Genetic Characterization of the California Leaf-Nosed Bat (Macrotus Californicus) Along the Lower Colorado River, Final Report

Total Page:16

File Type:pdf, Size:1020Kb

Genetic Characterization of the California Leaf-Nosed Bat (Macrotus Californicus) Along the Lower Colorado River, Final Report Genetic Characterization of the California Leaf-nosed Bat (Macrotus californicus) Along the Lower Colorado River Final Report February 2019 Work conducted under LCR MSCP Work Task C43 Lower Colorado River Multi-Species Conservation Program Steering Committee Members Federal Participant Group California Participant Group Bureau of Reclamation California Department of Fish and Wildlife U.S. Fish and Wildlife Service City of Needles National Park Service Coachella Valley Water District Bureau of Land Management Colorado River Board of California Bureau of Indian Affairs Bard Water District Western Area Power Administration Imperial Irrigation District Los Angeles Department of Water and Power Palo Verde Irrigation District Arizona Participant Group San Diego County Water Authority Southern California Edison Company Arizona Department of Water Resources Southern California Public Power Authority Arizona Electric Power Cooperative, Inc. The Metropolitan Water District of Southern Arizona Game and Fish Department California Arizona Power Authority Central Arizona Water Conservation District Cibola Valley Irrigation and Drainage District Nevada Participant Group City of Bullhead City City of Lake Havasu City Colorado River Commission of Nevada City of Mesa Nevada Department of Wildlife City of Somerton Southern Nevada Water Authority City of Yuma Colorado River Commission Power Users Electrical District No. 3, Pinal County, Arizona Basic Water Company Golden Shores Water Conservation District Mohave County Water Authority Mohave Valley Irrigation and Drainage District Native American Participant Group Mohave Water Conservation District North Gila Valley Irrigation and Drainage District Hualapai Tribe Town of Fredonia Colorado River Indian Tribes Town of Thatcher Chemehuevi Indian Tribe Town of Wickenburg Salt River Project Agricultural Improvement and Power District Unit “B” Irrigation and Drainage District Conservation Participant Group Wellton-Mohawk Irrigation and Drainage District Yuma County Water Users’ Association Ducks Unlimited Yuma Irrigation District Lower Colorado River RC&D Area, Inc. Yuma Mesa Irrigation and Drainage District The Nature Conservancy Other Interested Parties Participant Group QuadState Local Governments Authority Desert Wildlife Unlimited Lower Colorado River Multi-Species Conservation Program Genetic Characterization of the California Leaf-nosed Bat (Macrotus californicus) Along the Lower Colorado River Final Report Prepared by: Jeff Hill, Wildlife Group Lower Colorado River Multi-Species Conservation Program Bureau of Reclamation Lower Colorado Region Boulder City, Nevada http://www.lcrmscp.gov February 2019 Hill, J. 2019. Genetic Characterization of the California Leaf-nosed Bat (Macrotus californicus) Along the Lower Colorado River, Final Report. Lower Colorado River Multi-Species Conservation Program, Bureau of Reclamation, Boulder City, Nevada. ACRONYMS AND ABBREVIATIONS AMOVA analysis of molecular variance BIC Bayesian information criterion DAPC Discriminant Analysis of Principal Components DNA deoxyribonucleic acid Fct among-group fixation index Fsc among-population within-group fixation index Fst among-population fixation index gDNA double-stranded genomic DNA IUCN International Union for the Conservation of Nature LCR lower Colorado River LCR MSCP Lower Colorado River Multi-Species Conservation Program mm millimeter(s) mtDNA mitochondrial deoxyribonucleic acid Ne effective population size NGS Next-generation sequencing PC principal component PCR polymerase chain reaction Symbols °C degrees Celsius > greater than < less than µL microliter(s) number π pi (θ) theta CONTENTS Page Abstract .................................................................................................................. iii Introduction ............................................................................................................. 1 Life History ............................................................................................................. 3 Distribution ....................................................................................................... 3 Physical Description and Taxonomic History .................................................. 3 Habitat, Foraging, and Reproduction ................................................................ 5 Conservation Status .......................................................................................... 5 Methods................................................................................................................... 6 Sample Collection and Sequencing .................................................................. 6 Genetic Analyses .............................................................................................. 8 Results ..................................................................................................................... 9 Sequencing ........................................................................................................ 9 Genetic Analyses ............................................................................................ 12 Discussion ............................................................................................................. 27 Literature Cited ..................................................................................................... 29 Tables Table Page 1 Mitochondrial haplotype list ..................................................................... 