Pmas Article Ar
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
List of Rivers of Mongolia
Sl. No River Name Russian Name Draining Into 1 Yenisei River Russia Arctic Ocean 2 Angara River Russia, flowing out of Lake Baikal Arctic Ocean 3 Selenge River Сэлэнгэ мөрөн in Sükhbaatar, flowing into Lake Baikal Arctic Ocean 4 Chikoy River Arctic Ocean 5 Menza River Arctic Ocean 6 Katantsa River Arctic Ocean 7 Dzhida River Russia Arctic Ocean 8 Zelter River Зэлтэрийн гол, Bulgan/Selenge/Russia Arctic Ocean 9 Orkhon River Орхон гол, Arkhangai/Övörkhangai/Bulgan/Selenge Arctic Ocean 10 Tuul River Туул гол, Khentii/Töv/Bulgan/Selenge Arctic Ocean 11 Tamir River Тамир гол, Arkhangai Arctic Ocean 12 Kharaa River Хараа гол, Töv/Selenge/Darkhan-Uul Arctic Ocean 13 Eg River Эгийн гол, Khövsgöl/Bulgan Arctic Ocean 14 Üür River Үүрийн гол, Khövsgöl Arctic Ocean 15 Uilgan River Уйлган гол, Khövsgöl Arctic Ocean 16 Arigiin River Аригийн гол, Khövsgöl Arctic Ocean 17 Tarvagatai River Тарвагтай гол, Bulgan Arctic Ocean 18 Khanui River Хануй гол, Arkhangai/Bulgan Arctic Ocean 19 Ider River Идэр гол, Khövsgöl Arctic Ocean 20 Chuluut River Чулуут гол, Arkhangai/Khövsgöl Arctic Ocean 21 Suman River Суман гол, Arkhangai Arctic Ocean 22 Delgermörön Дэлгэрмөрөн, Khövsgöl Arctic Ocean 23 Beltes River Бэлтэсийн Гол, Khövsgöl Arctic Ocean 24 Bügsiin River Бүгсийн Гол, Khövsgöl Arctic Ocean 25 Lesser Yenisei Russia Arctic Ocean 26 Kyzyl-Khem Кызыл-Хем Arctic Ocean 27 Büsein River Arctic Ocean 28 Shishged River Шишгэд гол, Khövsgöl Arctic Ocean 29 Sharga River Шарга гол, Khövsgöl Arctic Ocean 30 Tengis River Тэнгис гол, Khövsgöl Arctic Ocean 31 Amur River Russia/China -
Mongolian Vision Tours
Mongolian Vision Tours FROM DESERT TO STEPPE Nomadic Mongolia waits for you in this tour in the heart of the nomadic life. From family to family, you will start your horse trek tour by the green Orkhon Valley, before going deeper in the remote area of Naiman Nuur. Then you'll go towards South, where the track disappears to give place to a legendary spot: the Gobi Desert, and the arid majesty of its lunar landscapes, with its towering rocky formations, frozen canyon and sand dunes. Day1. The granite formations of Baga Gazriin Chuluu Ulan Bator – Baga Gazriin Chuluu 250km Visit of Mountains Baga Gazriin Chuluu, where we'll observe stunning granite rock formations eroded by the violent elements of this area. In the 19th century, two respected lamas lived here, and we still can see their inscriptions in the rock. According to the legend, Genghis Khan to is supposed to have lived in this wonderful area where it's pleasant to walk. Stay overnight: Nomadic Family’s ger or tourist ger camp Day2. The great white stupa in the desert Baga Gazar Chuluu – white stupa 220km We travel in one of the emptiest areas of Mongolia. Between rock desert and semi-arid steppes, we reach the white stupa, Tsagaan Suvarga. For centuries, this 30-metre (98,43 feet) high, abrupt, stupa- shaped mountain, is honored by the Mongolians. The traveler will be surprised by the sumptuous lunar landscapes that evoke the end of the world, and by the many fossils. This area was totally covered by the sea a few million years ago. -
Part I Master Plan
PART I MASTER PLAN CHAPTER 1 INTRODUCTION I MASTER PLAN PART I MASTER PLAN CHAPTER 1 INTRODUCTION 1.1 Background of the Study In Mongolia some 50% of the total population of about 2.4 million are nomadic families. For the nomadic families Sum centers are key places for supplying their vital goods, and also for receiving public services such as administration, medical care, education, etc. As of November 1997, the electric power at 117 out of 314 Sum centers in total in Mongolia is being supplied from the national power transmission network. At the remaining 197 Sum centers, the electric power is supplied by the diesel engine generators by Sum center independently. Most of these diesels generating facilities were manufactured during the former Soviet Union era and installed long ago from 1963 to 1990. During the Social Republic era of the country, Mongolia depended on the Soviet Union for the supply of spare parts necessary for maintenance of the generating equipment and technical guidance. Due to the corruption of the Soviet Union's economy in 1991 and associated transition to a market economy, the following four factors caused troubles to the operation and maintenance of the Sum's generating facilities, i.e. (1) the lack of business operating senses, (2) the interruption of spare parts supply, (3) the lack of technical capability and (4) shortage of management budget. The operation of much equipment has been obliged to be kept stopped after failure, as operators cannot repair them. The affected generation quantity, and aggravated the conditions of daily lives of people in Sum center and caused serious effects to the socio-economic activities of the Sum centers. -
