probability of an individual being hit by a vehicle and, if so, its carcass being detected during a roadkill survey. We used this approach to assess how habitat influences species occupancy probability along the road roads, while accounting for imperfect detection. 3. We conducted road surveys biweekly, between April 2010 and March 2015, over 114 km of nine different roads in Brasília FD, Brazil. We developed a Bayesian hierarchical occupancy model to assess spatial patterns of WVC occurrence for a collection of the six most road-killed taxa (n=1711). 4. We estimated a generally higher roadkill risk in road segments near urban areas and with higher cover of open habitat. Detectability tended to be higher for four- lane roads and rainy season. From a conservation perspective, our results highlight the need to upgrade road stretches near urban areas and with higher cover of open habitat. 5. Our results provide an insight into the influence of habitat on roadkill risk for a collection of species, while accounting for different detectability. Yet, further model development should integrate colonization-extinction episodes, as well be able to disentangling both detectability processes. Co-Authors Rodrigo A. L. Santos (University of Brasília-UnB, Brasília), Mário Ferreira (Universidade do Porto) Keywords road ecology, conservation biology T-Backm Backmann, Pia Biodiversity Processes Monday, 7 November 2016, 12:35 Present I - E.O. Wilson 10 min Pia Backmann (iDiv) Attack my neighbour: Delayed induction of plant chemical defense can be an evolutionary stable strategy In plants, time delays in the activation of defense against herbivory are thought to be the principal disadvantage of induced instead of constitutive defense. This suggests strong selection for fast induction. However, observed time delays between the onset of herbivory and defense induction vary considerably. We postulate that strong competition with conspecifics is an important co-determinant of the cost-benefit balance for induced responses. As damage caused by early instars of the herbivore might be tolerable, plants might rather wait until later instars are large enough to be both mobile and cause severe damage. Then, if expelled by chemical defense, larvae might attack neighbouring plants and thereby reducing the competitive pressure on the focal plant. To explore this idea quantitatively, we developed an individual-based model which is based on data from wild tobacco, Nicotiana attenuata, and its specialized herbivore, larvae of the moth Manduca sexta. Plant competition was represented with the zone-of-influence (ZOI) approach. Chemical defense was assumed to be costly in terms of reduced plant growth, while herbivory reduced above-ground biomass. We used a genetic algorithm with the plant’s delay time as a heritable trait. We found that a stationary distribution of delay times emerged, which under high herbivore densities peaked at higher values. We conclude that if plants grow in stands of dense cohorts, there is no strong selection pressure to minimize delay times for herbivore-induced responses. Co-Authors Nicole Van Dam (iDiv), Volker Grimm (UFZ), Ian T. Baldwin (MPI CE), Eckhard Finke, Gottfried Jetschke (FSU), Yue Lin (Northwest University, Xi'an city), Matthijs Vos (University of Oldenburg) Keywords computer simulations, individual-based model, plant-herbivore interactions, induced defense, trait diversity, Monodominance, percolation, dispersal T-Banna Bannar-Martin, Katherine Biodiversity Functions Tuesday, 8 November 2016, 9:10 Past III - Rosalind Franklin 15 min Katharine Bannar-Martin (sDiv/iDiv) Integrating community assembly into biodiversity-ecosystem function relationships- results from the sCAFE working group. Over the past two decades, the biodiversity-ecosystem-function (BEF) research program has proliferated, linking changes in biodiversity to changes in ecosystem functions and services. However, the extent to which the results of BEF studies, focused on local experimental systems, can be extended to natural systems is the subject of much debate. Specifically, the applicability of the BEF framework is complicated by the fact that real-world biodiversity is an emergent property of (meta)community processes, which determine how communities assemble across environments through the