11 2 Whole genome sequencing results for six individuals .............................. 12 3 Microsatellites and associated primer information ................................... 12 4 Summary of chi-square test of Hardy-Weinberg equilibrium .................. 13 5 Mitochondrial pooled sequence statistics ................................................. 14 6 Sequence statistics for northern range samples ........................................ 14 7 Sequence statistics for southern range samples ........................................ 14 8 Mitochondrial AMOVA results ................................................................ 15 9 Microsatellite AMOVA results ................................................................. 16 10 Tajima’s neutrality test for all sample ...................................................... 17 11 Tajima’s neutrality test for northern range samples ................................. 17 12 Tajima’s neutrality test for southern range samples ................................. 17 i Figures Figure Page 1 International Union for the Conservation of Nature distribution map (Solari 2018) for the California leaf-nosed bat. .................................... 4 2 Sample localities of the California leaf-nosed bat. ..................................... 7 3 Mitochondrial haplotype map. .................................................................. 10 4 Mitochondrial median joining network. ................................................... 15 5 Matrix of pairwise Fst values for mitochondrial data. ............................... 18 6 Matrix of pairwise differences within and between populations, and Nei’s distance for mitochondrial data. ......................................... 19 7 Mismatch distribution for all mitochondrial samples (n = 99). ................ 20 8 Mismatch distribution for mitochondrial data from the United States (n = 76). .................................................................................... 21 9 Mismatch distribution for mitochondrial data from the Baja California Sur, Mexico, and Sonora, Mexico (n = 23). ...................... 22 10 Mean natural logarithm probability of microsatellite data for K = 1 to K = 20 across 20 runs. .......................................................... 23 11 STRUCTURE results for K = 2 clusters. .................................................. 23 12 Matrix of pairwise Fst values for microsatellite data. ............................... 24 13 Matrix of pairwise differences and Nei’s distance for microsatellite data. .............................................................................. 25 14 Scatterplot showing individuals colored by clusters with inertia ellipses (based on four PCs). ............................................................... 26 15 STRUCTURE type DAPC plot: Individual bars labeled by sample site (four PCs). ........................................................................ 26 Attachments Attachment 1 Supplemental Tables ii ABSTRACT This project aims to describe the current genetic diversity and demographic history of the California leaf-nosed bat (Macrotus californicus) along the lower Colorado River (LCR) and how populations along the river relate to the genetic diversity across the species’ range. By contributing knowledge of the poorly understood demographics of the California leaf-nosed bat, we hope to assist with future conservation considerations for the species. A total of 916 base pairs of the cytochrome b mitochondrial deoxyribonucleic acid (mtDNA) gene were sequenced for 102 individuals from 17 localities along the LCR, the Southwestern United States, Baja California Sur, Mexico, and northern mainland Mexico. There were 18 haplotypes identified across the range, with 5 haplotypes present in the samples taken from the LCR, and 3 haplotypes unique to the river. Sequence statistics for microsatellite data revealed higher genetic variation in samples from the southern portion of the range. Genotypic clustering analysis of 5 microsatellite
Recommended publications
  • Bat Echolocation Research a Handbook for Planning and Conducting Acoustic Studies Second Edition
    Bat Echolocation Research A handbook for planning and conducting acoustic studies Second Edition Erin E. Fraser, Alexander Silvis, R. Mark Brigham, and Zenon J. Czenze EDITORS Bat Echolocation Research A handbook for planning and conducting acoustic studies Second Edition Editors Erin E. Fraser, Alexander Silvis, R. Mark Brigham, and Zenon J. Czenze Citation Fraser et al., eds. 2020. Bat Echolocation Research: A handbook for planning and conducting acoustic studies. Second Edition. Bat Conservation International. Austin, Texas, USA. Tucson, Arizona 2020 This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License ii Table of Contents Table of Figures ....................................................................................................................................................................... vi Table of Tables ........................................................................................................................................................................ vii Contributing Authors .......................................................................................................................................................... viii Dedication…… .......................................................................................................................................................................... xi Foreword…….. ..........................................................................................................................................................................