MONGOLIA Environmental Monitor 2003 40872
MONGOLIA Environmental Monitor 2003 40872 THE WORLD BANK 1818 H Street, NW Washington, D. C. 20433 U.S.A. Public Disclosure AuthorizedPublic Disclosure Authorized Tel: 202-477-1234 Fax: 202-477-6391 Telex: MCI 64145 WORLDBANK MCI 248423 WORLDBANK Internet: http://worldbank.org THE WORLD BANK MONGOLIA OFFICE Ulaanbaatar, 11 A Peace Avenue Ulaanbaatar 210648, Mongolia Public Disclosure AuthorizedPublic Disclosure Authorized Public Disclosure AuthorizedPublic Disclosure Authorized Public Disclosure AuthorizedPublic Disclosure Authorized THE WORLD BANK ENVIRONMENT MONITOR 2003 Land Resources and Their Management THE WORLD BANK CONTENTS PREFACE IV ABBREVIATIONS AND ACRONYMS V SECTION I: PHYSICAL FEATURES OF LAND 2 SECTION II: LAND, POVERTY, AND LIVELIHOODS 16 SECTION III: LEGAL AND INSTITUTIONAL DIMENSIONS OF LAND MANAGEMENT 24 SECTION IV: FUTURE CHALLENGES 32 MONGOLIA AT A GLANCE 33 NOTES 34 The International Bank for Reconstruction and Development / THE WORLD BANK 1818 H Street, NW Washington, DC 20433 The World Bank Mongolia Office Ulaanbaatar, 11 A Peace Avenue Ulaanbaatar 210648, Mongolia All rights reserved. First printing June 2003 This document was prepared by a World Bank Team comprising Messrs./Mmes. Anna Corsi (ESDVP), Giovanna Dore (Task Team Leader), Tanvi Nagpal, and Tony Whitten (EASES); Robin Mearns (EASRD); Yarissa Richmond Lyngdoh (EASUR); H. Ykhanbai (Mongolia Ministry of Nature and Environment). Jeffrey Lecksell was responsible for the map design. Photos were taken by Giovanna Dore and Tony Whitten. Cover and layout design were done by Jim Cantrell. Inputs and comments by Messrs./Mmes. John Bruce (LEGEN), Jochen Becker, Gerhard Ruhrmann (Rheinbraun Engineering und Wasser - GmbH), Nicholas Crisp, John Dick, Michael Mullen (Food and Agriculture Organization), Clyde Goulden (Academy of Natural Sciences, Philadelphia), Hans Hoffman (GTZ), Glenn Morgan, Sulistiovati Nainggolan (EASES), and Vera Songwe (EASPR) are gratefully acknowledged. -
Relict Topography Within the Hangay Mountains in Central Mongolia: 2 Quantifying Long-Term Exhumation and Relief Change in an Old Landscape 3 4 Kalin T
1 Relict topography within the Hangay Mountains in central Mongolia: 2 Quantifying long-term exhumation and relief change in an old landscape 3 4 Kalin T. McDannella,b*, Peter K. Zeitlera, and Bruce D. Idlemana 5 6 aDepartment of Earth & Environmental Sciences, Lehigh University, 1 W Packer Ave., Bethlehem, PA 18015, USA 7 8 bNatural Resources Canada, Geological Survey of Canada, 3303 33 St NW, Calgary, AB T2L 2A7 9 10 Corresponding author: [email protected] 11 12 Key Points 13 ° New bedrock and detrital apatite (U-Th)/He cooling ages were determined for the Hangay 14 Mountains and central Mongolia 15 ° Thermo-kinematic modeling suggests relief change in the Mesozoic with slow exhumation 16 rates on the order of <20 m/My since the Cretaceous 17 ° Coupled Pecube-Neighborhood Algorithm modeling is successfully applied in a slowly 18 eroding setting 19 20 Abstract 21 The Hangay Mountains are a high-elevation, low-relief landscape within the greater Mongolian 22 Plateau of central Asia. New bedrock apatite (U-Th)/He single-grain ages from the Hangay span 23 ~70 to 200 Ma, with a mean of 122.7 ± 24.0 Ma (2σ). Detrital apatite samples from the Selenga 24 and Orkhon Rivers, north of the mountains, yield dominant (U-Th)/He age populations of ~115 25 to 130 Ma, as well as an older population not seen in the Hangay granitic bedrock data. These 26 low-temperature data record regional exhumation of central Mongolia in the Mesozoic followed 27 by limited erosion of <1-2 km since the Cretaceous, ruling out rapid exhumation of this 28 magnitude associated with any late Cenozoic uplift. -