dispersal, colonization, and extinction of species. Although these processes strongly affect the diversity, composition, stability, and function of ecosystems, their role is rarely considered in BEF research. Consequently, advancing the study of ecosystem function requires integrating the valuable discoveries of BEF research with (meta)community theory. In the sCAFE working group, we adapted and extended a novel approach to incorporating community assembly into diversity-ecosystem-function research (the CAFE approach) using the Price Equation. We use the Price Equation as an integrative tool allowing for a broader empirical examination of how community assembly (species gains and losses), together with changes in species number impact ecosystem function. We show how the CAFE approach can reveal important contributions of community composition and assembly to ecosystem function using empirical examples of grassland seed addition experiments, species invasions, and recovery of small mammal communities over time after a disturbance event. Considering the CAFE approach in studies of ecosystem function illustrates the importance of metacommunity processes for explaining the linkages between diversity, ecosystem function, and ultimately the ecosystem services on which we depend. Co-Authors Colin Kremer (Yale), S.K. Morgan Ernest (University of Florida), Mathew A. Leibold (University of Texas), sCAFE Working Group (iDiv) Keywords biodiversity, ecosystem function, community assembly, metacommunity, dispersal, Price equation T-Benne Bennett, Joanne Biodiversity Patterns Tuesday, 8 November 2016, 12:05 Present VI - Georgina Mace 5 min Joanne Bennett (iDiv) Global change drivers are increasing pollen limitation in wild plants The majority of the world’s plants (~87%) rely on animal pollination at least to some degree for reproduction. Reports of global pollinator declines have raised concerns that wild and crop plants are facing a pollination crises. Pollinator declines are expected to lead to a reduction in the reproductive success of flowering plants, but a lack of suitable data has hampered attempts to assess whether this is occurring in nature. In plants the degree of pollen limitation (a reduction in fruit or seed set as a result of limited pollen supply) can be used as a direct assessment of plant reproductive success in relation to pollination services. We created a global pollen limitation dataset, containing over 3,000 experimental measures of pollen limitation for a ~1,200 wild plant species, over a 40 year period to document spatiotemporal changes in pollen limitation. We found an increase in pollen limitation through time
Recommended publications
  • Research Article Ecological Observations of Native Geocoris Pallens and G
    Hindawi Publishing Corporation Psyche Volume 2013, Article ID 465108, 11 pages http://dx.doi.org/10.1155/2013/465108 Research Article Ecological Observations of Native Geocoris pallens and G. punctipes Populations in the Great Basin Desert of Southwestern Utah Meredith C. Schuman, Danny Kessler, and Ian T. Baldwin Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoll-Straße¨ 8, 07745 Jena, Germany Correspondence should be addressed to Ian T. Baldwin; [email protected] Received 5 November 2012; Accepted 16 April 2013 Academic Editor: David G. James Copyright © 2013 Meredith C. Schuman et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Big-eyed bugs (Geocoris spp. Fallen,´ Hemiptera: Lygaeidae) are ubiquitous, omnivorous insect predators whose plant feeding behavior raises the question of whether they benefit or harm plants. However, several studies have investigated both the potential of Geocoris spp. to serve as biological control agents in agriculture and their importance as agents of plant indirect defense in nature. These studies have demonstrated that Geocoris spp. effectively reduce herbivore populations and increase plant yield. Previous work has also indicated that Geocoris spp. respond to visual and olfactory cues when foraging and choosing their prey and that associative learning of prey and plant cues informs their foraging strategies. For these reasons, Geocoris spp. have become models for the study of tritrophic plant-herbivore-predator interactions. Here, we present detailed images and ecological observations of G. pallens Stal˚ and G.