    [Show full text]
  • BONNER ZOOLOGISCHE MONOGRAPHIEN, Nr
    © Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zoologicalbulletin.de; www.biologiezentrum.at NEW WORLD NECTAR-FEEDING BATS: BIOLOGY, MORPHOLOGY AND CRANIOMETRIC APPROACH TO SYSTEMATICS by ERNST-HERMANN SOLMSEN BONNER ZOOLOGISCHE MONOGRAPHIEN, Nr. 44 1998 Herausgeber: ZOOLOGISCHES FORSCHUNGSINSTITUT UND MUSEUM ALEXANDER KOENIG BONN © Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zoologicalbulletin.de; www.biologiezentrum.at BONNER ZOOLOGISCHE MONOGRAPHIEN Die Serie wird vom Zoologischen Forschungsinstitut und Museum Alexander Koenig herausgegeben und bringt Originalarbeiten, die für eine Unterbringung in den „Bonner zoologischen Beiträgen" zu lang sind und eine Veröffentlichung als Monographie rechtfertigen. Anfragen bezüglich der Vorlage von Manuskripten sind an die Schriftleitung zu richten; Bestellungen und Tauschangebote bitte an die Bibliothek des Instituts. This series of monographs, published by the Zoological Research Institute and Museum Alexander Koenig, has been established for original contributions too long for inclu- sion in „Bonner zoologische Beiträge". Correspondence concerning manuscripts for pubhcation should be addressed to the editor. Purchase orders and requests for exchange please address to the library of the institute. LTnstitut de Recherches Zoologiques et Museum Alexander Koenig a etabh cette serie de monographies pour pouvoir publier des travaux zoologiques trop longs pour etre inclus dans les „Bonner zoologische Beiträge". Toute correspondance concernante
    [Show full text]
  • Natural Infection with Trypanosoma Cruzi in Bats
    Biomédica 2021;41(Supl.1):131-40 Trypanosoma cruzi in bats from Yucatán and Campeche doi: https://doi.org/10.7705/biomedica.5450 Brief communication Natural infection with Trypanosoma cruzi in bats captured in Campeche and Yucatán, México Marco Torres-Castro1, Naomi Cuevas-Koh1, Silvia Hernández-Betancourt2, Henry Noh-Pech1, Erendira Estrella2, Belén Herrera-Flores2, Jesús A. Panti-May1, Etienne Waleckx1,5, Javier Sosa-Escalante3, Ronald Peláez-Sánchez4 1 Centro de Investigaciones Regionales “Dr. Hideyo Noguchi”, Campus de Ciencias de la Salud, Universidad Autónoma de Yucatán, Mérida, México 2 Facultad de Medicina Veterinaria y Zootecnia, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, México 3 Laboratorio DYMIGEN, Mérida, México 4 Grupo de Investigación en Ciencias Básicas, Escuela de Graduados, Universidad CES, Medellín, Colombia 5 Institut de Recherche pour le Développement, UMR INTERTRYP IRD, CIRAD, Université de Montpellier, Montpellier, France Introduction: Bats have been reported as hosts of the Trypanosoma cruzi protozoan, the etiologic agent of American trypanosomiasis, an endemic zoonotic disease in México. Objective: To describe T. cruzi infection in bats from the states of Campeche and Yucatán, México. Materials and methods: Captures were made from March to November, 2017, at three sites in Yucatán and one in Campeche. Up to four mist nets on two consecutive nights were used for the capture. The bats’ species were identified and euthanasia was performed to collect kidney and heart samples for total DNA extraction. Trypanosoma cruzi infection was detected by conventional PCR with the amplification of a fragment belonging to theT . cruzi DNA nuclear. Results: Eighty-six bats belonging to five families (Vespertilionidae, Noctilionidae, Mormoopidae, Phyllostomidae, and Molossidae) and 13 species (Rhogeessa aeneus, Received: 07/04/2020 Noctilio leporinus, Pteronotus davyi, P.