Final Report-V4.0-20200919
UNDP GEF (ENSURE) Ensuring Sustainability and Resilience of Green Landscapes in Mongolia Project Provision of service to conduct a Market Assessment for Project Landscapes and Assist Community Groups with Market Planning Final report October 2019 – June 2020 Prepared by Marketing Team, Nisadon LLC 22 July 2020 1 Contents I. Summary ............................................................................................................................ 4 II. Deliverables ........................................................................................................................ 5 III. Methodology .................................................................................................................... 6 IV. Social and economic assessment .................................................................................... 8 V. Market assessment and livelihoods....................................................................................19 VI. Other topics ....................................................................................................................28 1. Green finance .................................................................................................................28 2. Sharing access and benefit ............................................................................................31 3. Learning from local community .......................................................................................32 VII. Business planning ..........................................................................................................33 -
Initial Environmental Examination (DRAFT)
Ensuring Inclusiveness and Service Delivery for Persons with Disabilities (RRP MON 48076) Initial Environmental Examination (DRAFT) November 2017 MONGOLIA: Ensuring Inclusiveness and Service Delivery for Persons with Disabilities Project Prepared by the Ministry of Labor and Social Protection for the Asian Development Bank. CURRENCY EQUIVALENTS (as of 17 October 2017) Currency unit – togrog (MNT) MNT1.00 = $0.0004 $1.00 = MNT 2,459.50 ABBREVIATIONS ACM – asbestos-containing material ADB – Asian Development Bank ASI – agency for specialized inspection CWD – child with disabilities DEIA – detailed environmental impact assessment DPO – disabled people’s organization EA – executing agency EEE – external environmental expert EIA – environmental impact assessment EMP – environment management plan ES – environmental specialist GASI – general agency for specialized inspection GEIA – general environmental impact assessment GIC – grant implementation consultant GoM – Government of Mongolia GRM – grievance redress mechanism IEE – initial environmental examination IEM – independent environment monitor IFC – International Finance Corporation HSMP – Health and Safety Management Plan LEED – United States Green Building Council’s Leadership in Energy and Environmental Design MECS – Ministry of Education, Culture, Science and Sports MEGD – Ministry of Environment and Green Development MLSP – Ministry of Labor and Social Protection MNS – Mongolian national standards MOH – Ministry of Health NGO – nongovernmental organization PCU – project complaint unit PIU – project implementation unit PSC – project steering committee PWD – person with disabilities TA – technical assistance UB – Ulaanbaatar WEIGHTS AND MEASURES °C – degree Celsius dB – decibel km – kilometer kWh – kilowatt hour m – meter GLOSSARY aimag – province soum – aimag subdistrict khoroo – Ulaanbaatar subdistrict NOTES In the report, “$” refers to US dollars. This initial environment examination is a document of the borrower. -
Crossing Boundaries