    [Show full text]
  • A Potential Biocontrol Agent of Tropical Soda Apple, Solanum Viarum (Solanaceae) in the USA
    Risk assessment of Gratiana boliviana (Chrysomelidae), a potential biocontrol agent of tropical soda apple, Solanum viarum (Solanaceae) in the USA J. Medal,1,2 D. Gandolfo,3 F. McKay3 and J. Cuda1 Summary Solanum viarum (Solanaceae), known by the common name tropical soda apple, is a perennial prickly weed native to north-eastern Argentina, south-eastern Brazil, Paraguay, and Uruguay, that has been spreading at an alarming rate in the USA during the 1990s. First detected in the USA in 1988, it has already invaded more than 1 million acres (ca. 400,000 ha) of improved pastures and woody areas in nine states. Initial field explorations in South America for potential biocontrol agents were initiated in June 1994 by University of Florida researchers in collaboration with Brazilian and Argentinean scientists. The leaf beetle Gratiana boliviana (Chrysomelidae) was evaluated as a potential biocontrol agent of tropical soda apple. The only known hosts of this insect are S. viarum and Solanum palinacanthum. Open field experiments and field surveys were conducted to assess the risk of G. boliviana using Solanum melongena (eggplant) as an alternative host. In an open field (choice-test) planted with tropical soda apple and eggplant there was no feeding or oviposition by G. boliviana adults on eggplant. Surveys conducted (1997–2002) of 34 unsprayed fields of eggplant confirmed that this crop is not a host of G. boliviana. Based on these results, the Florida quarantine host-specificity tests, the open field tests in Argentina, and the lack of unfavourable host records in the scientific literature, we concluded that G.
    [Show full text]
  • Synopsis and Keys to the Tribes, Genera, and Species of Miridae (Hemiptera: Heteroptera) of Minas Gerais, Brazil Part I: Bryocorinae
    Zootaxa 2920: 1–41 (2011) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2011 · Magnolia Press ISSN 1175-5334 (online edition) Synopsis and keys to the tribes, genera, and species of Miridae (Hemiptera: Heteroptera) of Minas Gerais, Brazil Part I: Bryocorinae PAULO SERGIO FIUZA FERREIRA1 & THOMAS J. HENRY2 1Museu de Entomologia, Departamento de Biologia Animal, Universidade Federal de Viçosa, 36570-000, Viçosa, Brazil. E-mail: [email protected] 2Systematic Entomology Laboratory, Agricultural Research Service, United States Department of Agriculture, c/o National Museum of Natural History, Smithsonian Institution, Washington, D.C., USA. E-mail: [email protected] Table of contents Abstract . 3 Introduction . 3 Material and methods . 4 Minas Gerais geography . 4 Taxonomic synopsis . 5 Subfamily Bryocorinae Baerensprung . 5 Key to Minas Gerais Tribes of Bryocorinae . 5 Tribe Bryocorini Baerensprung . 6 Genus Monalocoris Dahlbom . 6 Key to species of Monalocoris of Minas Gerais . 6 Monalocoris carioca Carvalho and Gomes . 6 Monalocoris pallidiceps (Reuter) . 6 Tribe Dicyphini Reuter . 7 Key to the genera of Dicyphini of Minas Gerais . 7 Genus Campyloneuropsis Poppius . 7 Key to Minas Gerais species of Campyloneuropsis . 7 Campyloneuropsis infumatus (Carvalho) . 7 Campyloneuropsis nigroculatus (Carvalho) . 8 Genus Engytatus Reuter . 8 Key to the Minas Gerais species of Engytatus . 8 Engytatus modestus (Distant) . 8 Engytatus varians (Distant) . 9 Genus Macrolophus Fieber . 9 Key to Minas Gerais species of Macrolophus . 9 Macrolophus aragarsanus Carvalho . 10 Macrolophus basicornis (Stål) . 10 Macrolophus cuibanus Carvalho . 10 Macrolophus praeclarus (Distant) . 11 Genus Tupiocoris China and Carvalho . 11 Key to the Minas Gerais species of Tupiocoris. 11 Tupiocoris cucurbitaceus (Spinola) .