    [Show full text]
  • Male Condition and Group Heterogeneity Predict Extra-Group Paternity in a Neotropical Bat
    Behavioral Ecology and Sociobiology (2020) 74: 136 https://doi.org/10.1007/s00265-020-02919-9 ORIGINAL ARTICLE Male condition and group heterogeneity predict extra-group paternity in a Neotropical bat Danielle M. Adams1 & Gerald S. Wilkinson1 Received: 30 December 2019 /Revised: 6 October 2020 /Accepted: 12 October 2020 / Published online: 21 October 2020 # Springer-Verlag GmbH Germany, part of Springer Nature 2020 Abstract Extra-group paternity, in which offspring are sired by a male outside the breeding group, may alter the distribution of reproduc- tive success in a population, thus affecting the opportunity for sexual selection. Both inter- and intraspecific studies have focused largely on mating systems in which females choose their social mates, and less is known about extra-group paternity in polygynous systems in which social mates are largely dictated by male-male competition. In this study, we examine the frequency and distribution of extra-group paternity in a harem-forming bat, Phyllostomus hastatus. We find that despite aggres- sive harem defense, males are unable to fully monopolize reproduction within their harem and over 70% of harems contain extra- group offspring. Harem males in better body condition suffered less paternity loss, but we found no effect of male age or body size. Even though the age and size of individual females did not predict offspring paternity, we found a significant effect of age heterogeneity within the group. Harems composed of differently aged females were more likely to contain extra-group offspring. Our results not only provide evidence for the role of male defense in preventing extra-group paternity but also suggest that social group composition has consequences for male reproductive success.
    [Show full text]
  • BATS of the Golfo Dulce Region, Costa Rica
    MURCIÉLAGOS de la región del Golfo Dulce, Puntarenas, Costa Rica BATS of the Golfo Dulce Region, Costa Rica 1 Elène Haave-Audet1,2, Gloriana Chaverri3,4, Doris Audet2, Manuel Sánchez1, Andrew Whitworth1 1Osa Conservation, 2University of Alberta, 3Universidad de Costa Rica, 4Smithsonian Tropical Research Institute Photos: Doris Audet (DA), Joxerra Aihartza (JA), Gloriana Chaverri (GC), Sébastien Puechmaille (SP), Manuel Sánchez (MS). Map: Hellen Solís, Universidad de Costa Rica © Elène Haave-Audet [[email protected]] and other authors. Thanks to: Osa Conservation and the Bobolink Foundation. [fieldguides.fieldmuseum.org] [1209] version 1 11/2019 The Golfo Dulce region is comprised of old and secondary growth seasonally wet tropical forest. This guide includes representative species from all families encountered in the lowlands (< 400 masl), where ca. 75 species possibly occur. Species checklist for the region was compiled based on bat captures by the authors and from: Lista y distribución de murciélagos de Costa Rica. Rodríguez & Wilson (1999); The mammals of Central America and Southeast Mexico. Reid (2012). Taxonomy according to Simmons (2005). La región del Golfo Dulce está compuesta de bosque estacionalmente húmedo primario y secundario. Esta guía incluye especies representativas de las familias presentes en las tierras bajas de la región (< de 400 m.s.n.m), donde se puede encontrar c. 75 especies. La lista de especies fue preparada con base en capturas de los autores y desde: Lista y distribución de murciélagos de Costa Rica. Rodríguez
    [Show full text]
  • Quaternary Bat Diversity in the Dominican Republic
    AMERICAN MUSEUM NOVITATES Number 3779, 20 pp. June 21, 2013 Quaternary Bat Diversity in the Dominican Republic PAÚL M. VELAZCO,1 HANNAH O’NEILL,2 GREGG F. GUNNELL,3 SIOBHÁN B. COOKE,4 RENATO RIMOLI,5 ALFRED L. ROSENBErgER,1, 6 AND NANCY B. SIMMONS1 ABSTRACT The fossil record of bats is extensive in the Caribbean, but few fossils have previously been reported from the Dominican Republic. In this paper, we describe new collections of fossil bats from two flooded caves in the Dominican Republic, and summarize previous finds from the Island of Hispaniola. The new collections were evaluated in the context of extant and fossil faunas of the Greater Antilles to provide information on the evolution of the bat community of Hispaniola. Eleven species were identified within the new collections, including five mormoopids (Mormoops blainvillei, †Mormoops magna, Pteronotus macleayii, P. parnellii, and P. quadridens), five phyllostomids (Brachy- phylla nana, Monophyllus redmani, Phyllonycteris poeyi, Erophylla bombifrons, and Phyllops falcatus), and one natalid (Chilonatalus micropus). All of these species today inhabitant Hispaniola with the exception of †Mormoops magna, an extinct species previously known only from the Quaternary of Cuba, and Pteronotus macleayii, which is currently known only from extant populations in Cuba and Jamaica, although Quaternary fossils have also been recovered in the Bahamas. Differences between the fossil faunas and those known from the island today suggest that dispersal and extirpa- tion events, perhaps linked to climate change or stochastic events such as hurricanes, may have played roles in structuring the modern fauna of Hispaniola. 1 Division of Vertebrate Zoology (Mammalogy), American Museum of Natural History.