Cambridge University Press 978-1-107-00090-2 - Living with Herds: Human-Animal Coexistence in Mongolia Natasha Fijn Excerpt More information PART ONE CROSSING BOUNDARIES © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-1-107-00090-2 - Living with Herds: Human-Animal Coexistence in Mongolia Natasha Fijn Excerpt More information Map P.1. Mongolia, including the location of Arkhangai (west) and Bulgan (north-west) field sites in relation to the capital of Ulaanbaatar. (Source: Created by Dr. Shawn Laffan, University of New South Wales, 2010.) © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-1-107-00090-2 - Living with Herds: Human-Animal Coexistence in Mongolia Natasha Fijn Excerpt More information PROLOGUE LIFE IN THE KHANGAI MOUNTAINS Farming and city-building peoples have always looked down on nomads as “primitive”...butthisdoesnotmeanthatnomadshavereciprocatedbylooking up to the city and farm. Far from it. There is a strong tradition among nomads that they are people who have made themselves free from the drudgery of the peasant and the shut-in life of the city dweller. (Lattimore 1962: 34) FIRST IMPRESSIONS OF MONGOLIA I could see the Soviet influence on the buildings in Mongolia, as a former satellite state of the Soviet Union. The Mongolian capital’s expansive main square was flanked by parliament on one side and a drama theatre with an imposing fac¸ade and huge concrete columns on another. Every drab apart- ment block had the same basic design with thick double doors and double- glazed windows. This environment was very different from my expectations of a Mongolia with no locks on brightly painted ger doors and sparse, expan- sive grasslands. -
ABSTRACT BAYASGALAN, GANTULGA. Late Cenozoic Landscape Evolution in the Khangay Mountains, Mongolia
ABSTRACT BAYASGALAN, GANTULGA. Late Cenozoic Landscape Evolution in the Khangay Mountains, Mongolia. (Under the direction of Dr. Karl W. Wegmann). Timing, rates, and systems responsible for uplift of intracontinental mountain ranges provide insight into the creation of high-elevation regions on Earth that are distant from active plate tectonic margins. The Khangay Mountains in central Mongolia is an intriguing research site that is suitable for investigating the timing of geologic processes responsible for topographic uplift and the development of continental scale drainage patterns, as well as the climatic-geomorphic responses to such. This dissertation focuses on defining shallow crustal and surficial processes contributing to the development of the Khangay Mountains at both short and long topographic wavelengths, as well as the topographic evolution of the range. The first chapter of this dissertation focuses on cross-strike drainage development via the formation and capture of small tectonic basins (lakes) in front of an active thrust known as the Bayankhongor fault along the southern flank of the Khangay Mountains. The field research site contains ample geomorphological features that I will use to reconstruct the interplay between surface uplift by faulting, temporary formation of lakes in footwall basins and fluvial incision. Although ultimately these landforms (e.g. water gaps) reflect the defeat of rivers during sustained rock uplift, the role of climate oscillations in their formation is an underexplored topic. I used a coupled tectonics–landscape evolution-climate change model to test the hypothesis that a ~130 km2 late Quaternary lake in the Galuut Valley along the southern flank of the Khangay Mountains drained, perhaps catastrophically. -
Survey of Medicinal Plants in the Khuvsgul and Khangai Mountain
Magsar et al. Journal of Ecology and Environment (2017) 41:16 Journal of Ecology DOI 10.1186/s41610-017-0034-3 and Environment SHORT COMMUNICATION Open Access Survey of medicinal plants in the Khuvsgul and Khangai Mountain regions of Mongolia Urgamal Magsar1, Kherlenchimeg Nyamsuren1, Solongo Khadbaatar1, Munkh-Erdene Tovuudorj1, Erdenetuya Baasansuren2, Tuvshintogtokh Indree1, Khureltsetseg Lkhagvadorj2 and Ohseok Kwon3* Abstract We report the species of medicinal plants collected in Khuvsgul and Khangai Mountain regions of Mongolia. Of the vascular plants that occur in the study region, a total of 280 medicinal plant species belonging to 164 genera from 51 families are reported. Of these, we collected voucher specimen for 123 species between June and August in the years 2015 and 2016. The families Asteraceae (46 species), Fabaceae (37 species), and Ranunculaceae (37 species) were represented most in the study area, while Astragalus (21 species), Taraxacum (20 species), and Potentilla (17 species) were the most common genera found. Keywords: Medicinal plants, Khuvsgul and Khangai mountains, Phytogeographical region, Mongolia Background