    [Show full text]
  • Research Article Ecological Observations of Native Geocoris Pallens and G
    Hindawi Publishing Corporation Psyche Volume 2013, Article ID 465108, 11 pages http://dx.doi.org/10.1155/2013/465108 Research Article Ecological Observations of Native Geocoris pallens and G. punctipes Populations in the Great Basin Desert of Southwestern Utah Meredith C. Schuman, Danny Kessler, and Ian T. Baldwin Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoll-Straße¨ 8, 07745 Jena, Germany Correspondence should be addressed to Ian T. Baldwin; [email protected] Received 5 November 2012; Accepted 16 April 2013 Academic Editor: David G. James Copyright © 2013 Meredith C. Schuman et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Big-eyed bugs (Geocoris spp. Fallen,´ Hemiptera: Lygaeidae) are ubiquitous, omnivorous insect predators whose plant feeding behavior raises the question of whether they benefit or harm plants. However, several studies have investigated both the potential of Geocoris spp. to serve as biological control agents in agriculture and their importance as agents of plant indirect defense in nature. These studies have demonstrated that Geocoris spp. effectively reduce herbivore populations and increase plant yield. Previous work has also indicated that Geocoris spp. respond to visual and olfactory cues when foraging and choosing their prey and that associative learning of prey and plant cues informs their foraging strategies. For these reasons, Geocoris spp. have become models for the study of tritrophic plant-herbivore-predator interactions. Here, we present detailed images and ecological observations of G. pallens Stal˚ and G.
    [Show full text]
  • Thaumastocoris Peregrinus, a Pest of Eucalyptus
    Mothers in the woods: Multitrophic interactions and oviposition preference in the bronze bug Thaumastocoris peregrinus, a pest of Eucalyptus. Gonzalo Martínez Thesis committee Promotor Prof. Dr Marcel Dicke Professor of Entomology Wageningen University & Research Co-promotor Dr Andrés González Associate Professor, Laboratory of Chemical Ecology Universidad de la República, Uruguay Other members Prof. Dr Jaap Bakker, Wageningen University & Research Prof. Dr Vanda H.P. Bueno, University of São Paulo, Brazil Dr Nina E. Fatouros, Wageningen University & Research Dr Astrid T. Groot, University of Amsterdam This research was conducted under the auspices of the C. T. de Wit Graduate School for Production Ecology & Resource Conservation. Mothers in the woods: Multitrophic interactions and oviposition preference in the bronze bug Thaumastocoris peregrinus, a pest of Eucalyptus. Gonzalo Martínez Thesis submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus, Prof. Dr A.P.J. Mol, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Tuesday 17 October 2017 at 1:30 p.m. in the Aula. Gonzalo Martínez Mothers in the woods: Multitrophic interactions and oviposition preference in the bronze bug Thaumastocoris peregrinus, a pest of Eucalyptus, 176 pages. PhD thesis, Wageningen University, Wageningen, the Netherlands (2017) With references, with summaries in English and Spanish ISBN: 978-94-6343-678-6 DOI: 10.18174/421937 …um leve
    [Show full text]
  • Cytokinin Transfer by a Free-Living Mirid to Nicotiana Attenuata
    1 Cytokinin transfer by a free-living mirid to Nicotiana attenuata 2 recapitulates a strategy of endophytic insects 3 4 AUTHORS: Christoph Brütting1#, Cristina M. Crava1,2#, Martin Schäfer1,3, Meredith C. 5 Schuman1,4, Stefan Meldau1,5, Nora Adam 1,4,6 and Ian T. Baldwin1* 6 AFFILIATIONS: 7 1Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Hans Knöll 8 Str. 8, 07745 Jena, Germany 9 2Current address: University of Pavia, Department of Biology and Biotechnology, via Ferrata 10 9, 27100 Pavia, Italy 11 3Current address: University of Münster, Institute for Evolution and Biodiversity, Huefferstr. 12 1, 48149 Münster, Germany 13 4German Centre for Integrative Biodiversity Research (iDiv), Deutscher Platz 5e, 04103 14 Leipzig, Germany 15 5Current address: Research & Development, Molecular Physiology, KWS SAAT SE, 16 Grimsehlstr. 31, 37555 Einbeck, Germany 17 6Current address: Max Planck Institute for Chemical Ecology, Research Group Sequestration 18 and Detoxification in Insects, Hans Knöll Str. 8, 07745 Jena, Germany 19 20 # Equal contribution 21 *Correspondence to: [email protected] 22 1 23 ABSTRACT 24 Endophytic insects provide the textbook examples of herbivores that manipulate their host plant’s 25 physiology, putatively altering source/sink relationships by transferring cytokinins (CK) to create 26 “green islands” that increase the nutritional value of infested tissues. However, unambiguous 27 demonstrations of CK transfer are lacking. Here we show that feeding by the free-living herbivore 28 Tupiocoris notatus on Nicotiana attenuata is characterized by stable nutrient levels, increased CK 29 levels and alterations in CK-related transcript levels in attacked leaves, in striking similarity to 30 endophytic insects.
