1 Climatology of Tropical Cyclone Rainfall Over

Total Page:16

File Type:pdf, Size:1020Kb

1 Climatology of Tropical Cyclone Rainfall Over CLIMATOLOGY OF TROPICAL CYCLONE RAINFALL OVER PUERTO RICO: PROCESSES, PATTERNS AND IMPACTS By JOSÉ JAVIER HERNÁNDEZ AYALA A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2016 1 © 2016 José Javier Hernández Ayala 2 To my beloved Puerto Rico, its atmosphere, environment and people 3 ACKNOWLEDGMENTS The main ideas behind the development of this dissertation came from multiple experiences with tropical cyclones while living in Puerto Rico. Those life experiences motivated me to explore the climate of the tropics, with special attention to the rainfall associated with those extreme events and their role in Puerto Rico’s physical geography. The research conducted in this dissertation was possible from support of Dr. Corene Matyas, Associate Professor and Graduate Coordinator at the Department of Geography at the University of Florida. Her magnificent mentoring and continuous support enable me to invest the necessary effort and time to complete this dissertation. I am truly grateful for her exceptional role as my committee chair. I want to thank Dr. Peter Waylen for his continuous support and all of the inspiring conversations we’ve had about research and life in general that gave me even more strength to continue in this journey towards the PhD. I thank Dr. Timothy Fik for sharing his expertise in quantitative methods through two great courses and for inspiring me to aspire to more in life. Thanks to Dr. Zhong-Ren Peng for being my external committee member and teaching me more about the human dimension of climate related phenomena. I am truly grateful to Dr. Michael Binford, Desiree Price and Rhonda Black for their support in departmental procedures. I want to thank Dr. David Keellings for his expertise, support and mentoring in developing the methods section of Chapter 4. I want to thank my family for all of their support during this process, specially my mother Sandra Ayala for always believing in all of my capabilities and encouraging me to dream big. At last, I truly want to thank my wife Katiria Quiles for her continuous emotional support throughout this entire process 4 and for always maintaining a positive attitude towards life that has given me the energy to finish the dissertation and move on to our next dreams in life. 5 TABLE OF CONTENTS Page ACKNOWLEDGMENTS .................................................................................................. 4 LIST OF TABLES ............................................................................................................ 8 LIST OF FIGURES .......................................................................................................... 9 ABSTRACT ................................................................................................................... 11 CHAPTER 1 INTRODUCTION .................................................................................................... 13 Tropical Cyclones, Rainfall and the Case of Puerto Rico........................................ 13 Processes: Tropical Cyclone Rainfall over Puerto Rico and its Relations to Environmental and Storm Specific Factors ......................................................... 15 Patterns: Spatial Distribution of Tropical Cyclone Rainfall and its Contribution to the Climatology of Puerto Rico ................................................................................. 16 Impacts: Extreme Floods and their Relationship with Tropical Cyclones in Puerto Rico .................................................................................................................... 17 Importance of Study ................................................................................................ 18 2 TROPICAL CYCLONE RAINFALL OVER PUERTO RICO AND ITS RELATIONS TO ENVIRONMENTAL AND STORM SPECIFIC FACTORS ................................ 20 Factors Influencing TC Rainfall ............................................................................... 22 Data and Variable Construction .............................................................................. 25 Methods .................................................................................................................. 28 Results and Discussion........................................................................................... 30 Tropical Cyclone Characteristics ...................................................................... 30 Correlation Analyses ........................................................................................ 33 Principal Component Regression ..................................................................... 36 Concluding Remarks............................................................................................... 38 Chapter 2 Limitations .............................................................................................. 40 3 SPATIAL DISTRIBUTION OF TROPICAL CYCLONE RAINFALL AND ITS CONTRIBUTION TO THE CLIMATOLOGY OF PUERTO RICO ........................... 53 Data ........................................................................................................................ 58 Geo-statistical Methods .......................................................................................... 61 Results and Discussion........................................................................................... 64 Characteristics of TC Groups ........................................................................... 64 Spatial Distribution of TCR ............................................................................... 65 TCR Contribution .............................................................................................. 70 6 Concluding Remarks............................................................................................... 72 Chapter 3 Limitations .............................................................................................. 74 4 EXTREME FLOODS AND THEIR RELATIONSHIP WITH TROPICAL CYCLONES IN PUERTO RICO .................................................................................................. 84 Data and Methods .................................................................................................. 87 Floods and Tropical Cyclone Data ................................................................... 