    [Show full text]
  • Terrestrial Mammal Species of Special Concern in California, Bolster, B.C., Ed., 1998 27
    Terrestrial Mammal Species of Special Concern in California, Bolster, B.C., Ed., 1998 27 California leaf-nosed bat, Macrotus californicus Elizabeth D. Pierson & William E. Rainey Description: Macrotus californicus is one of two phyllostomid species that occur in California. It is a medium sized bat (forearm = 46-52 mm, weight = 12-22 g), with grey pelage and long (>25 mm) ears. It can be distinguished from all other long-eared bats by the presence of a distinct nose leaf, which is erect and lanceolate (Hoffmeister 1986). The only other California species with a leaf-shaped nose projection, Choeronycteris mexicana, has very short ears. Corynorhinus townsendii, the other long-eared species with which M. californicus could most readily be confused, can be distinguished by the presence of bilateral nose lumps as opposed to a single nose leaf. Antrozous pallidus has long ears and a scroll pattern around the nostrils instead of a nose leaf. M. californicus has a tail which extends beyond the edge of the tail membrane by 5-10 mm. Taxonomic Remarks: M. californicus, a member of the Family Phyllostomidae, has sometimes been considered a subspecies of Macrotus waterhousii (Anderson and Nelson 1965), but more recently, based primarily on chromosomal characters, has been treated as a separate species (Davis and Baker 1974, Greenbaum and Baker 1976, Baker 1979, Straney et al. 1979). The form now recognized as M. californicus was first described from a specimen collected at Old Fort Yuma, Imperial County (Baird 1859). There are currently two species recognized in the genus Macrotus (Koopman 1993). Only M. californicus occurs in the United States.
    [Show full text]
  • Index of Handbook of the Mammals of the World. Vol. 9. Bats
    Index of Handbook of the Mammals of the World. Vol. 9. Bats A agnella, Kerivoula 901 Anchieta’s Bat 814 aquilus, Glischropus 763 Aba Leaf-nosed Bat 247 aladdin, Pipistrellus pipistrellus 771 Anchieta’s Broad-faced Fruit Bat 94 aquilus, Platyrrhinus 567 Aba Roundleaf Bat 247 alascensis, Myotis lucifugus 927 Anchieta’s Pipistrelle 814 Arabian Barbastelle 861 abae, Hipposideros 247 alaschanicus, Hypsugo 810 anchietae, Plerotes 94 Arabian Horseshoe Bat 296 abae, Rhinolophus fumigatus 290 Alashanian Pipistrelle 810 ancricola, Myotis 957 Arabian Mouse-tailed Bat 164, 170, 176 abbotti, Myotis hasseltii 970 alba, Ectophylla 466, 480, 569 Andaman Horseshoe Bat 314 Arabian Pipistrelle 810 abditum, Megaderma spasma 191 albatus, Myopterus daubentonii 663 Andaman Intermediate Horseshoe Arabian Trident Bat 229 Abo Bat 725, 832 Alberico’s Broad-nosed Bat 565 Bat 321 Arabian Trident Leaf-nosed Bat 229 Abo Butterfly Bat 725, 832 albericoi, Platyrrhinus 565 andamanensis, Rhinolophus 321 arabica, Asellia 229 abramus, Pipistrellus 777 albescens, Myotis 940 Andean Fruit Bat 547 arabicus, Hypsugo 810 abrasus, Cynomops 604, 640 albicollis, Megaerops 64 Andersen’s Bare-backed Fruit Bat 109 arabicus, Rousettus aegyptiacus 87 Abruzzi’s Wrinkle-lipped Bat 645 albipinnis, Taphozous longimanus 353 Andersen’s Flying Fox 158 arabium, Rhinopoma cystops 176 Abyssinian Horseshoe Bat 290 albiventer, Nyctimene 36, 118 Andersen’s Fruit-eating Bat 578 Arafura Large-footed Bat 969 Acerodon albiventris, Noctilio 405, 411 Andersen’s Leaf-nosed Bat 254 Arata Yellow-shouldered Bat 543 Sulawesi 134 albofuscus, Scotoecus 762 Andersen’s Little Fruit-eating Bat 578 Arata-Thomas Yellow-shouldered Talaud 134 alboguttata, Glauconycteris 833 Andersen’s Naked-backed Fruit Bat 109 Bat 543 Acerodon 134 albus, Diclidurus 339, 367 Andersen’s Roundleaf Bat 254 aratathomasi, Sturnira 543 Acerodon mackloti (see A.