glacier, is situated in Central Mongolia. From this region, Mongolia occupies an ecological transition zone in Central the Khangai range splits and continues as the Bulnai, the Asia where the Siberian Taiga forest, the Altai Mountains, Tarvagatai, and the Buren mountain ranges. The point Central Asian Gobi Desert, and the grasslands of the where it splits represents the Khangai Mountain. Eastern Mongolian steppes meet. Mongolia has some of Systematic exploratory studies including those on medi- the world’s highest mountains and with an average eleva- cinal plant resources were undertaken from the 1940s when tion of 1580 m is one of the few countries in the world the Government of Mongolia invited Russian scientists that is located at a high elevation. -
Impact of Land Uses on Heavy Metal Distribution in the Selenga River System in Mongolia
Environ Earth Sci (2017) 76:346 DOI 10.1007/s12665-017-6664-z ORIGINAL ARTICLE Impact of land uses on heavy metal distribution in the Selenga River system in Mongolia 1 1 2 Orgilbold Myangan • Masayuki Kawahigashi • Bolormaa Oyuntsetseg • Nobuhide Fujitake3 Received: 26 September 2016 / Accepted: 25 April 2017 / Published online: 9 May 2017 Ó Springer-Verlag Berlin Heidelberg 2017 Abstract The Selenga River contributes to 50% of the total heavy metals (Zn, Cu, and Cr) appeared in high concentrations inflow to Lake Baikal. Large tracts of the Selenga River Basin downstream of urban and mining areas (two- to sixfold have been developed for industry, urbanization, mining, and increases), indicating that these contaminants are carried by SS. agriculture, resulting in the release of suspended solids (SS) At two tributary junctions, the concentration of contaminants that affect downstream water quality and primary productivity. on the SS decreased due to a large influx of SS with low heavy This study addressed SS as the main factor controlling pollutant metal contents. Changes in electric conductivity and pH at transport and the primary indicator of land degradation in the downstream of tributary junctions enhanced the sedimentation Selenga River system. Tributaries with larger areas dedicated of SS and the removal of contaminants from the water phase to agricultural use had higher SS concentrations, reaching after aggregation of the SS. Land use changes in the tributary 862 mg L-1, especially during the high runoff and intensive watersheds are major controlling factors for the fate of con- cultivation season. Although the large SS flux was detected in taminants in the river system. -
Geothermal Resources in Mongolia and Potential Uses
GEOTHERMAL TRAINING PROGRAMME Reports 2001 Orkustofnun, Grensásvegur 9, Number 15 IS-108 Reykjavík, Iceland GEOTHERMAL RESOURCES IN MONGOLIA AND POTENTIAL USES Batbayar Tseesuren Renewable Energy Corporation, P.O. Box 479, Ulaanbaatar 210136, MONGOLIA ABSTRACT This paper presents an overview of surveys on geothermal energy that have been made in Mongolia to date and explores possibilities for its use. Mongolia has geothermal resources but geothermal utilization is not widely developed. Hot springs are though used for bathing, health resorts (balneology) and to a small amount for greenhouse heating. The main region of geothermal activity is Khangai, where there are 3 aimag (province) centres and 44 soum (village) centres, with approximately 241,000 people. Most of them are without electricity, using diesel generation in the evenings for 5-6 hours because of high oil costs. Coal and wood are used for heating. Using geothermal energy for heating, electrical generation and industrial purposes are the main incentives for developing a geothermal infrastructure in the rural areas of Mongolia. Bearing in mind that the Mongolian main gross domestic products come from animal husbandry, good possibilities are also to use geothermal energy for wool and cashmere washing and drying. 1. INTRODUCTION Mongolia is situated in the northern part of Central Asia, far from the oceans, on a high plateau surrounded by mountain ridges. The mountainous country’s mean elevation is 1580m above sea level. Mongolia consists of 22 aimags or province (approx. 50,000-110,000 people in each aimag), and each aimag consists of 12-22 soums (each soum or village has approx. 4,000-5,000 people).