87 Extreme Value Analysis Point Process Approach ............................................ 89 Results .................................................................................................................... 91 Descriptive Statistics ........................................................................................ 91 EVA Point Process Model Results ................................................................... 93 Concluding Remarks............................................................................................. 102 Chapter 4 Limitations ............................................................................................ 105 5 CONCLUSION ..................................................................................................... 117 Tropical cyclone Rainfall over Puerto Rico and its Relations to Environmental and Storm Specific Factors ..................................................................................... 117 Spatial Distribution of Tropical Cyclone Rainfall and tts Contribution to the Climatology of Puerto Rico ............................................................................... 119 Extreme Floods and their Relationship with Tropical Cyclones in Puerto Rico ..... 122 Dissertation Contributions ..................................................................................... 124 Future Directions .................................................................................................. 126 LIST OF REFERENCES ............................................................................................. 128 BIOGRAPHICAL SKETCH .......................................................................................... 138 7 LIST OF TABLES Table page 2-1 Storm specific characteristics and environmental factor variables used in this study. ................................................................................................................. 41 2-2 Descriptive statistics of storm specific and environmental factors associated with the 86 TCs analyzed. ........................................................................................ 42 2-3 Tropical cyclones that produced more than 50 mm rainfall over the island of Puerto Rico. ...................................................................................................... 44 2-4 Spearman’s correlation coefficients for each of the predictor’s relationship with mean and maximum TCR. ................................................................................ 46 2-5 Spearman’s correlation coefficients of variables that were found to be significantly correlated with mean and maximum TCR...................................... 47 2-6 Varimax rotated principal component analysis (PCA) results. Data includes the number of components its % of variance. ......................................................... 48 2-7 Forward principal component regression model results for mean and maximum TCR. .................................................................................................................
Recommended publications
  • Guide to Theecological Systemsof Puerto Rico
    United States Department of Agriculture Guide to the Forest Service Ecological Systems International Institute of Tropical Forestry of Puerto Rico General Technical Report IITF-GTR-35 June 2009 Gary L. Miller and Ariel E. Lugo The Forest Service of the U.S. Department of Agriculture is dedicated to the principle of multiple use management of the Nation’s forest resources for sustained yields of wood, water, forage, wildlife, and recreation. Through forestry research, cooperation with the States and private forest owners, and management of the National Forests and national grasslands, it strives—as directed by Congress—to provide increasingly greater service to a growing Nation. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable sex, marital status, familial status, parental status, religion, sexual orientation genetic information, political beliefs, reprisal, or because all or part of an individual’s income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720-2600 (voice and TDD).To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W. Washington, DC 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer. Authors Gary L. Miller is a professor, University of North Carolina, Environmental Studies, One University Heights, Asheville, NC 28804-3299.
    [Show full text]
  • Predicting Hurricane Trajectories Using a Recurrent Neural Network
    The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19) Predicting Hurricane Trajectories Using a Recurrent Neural Network Sheila Alemany,1 Jonathan Beltran,1 Adrian Perez,1 Sam Ganzfried1,2 1School of Computing and Information Sciences, Florida International University, Miami, FL 2Ganzfried Research, Miami, FL fsalem010, jbelt021, apere946g@fiu.edu, [email protected] Abstract have been recently used to forecast increasingly compli- cated systems. RNNs are a class of artificial neural networks Hurricanes are cyclones circulating about a defined center where the modification of weights allows the model to learn whose closed wind speeds exceed 75 mph originating over tropical and subtropical waters. At landfall, hurricanes can intricate dynamic temporal behaviors. A RNN with the ca- result in severe disasters. The accuracy of predicting their tra- pability of efficiently modeling complex nonlinear temporal jectory paths is critical to reduce economic loss and save hu- relationships of a hurricane could increase the accuracy of man lives. Given the complexity and nonlinearity of weather predicting future hurricane path forecasts. Development of data, a recurrent neural network (RNN) could be beneficial such an approach is the focus of this paper. in modeling hurricane behavior. We propose the application While others have used RNNs in the forecasting of of a fully connected RNN to predict the trajectory of hur- weather data, to our knowledge this is the first fully con- ricanes. We employed the RNN over a fine grid to reduce nected recurrent neural networks employed using a grid typical truncation errors. We utilized their latitude, longitude, model for hurricane trajectory forecasts. The proposed wind speed, and pressure publicly provided by the National method can more accurately predict trajectories of hurri- Hurricane Center (NHC) to predict the trajectory of a hur- ricane at 6-hour intervals.