    [Show full text]
  • Cytokinin Transfer by a Free-Living Mirid to Nicotiana Attenuata
    RESEARCH ARTICLE Cytokinin transfer by a free-living mirid to Nicotiana attenuata recapitulates a strategy of endophytic insects Christoph Bru¨ tting1†, Cristina Maria Crava1†‡, Martin Scha¨ fer1§, Meredith C Schuman1,2, Stefan Meldau1#, Nora Adam1,2¶, Ian T Baldwin1* 1Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany; 2German Centre for Integrative Biodiversity Research, Leipzig, Germany Abstract Endophytic insects provide the textbook examples of herbivores that manipulate their host plant’s physiology, putatively altering source/sink relationships by transferring cytokinins (CK) *For correspondence: to create ‘green islands’ that increase the nutritional value of infested tissues. However, [email protected] unambiguous demonstrations of CK transfer are lacking. Here we show that feeding by the free- †These authors contributed living herbivore Tupiocoris notatus on Nicotiana attenuata is characterized by stable nutrient levels, equally to this work increased CK levels and alterations in CK-related transcript levels in attacked leaves, in striking 15 6 ‡ similarity to endophytic insects. Using N-isotope labeling, we demonstrate that the CK N - Present address: Department of Biology and Biotechnology, isopentenyladenine (IP) is transferred from insects to plants via their oral secretions. In the field, T. University of Pavia, Pavia, Italy; notatus preferentially attacks leaves with transgenically increased CK levels; plants with abrogated §Institute for Evolution and CK-perception are less tolerant
    [Show full text]
  • Drosophila | Other Diptera | Ephemeroptera
    NATIONAL AGRICULTURAL LIBRARY ARCHIVED FILE Archived files are provided for reference purposes only. This file was current when produced, but is no longer maintained and may now be outdated. Content may not appear in full or in its original format. All links external to the document have been deactivated. For additional information, see http://pubs.nal.usda.gov. United States Department of Agriculture Information Resources on the Care and Use of Insects Agricultural 1968-2004 Research Service AWIC Resource Series No. 25 National Agricultural June 2004 Library Compiled by: Animal Welfare Gregg B. Goodman, M.S. Information Center Animal Welfare Information Center National Agricultural Library U.S. Department of Agriculture Published by: U. S. Department of Agriculture Agricultural Research Service National Agricultural Library Animal Welfare Information Center Beltsville, Maryland 20705 Contact us : http://awic.nal.usda.gov/contact-us Web site: http://awic.nal.usda.gov Policies and Links Adult Giant Brown Cricket Insecta > Orthoptera > Acrididae Tropidacris dux (Drury) Photographer: Ronald F. Billings Texas Forest Service www.insectimages.org Contents How to Use This Guide Insect Models for Biomedical Research [pdf] Laboratory Care / Research | Biocontrol | Toxicology World Wide Web Resources How to Use This Guide* Insects offer an incredible advantage for many different fields of research. They are relatively easy to rear and maintain. Their short life spans also allow for reduced times to complete comprehensive experimental studies. The introductory chapter in this publication highlights some extraordinary biomedical applications. Since insects are so ubiquitous in modeling various complex systems such as nervous, reproduction, digestive, and respiratory, they are the obvious choice for alternative research strategies.