    [Show full text]
  • Bats of the Grenadine Islands, West Indies, and Placement of Koopman's Line
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Mammalogy Papers: University of Nebraska State Museum Museum, University of Nebraska State 7-2010 Bats of the Grenadine Islands, West Indies, and Placement of Koopman's Line Hugh H. Genoways University of Nebraska - Lincoln, [email protected] Gary G. Kwiecinski University of Scranton Peter A. Larsen Texas Tech University, [email protected] Scott C. Pedersen South Dakota State University, [email protected] Roxanne J. Larsen Texas Tech University, [email protected] See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/museummammalogy Part of the Biodiversity Commons, Other Ecology and Evolutionary Biology Commons, and the Zoology Commons Genoways, Hugh H.; Kwiecinski, Gary G.; Larsen, Peter A.; Pedersen, Scott C.; Larsen, Roxanne J.; Hoffman, Justin D.; de Silva, Mark; Phillips, Carleton J.; and Baker, Robert J., "Bats of the Grenadine Islands, West Indies, and Placement of Koopman's Line" (2010). Mammalogy Papers: University of Nebraska State Museum. 129. https://digitalcommons.unl.edu/museummammalogy/129 This Article is brought to you for free and open access by the Museum, University of Nebraska State at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Mammalogy Papers: University of Nebraska State Museum by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Hugh H. Genoways, Gary G. Kwiecinski, Peter A. Larsen, Scott C. Pedersen, Roxanne J. Larsen, Justin D. Hoffman, Mark de Silva, Carleton J. Phillips, and Robert J. Baker This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/ museummammalogy/129 Chiroptera Neotropical 16(1), July 2010 BATS OF THE GRENADINE ISLANDS, WEST INDIES, AND PLACEMENT OF KOOPMAN’S LINE Hugh H.
    [Show full text]
  • Brachyphylla Nana
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Mammalogy Papers: University of Nebraska State Museum Museum, University of Nebraska State December 1983 Brachyphylla nana Pierre Swanepoel Kaffrarian Museum, King William’s Town, 5600, Republic of South Africa Hugh H. Genoways University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/museummammalogy Part of the Zoology Commons Swanepoel, Pierre and Genoways, Hugh H., "Brachyphylla nana" (1983). Mammalogy Papers: University of Nebraska State Museum. 94. https://digitalcommons.unl.edu/museummammalogy/94 This Article is brought to you for free and open access by the Museum, University of Nebraska State at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Mammalogy Papers: University of Nebraska State Museum by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Brachyphylla nana. BY Pierre swanepoel and ugh H. Genoways Published 15 December 1983 by The American Society of Mammalogists Brachyphylla nana Miller, 1902 1977); Cueva de Paredones, Habana Province (Woloszyn and Silva- Taboada, 1977); Cuba (Arredondo, 1970; Mayo, 1970); St. Michel, Greater Antillean Fruit-eating Bat Haiti (Miller, 1929); Isle of Pines (Peterson, 1917); Dairy Cave, Brachyphylla nana Miller, 1902:409. Type locality El Guami, St. .4nn Parish, Jamaica (Koopman and Williams, 1951); Portland Pinar de Rio, Cuba. Cave, Clarendon Parish, Jamaica (Williams, 1952). Brachyphylla purnlla Miller. 1918:39. Type locality Port-de-Paix, Swanepoel and Genoways (1978) re-examined the material Haiti. collected at Dairy Cave, St. Ann Parish, Jamaica. This Pleistocene or sub-Recent fossil material generally averaged larger than Recent CONTEXT AND CONTENT.