    [Show full text]
  • What Happened to Ponce
    Reconstructing early modern disaster management in Puerto Rico: development and planning examined through the lens of Hurricanes San Ciriaco (1899), San Felipe (1928) and Santa Clara (1956) Ingrid Olivo Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy under the Executive Committee of the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2015 © 2015 Ingrid Olivo All rights reserved ABSTRACT Reconstructing early modern disaster management in Puerto Rico: development and planning examined through the lens of Hurricanes San Ciriaco (1899), San Felipe (1928) and Santa Clara (1956) Ingrid Olivo This is the first longitudinal, retrospective, qualitative, descriptive and multi-case study of hurricanes in Puerto Rico, from 1899 to 1956, researching for planning purposes the key lessons from the disaster management changes that happened during the transition of Puerto Rico from a Spanish colony to a Commonwealth of the United States. The selected time period is crucial to grasp the foundations of modern disaster management, development and planning processes. Disasters are potent lenses through which inspect realpolitik in historical and current times, and grasp legacies that persist today, germane planning tasks. Moreover, Puerto Rico is an exemplary case; it has been an experimental laboratory for policies later promoted by the US abroad, and it embodies key common conditions to develop my research interface between urban planning and design, meteorology, hydrology, sociology, political science, culture and social history. After introducing the dissertation, I present a literature review of the emergence of the secular characterization of disasters and a recent paradigm shift for understanding what a disaster is, its causes and how to respond.
    [Show full text]
  • Hurricane María's Precipitation Signature in Puerto Rico: A
    www.nature.com/scientificreports OPEN Hurricane María’s Precipitation Signature in Puerto Rico: A Conceivable Presage of Rains to Come Carlos E. Ramos-Scharrón * & Eugenio Arima The efects of global climate change on the intensity of tropical cyclones are yet to be fully understood due to the variety of factors that afect storm intensity, the limited time spans of existing records, and the diversity of metrics by which intensity is characterized. The 2017 North Atlantic hurricane season induced record-breaking economic losses and caused hundreds of fatalities, and for many represents a presage of what the future holds under warmer tropical sea surface temperatures. This article focuses on one such major hurricane, María, and answers the question of how this event compares to the historical record of tropical storms that have assailed the island of Puerto Rico since 1898. Comparisons relied on interpolated weather station total rainfall and maximum 24-h rainfall intensities. María proved to have the greatest 24-h rain intensities among all storms recorded in Puerto Rico, yielding maximum 24-h recurrence intervals greater than 250 years for about 8% of the island. Tropical cyclones (TCs) are amongst Earth’s most damaging natural hazards and their future efects are expected to proliferate due to demographic shifs, and increased intensity and frequency of the most extreme events1–3. TC intensity scales, whether of ordinal (e.g., Safr-Simpson)4 or continuous5 character, are best suited for wind or ocean wave/surge damage, yet many TC impacts are rain-induced6. Adequately contrasting at-a-site rainfall diferences among various TCs is difcult because the spatial distribution of rainfall is highly variable and most weather records tend to be too brief for proper long-term analyses.
    [Show full text]
  • Climate Variability at Multiple Spatial and Temporal Scales in the Luquillo Mountains, Puerto Rico
    Ecological Bulletins 54: 21–41, 2013 Climate variability at multiple spatial and temporal scales in the Luquillo Mountains, Puerto Rico Robert B. Waide, Daniel E. Comarazamy, Jorge E. González, Charles A. S. Hall, Ariel E. Lugo, Jeffrey C. Luvall, David J. Murphy, Jorge R. Ortiz-Zayas, Nazario D. Ramírez-Beltran, Frederick N. Scatena† and Whendee L. Silver Spatial and temporal variability in the climate of the Luquillo Mountains of eastern Puerto Rico is influenced by large- scale movements of air masses, extreme events, and regional and global climate change. Because of the long history of ecosystem research in the Luquillo Mountains, their status as a U. S. Dept of Agriculture (USDA) Experimental For- est, and their role as a source of drinking water for many communities, climate of the Luquillo Mountains has been a topic of interest for many different public and private entities. Long-term and spatially-diverse records of climate and simulation models suggest that climate is changing in the Luquillo Mountains. Precipitation is decreasing slowly in the lowlands of Puerto Rico and global models suggest that this trend will continue. Annual maximum and minimum temperatures are increasing slowly, and may be affected by accelerating urbanization around the Luquillo Mountains. Cyclonic storms are a major influence on community composition and ecosystem processes, and some studies have suggested trends in intensity and frequency of these storms. Cumulative effects of these changes may include a more pronounced dry season, changes in spatial distribution of species, shifts in the distribution of soil organic carbon, decreases in primary productivity, and increases in extreme rainfall events.