    [Show full text]
  • Transcriptome Profiling Reveals Differential Gene Expression of Detoxification Enzymes in a Hemimetabolous Tobacco Pest After Fe
    Crava et al. BMC Genomics (2016) 17:1005 DOI 10.1186/s12864-016-3348-0 RESEARCH ARTICLE Open Access Transcriptome profiling reveals differential gene expression of detoxification enzymes in a hemimetabolous tobacco pest after feeding on jasmonate-silenced Nicotiana attenuata plants Cristina M. Crava1,2, Christoph Brütting1 and Ian T. Baldwin1* Abstract Background: The evolutionary arms race between plants and insects has driven the co-evolution of sophisticated defense mechanisms used by plants to deter herbivores and equally sophisticated strategies that enable phytophagous insects to rapidly detoxify the plant’s defense metabolites. In this study, we identify the genetic determinants that enable the mirid, Tupiocoris notatus, to feed on its well-defended host plant, Nicotiana attenuata,anoutstandingmodel for plant-insect interaction studies. Results: We used an RNAseq approach to evaluate the global gene expression of T. notatus after feeding on a transgenic N. attenuata line which does not accumulate jasmonic acid (JA) after herbivory, and consequently accumulates very low levels of defense metabolites. Using Illumina sequencing, we generated a de novo assembled transcriptome which resulted in 63,062 contigs (putative transcript isoforms) contained in 42,610 isotigs (putative identified genes). Differential expression analysis based on RSEM-estimated transcript abundances identified 82 differentially expressed (DE) transcripts between T. notatus fed on wild-type and the defenseless plants. The same analysis conducted with Corset-estimated transcript abundances identified 59 DE clusters containing 85 transcripts. In both analyses, a larger number of DE transcripts were found down-regulated in mirids feeding on JA-silenced plants (around 70%). Among these down-regulated transcripts we identified seven transcripts possibly involved in the detoxification of N.
    [Show full text]
  • Ultraviolet-B Enhances the Resistance of Multiple Plant Species To
    www.nature.com/scientificreports OPEN Ultraviolet-B enhances the resistance of multiple plant species to lepidopteran insect herbivory Received: 15 June 2017 Accepted: 14 December 2017 through the jasmonic acid pathway Published: xx xx xxxx Jinfeng Qi1, Mou Zhang2, Chengkai Lu1, Christian Hettenhausen1, Qing Tan1, Guoyan Cao1, Xudong Zhu3, Guoxing Wu2 & Jianqiang Wu 1 Land plants protect themselves from ultraviolet-B (UV-B) by accumulating UV-absorbing metabolites, which may also function as anti-insect toxins. Previous studies have shown that UV-B enhances the resistance of diferent plant species to pierce-sucking pests; however, whether and how UV-B infuences plant defense against chewing caterpillars are not well understood. Here we show that UV-B treatment increased Spodoptera litura herbivory-induced jasmonic acid (JA) production in Arabidopsis and thereby Arabidopsis exhibited elevated resistance to S. litura. Using mutants impaired in the biosynthesis of JA and the defensive metabolites glucosinolates (GSs), we show that the UV-B-induced resistance to S. litura is dependent on the JA-regulated GSs and an unidentifed anti-insect metabolite(s). Similarly, UV-B treatment also enhanced the levels of JA-isoleucine conjugate and defense-related secondary metabolites in tobacco, rice, and maize after these plants were treated with simulated herbivory of lepidopteran insects; consistently, these plants showed elevated resistance to insect larvae. Using transgenic plants impaired in JA biosynthesis or signaling, we further demonstrate that the UV-B- enhanced defense responses also require the JA pathway in tobacco and rice. Our fndings reveal a likely conserved JA-dependent mechanism by which UV-B enhances plant defense against lepidopteran insects.