    [Show full text]
  • California Leaf-Nosed Bat (Macrotus Californicus) (CLNB) Basic Conceptual Ecological Model for the Lower Colorado River
    California Leaf-nosed Bat (Macrotus californicus) (CLNB) Basic Conceptual Ecological Model for the Lower Colorado River 1. Pups FA SA GP SP GA 2. Adults Photo courtesy of the Bureau of Reclamation Work conducted under LCR MSCP Work Task G6 May 2020 Lower Colorado River Multi-Species Conservation Program Steering Committee Members Federal Participant Group California Participant Group Bureau of Reclamation California Department of Fish and Wildlife U.S. Fish and Wildlife Service City of Needles National Park Service Coachella Valley Water District Bureau of Land Management Colorado River Board of California Bureau of Indian Affairs Bard Water District Western Area Power Administration Imperial Irrigation District Los Angeles Department of Water and Power Palo Verde Irrigation District Arizona Participant Group San Diego County Water Authority Southern California Edison Company Arizona Department of Water Resources Southern California Public Power Authority Arizona Electric Power Cooperative, Inc. The Metropolitan Water District of Southern Arizona Game and Fish Department California Arizona Power Authority Central Arizona Water Conservation District Cibola Valley Irrigation and Drainage District Nevada Participant Group City of Bullhead City City of Lake Havasu City Colorado River Commission of Nevada City of Mesa Nevada Department of Wildlife City of Somerton Southern Nevada Water Authority City of Yuma Colorado River Commission Power Users Electrical District No. 3, Pinal County, Arizona Basic Water Company Golden Shores Water Conservation
    [Show full text]
  • Neotropical Nectar-Feeding Bats (Family Phyllostomidae) Revisited: Lingual Data Support a Recently-Proposed Molecular Phylogeny
    Illinois Wesleyan University Digital Commons @ IWU Honors Projects Biology 4-25-2001 Neotropical Nectar-feeding Bats (Family Phyllostomidae) Revisited: Lingual Data Support a Recently-Proposed Molecular Phylogeny Shawn De La Mar '01 Illinois Wesleyan University Follow this and additional works at: https://digitalcommons.iwu.edu/bio_honproj Part of the Biology Commons Recommended Citation De La Mar '01, Shawn, "Neotropical Nectar-feeding Bats (Family Phyllostomidae) Revisited: Lingual Data Support a Recently-Proposed Molecular Phylogeny" (2001). Honors Projects. 5. https://digitalcommons.iwu.edu/bio_honproj/5 This Article is protected by copyright and/or related rights. It has been brought to you by Digital Commons @ IWU with permission from the rights-holder(s). You are free to use this material in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This material has been accepted for inclusion by faculty at Illinois Wesleyan University. For more information, please contact [email protected]. ©Copyright is owned by the author of this document. Neotropical Nectar-feeding Bats (Family PhyUostomidae) Revisited: Lingual Data Support a Recently-proposed Molecular Phylogeny. A Senior Research Honors Paper Presented By Shawn De La Mar Deparbnent ofBiology Illinois Wesleyan University April 25, 2001 Neotropical Nectar-feeding Bats Revisited: Lingual Data Support a Recently­ proposed Molecular Phylogeny. A Senior Research Honors Paper Presented by Shawn De La Mar Department of Biology Illinois Wesleyan University April 25, 2001 Approved as to style and content by: Th~~Ri:t~F=gy;':;'=IL..WU----- Research Advisor Charles Springwood, pt.
    [Show full text]