    [Show full text]
  • Tropical Storm and Environmental Forcing on Regional Blue Crab (Callinectes Sapidus) Settlement
    FISHERIES OCEANOGRAPHY Fish. Oceanogr. 19:2, 89–106, 2010 Tropical storm and environmental forcing on regional blue crab (Callinectes sapidus) settlement DAVID B. EGGLESTON,* NATHALIE B. ment events generally associated with ‘onshore’ storm REYNS, LISA L. ETHERINGTON,à GAYLE R. tracks that made landfall from the ocean and moved PLAIA AND LIAN XIE inland along a southeasterly ⁄ northwesterly path, or Department of Marine, Earth & Atmospheric Sciences, North ‘coastal’ storms that followed a path roughly parallel to Carolina State University, Raleigh, NC 27695-8208, USA the coastline and were located <300 km offshore of the coast. Key words: blue crab, larval dispersal, hurricanes, ABSTRACT recruitment, settlement, tropical storms Global climate change is predicted to increase the frequency and magnitude of hurricanes, typhoons and other extreme cyclonic disturbance events, with little INTRODUCTION known consequences for recruitment dynamics of marine species that rely on wind-driven larval trans- Extreme variation in recruitment of many finfish and port to coastal settlement and nursery habitats. We invertebrate fisheries (Caddy and Gulland, 1983; Sis- conducted a large-scale settlement study of the blue senwine, 1984; Hare and Able, 2007) often masks the crab (Callinectes sapidus) in the Croatan-Albemarle- effects of overexploitation, thereby hampering man- Pamlico Estuarine System (CAPES) in North agement efforts (Ludwig et al., 1993). The need to Carolina, the second largest estuary in the US, during understand seemingly chaotic fluctuations in popula- a 10-yr period that encompassed 35 tropical storms of tion sizes of animals and plants fuels efforts to identify varying magnitudes and tracks, to determine the the relative roles of intertwined external forcing and effects of hurricane track, wind speed and direction as internal feedbacks on population dynamics (May, well as lunar-associated explanatory variables on 1981; Higgins et al., 1997; Cowen et al., 2000; Hare spatiotemporal variation in settlement.
    [Show full text]
  • Development of an Objective Scheme to Estimate Tropical Cyclone Intensity from Digital Geostationary Satellite Infrared Imagery
    172 WEATHER AND FORECASTING VOLUME 13 Development of an Objective Scheme to Estimate Tropical Cyclone Intensity from Digital Geostationary Satellite Infrared Imagery CHRISTOPHER S. VELDEN AND TIMOTHY L. OLANDER Cooperative Institute for Meteorological Satellite Studies, Madison, Wisconsin RAYMOND M. ZEHR Regional and Mesoscale Meteorology Branch, NOAA/NESDIS, Fort Collins, Colorado (Manuscript received 17 July 1996, in ®nal form 10 August 1997) ABSTRACT The standard method for estimating the intensity of tropical cyclones is based on satellite observations (Dvorak technique) and is utilized operationally by tropical analysis centers around the world. The technique relies on image pattern recognition along with analyst interpretation of empirically based rules regarding the vigor and organization of convection surrounding the storm center. While this method performs well enough in most cases to be employed operationally, there are situations when analyst judgment can lead to discrepancies between different analysis centers estimating the same storm. In an attempt to eliminate this subjectivity, a computer-based algorithm that operates objectively on digital infrared information has been developed. An original version of this algorithm (engineered primarily by the third author) has been signi®cantly modi®ed and advanced to include selected ``Dvorak rules,'' additional constraints, and a time-averaging scheme. This modi®ed version, the Objective Dvorak Technique (ODT), is applicable to tropical cyclones that have attained tropical storm or hurricane strength. The performance of the ODT is evaluated on cases from the 1995 and 1996 Atlantic hurricane seasons. Reconnaissance aircraft measurements of minimum surface pressure are used to validate the satellite-based estimates. Statistical analysis indicates the technique to be competitive with, and in some cases superior to, the Dvorak-based intensity estimates produced operationally by satellite analysts from tropical analysis centers.