    [Show full text]
  • Plant Bugs Predators (Hemiptera: Heteroptera: Miridae) with References to Arthropods and Fungi in Brazil
    Anais da Academia Brasileira de Ciências (2019) 91(3): e20181194 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 http://dx.doi.org/10.1590/0001-3765201920181194 www.scielo.br/aabc | www.fb.com/aabcjournal Plant Bugs Predators (Hemiptera: Heteroptera: Miridae) with References to Arthropods and Fungi in Brazil BÁRBARA C.F. NOGUEIRA1, PAULO S.F. FERREIRA1, LÍVIA A. COELHO2, DAVID S. MARTINS2 and BÁRBARA D. BARCELLOS1 1Universidade Federal de Viçosa, Departamento de Biologia Animal, Avenida Peter Henry Rolfs, s/n, 36570-000 Viçosa, MG, Brazil 2Universidade Federal de Viçosa, Departamento de Entomologia, Avenida Peter Henry Rolfs, s/n, 36570-000 Viçosa, MG, Brazil Manuscript received on November 12, 2018; accepted for publication on January 31, 2019 How to cite: NOGUEIRA BCF, FERREIRA PSF, COELHO LA, MARTINS DS AND BARCELLOS BD. 2019. Plant Bugs Predators (Hemiptera: Heteroptera: Miridae) with References to Arthropods and Fungi in Brazil. An Acad Bras Cienc 91: e20181194. DOI 10.1590/0001-3765201920181194. Abstract: The present study demonstrates 30 plant bugs species associated with 50 records of prey and six records of mycophagy for Brazil. The data were compiled from Schuh’s Catalog, the literature, specimens deposited in entomology museums and exemplars from different regions of Brazil sent for identification. Some of the data from the literature used did not presented complete information. This study aims to increase the knowledge of the relationships among plant bugs, prey and fungi and emphasize those species with potential for biological control strategies and pest integrated management. Key words: arthropod, fungi, insect, prey.
    [Show full text]
  • PBESA 2003 Program
    + PACIFIC BRANCH PROGRAM ENTOMOLOGICAL SOCIETY OF AMERICA Sunday, March 23 President Registration Kurt Volker Ballroom Foyer Syngenta, 7610 Scenic Drive, Yakima, WA. 2:00 p.m. - 8:00 p.m. President-Elect Pacific Branch Executive Committee Meeting Diane G. Alston Ironwood Department of Biology, Utah State University, ENTOMOLOGICAL 5:00 p.m. - 7:00 p.m. Bozeman, MT. SOCIETY Past-President Monday, March 24 OF AMERICA Frank G. Zalom Eighty-Seventh Department of Entomology, University of Opening Session and Preliminary Business California, Davis, CA. Meeting Annual Meeting Salon DE Secretary-Treasurer 8:30 a.m. - 10:45 a.m. Brian Bret Dow AgroSciences, Sacramento, CA. 8:30 Welcome and Opening Remarks Kurt Volker, President, Pacific Branch, Representative on the Governing Board Entomological Society of America John D. Stark Washington State University, Puyallup, WA. 8:40 Report From the National Organization Z. B. Mayo, Jr., President, Entomological Executive Committee Members at Large Society of America, University of Nebraska, Stephen C. Welter, University of California at Department of Entomology, Lincoln, NE. Berkeley (2003) Sue L. Blodgett, Montana State University 8:55 Report From the Governing Board (2003) John D. Stark, Representative, Pacific James B. Johnson, University of Idaho (2004) Branch Ross H. Miller, University of Guam (2004) (2005) 9:05 Entomological Foundation Presentation (2005) Robert K. Washino, Foundation Counselor, Future Meetings University of California, Davis, CA. Kurt Volker Bozeman, MT – 2004 President Monterey, CA – 2005 9:15 2002 Woodworth Award Winner Presentation Aphids and the aphid-attacking parasitoids of the Pacific Northwest: diversity, DoubleTree Hotel at Reid Park relationships, and interactions. Keith S.
    [Show full text]