    [Show full text]
  • Federal Register/Vol. 85, No. 169/Monday, August 31, 2020
    54148 Federal Register / Vol. 85, No. 169 / Monday, August 31, 2020 / Notices DEPARTMENT OF EDUCATION Law Through Improved Agency Department published a notice in the Guidance Documents.’’ 84 FR 55235. Federal Register announcing that its Notice of the Rescission of Outdated Section 3(b) of the E.O. requires the guidance portal was operational, in Guidance Documents Department to ‘‘review its guidance compliance with section 3(a) of the E.O. documents and, consistent with 85 FR 11056. AGENCY: Office of the Secretary, applicable law, rescind those guidance Section 4 of E.O. 13891 requires the Department of Education. documents that it determines should no Department to finalize regulations to set ACTION: Notice. longer be in effect.’’ This notice notifies forth processes and procedures for the public, including the Department’s issuing guidance documents. The SUMMARY: The Secretary announces the guidance documents the Department of stakeholders, of the guidance Department’s Spring 2020 Unified Education (Department) is rescinding documents the Department rescinds as Agenda provides that the timetable for because they are outdated, after outdated (e.g., superseded by these interim final regulations is August conducting a review of its guidance subsequent statutory amendments or 2020. See www.reginfo.gov/public/do/ under Executive Order (E.O.) 13891. enactments), in accordance with section eAgendaViewRule?pubId=202004& 3(b) of E.O. 13891. The guidance RIN=1801-AA22. FOR FURTHER INFORMATION CONTACT: documents identified as being rescinded The below table lists the guidance Lynn Mahaffie, Department of in this notice do not include any documents the Department rescinds, the Education, 400 Maryland Avenue SW, guidance documents the Department office within the Department that issued Room 6E–231, Washington, DC 20202.
    [Show full text]
  • The Resilience of Coral Reef Communities to Climate-Driven Disturbances
    THE RESILIENCE OF CORAL REEF COMMUNITIES TO CLIMATE-DRIVEN DISTURBANCES Laura Mudge A dissertation submitted to the faculty at the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Biology Department in the College of Arts and Sciences. Chapel Hill 2020 Approved by: John Bruno Peter White Allen Hurlbert James Umabanhowar Karl Castillo © 2020 Laura Mudge ALL RIGHTS RESERVED ii ABSTRACT Laura Mudge: The resilience of coral reef communities to climate-driven disturbances (Under the direction of John F. Bruno) Climate change is expected to increase the intensity and frequency of natural disturbances which are important drivers of coral reef community structure and functioning. Past work has often quantified the effect of singular, isolated events on living coral cover (mainly on pristine, high cover reefs), yet we know little about how disturbances affect coral community structure on contemporary, degraded reefs. Additionally, we know that disturbances, including hurricanes, coral bleaching, and coral disease, have the potential to interact, but we do not have a general understanding of the outcomes of these interactions on coral communities. Disturbances interact by altering the likelihood, extent, or severity of a subsequent event, or by altering the recovery time after the next event. These interactions have the potential to create novel or compound effects, which could affect coral community resilience. My dissertation quantifies how disturbances drive changes in scleractinian coral communities through a framework that evaluates the impacts of disturbances as multiple, interacting events. First, I investigated the ecological conditions related to recent recovery of elkhorn coral (Acropora palmata) and found that regrowth correlated strongly with abundant herbivore populations, particularly Diadema antillarum.
    [Show full text]
  • The Impact of Satellite Winds on Experimental GFDL Hurricane Model Forecasts
    APRIL 2001 SODEN ET AL. 835 The Impact of Satellite Winds on Experimental GFDL Hurricane Model Forecasts BRIAN J. SODEN Geophysical Fluid Dynamics Laboratory, National Oceanic and Atmospheric Administration, Princeton, New Jersey CHRISTOPHER S. VELDEN Cooperative Institute for Meteorological Satellite Studies, University of WisconsinÐMadison, Madison, Wisconsin ROBERT E. TULEYA Geophysical Fluid Dynamics Laboratory, National Oceanic and Atmospheric Administration, Princeton, New Jersey (Manuscript received 12 April 2000, in ®nal form 22 August 2000) ABSTRACT A series of experimental forecasts are performed to evaluate the impact of enhanced satellite-derived winds on numerical hurricane track predictions. The winds are derived from Geostationary Operational Environmental Satellite-8 (GOES-8) multispectral radiance observations by tracking cloud and water vapor patterns from suc- cessive satellite images. A three-dimensional optimum interpolation method is developed to assimilate the satellite winds directly into the Geophysical Fluid Dynamics Laboratory (GFDL) hurricane prediction system. A series of parallel forecasts are then performed, both with and without the assimilation of GOES winds. Except for the assimilation of the satellite winds, the model integrations are identical in all other respects. A strength of this study is the large number of experiments performed. Over 100 cases are examined from 11 different storms covering three seasons (1996±98), enabling the authors to account for and examine the case-to-case variability in the forecast results when performing the assessment. On average, assimilation of the GOES winds leads to statistically signi®cant improvements for all forecast periods, with the relative reductions in track error ranging from ;5% at 12 h to ;12% at 36 h.
    [Show full text]
  • Predicting Hurricane Trajectories Using a Recurrent Neural Network
    Predicting Hurricane Trajectories using a Recurrent Neural Network Sheila Alemany1, Jonathan Beltran1, Adrian Perez1, Sam Ganzfried12 1 School of Computing and Information Sciences, Florida International University, Miami, FL 2 Ganzfried Research salem010@fiu.edu, jbelt021@fiu.edu, apere946@fiu.edu, [email protected] Abstract the modification of weights allows the model to learn intri- cate dynamic temporal behavior. An RNN with the capability Hurricanes are cyclones circulating about a defined of efficiently modeling complex nonlinear temporal relation- center whose closed wind speeds exceed 75 mph ships of a hurricane could increase the accuracy of predicting originating over tropical and subtropical waters. At future hurricane path forecasts. Development of such an ap- landfall, hurricanes can result in severe disasters. proach is the focus of this paper. The accuracy of predicting their trajectory paths While others have used RNNs in the forecasting of weather is critical to reduce economic loss and save hu- data, to our knowledge this is the first fully connected recur- man lives. Given the complexity and nonlinearity rent neural networks employed using a grid model for hur- of weather data, a recurrent neural network (RNN) ricane trajectory forecasts. The proposed method can more could be beneficial in modeling hurricane behav- accurately predict trajectories of hurricanes compared to tra- ior. We propose the application of a fully connected ditional forecast methods employed by the National Hurri- RNN to predict the trajectory of hurricanes. We cane Center (NHC) of the National Oceanic and Atmospheric employed the RNN over a fine grid to reduce typi- Administration (NOAA). This paper summarizes our present cal truncation errors.
    [Show full text]
  • Spatial and Temporal Changes in Precipitation in Puerto Rico from 1956-2010
    SPATIAL AND TEMPORAL CHANGES IN PRECIPITATION IN PUERTO RICO FROM 1956-2010 A Thesis Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree Master of Science José Javier Hernández Ayala May, 2012 SPATIAL AND TEMPORAL CHANGES IN PRECIPITATION IN PUERTO RICO FROM 1956-2010 José Javier Hernández Ayala Thesis Approved: Accepted: ________________________________ _____________________________ Advisor Dean of the College Dr. Linda Barrett Dr. Chand Midha ________________________________ _____________________________ Co-Advisor Dean of the Graduate School Dr. Thomas Schmidlin Dr. George Newkome ________________________________ _____________________________ Faculty Reader Date Dr. John Szabo ________________________________ Department Chair Dr. John Szabo ii ABSTRACT In this study annual, seasonal and monthly series for total precipitation are analyzed to find increasing or decreasing trends in rainfall over space and time in Puerto Rico from 1956 to 2010. The precipitation series were observed at forty meteorological stations scattered over the island of Puerto Rico. The groups of series were selected for their spatial and temporal representativeness. In order to detect possible trends in precipitation over the island, the Mann-Kendall test was applied to the annual, seasonal and monthly series. This test is non-parametric and thus, has the advantage of being insensitive to the true (unknown) form of the distribution involved. The Mann-Kendall statistical test results of this research have shown that statistically significant increasing and decreasing trends occurred on some locations in the island of Puerto Rico from 1956-2010. The spatial and temporal distribution of the trends vary from increasing trends in the southwest, central and northeast regions for the annual series and dry season months to decreasing trends for the early wet season months mainly in the western area of the island.
    [Show full text]