Cryptophyceae)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Biology and Systematics of Heterokont and Haptophyte Algae1
American Journal of Botany 91(10): 1508±1522. 2004. BIOLOGY AND SYSTEMATICS OF HETEROKONT AND HAPTOPHYTE ALGAE1 ROBERT A. ANDERSEN Bigelow Laboratory for Ocean Sciences, P.O. Box 475, West Boothbay Harbor, Maine 04575 USA In this paper, I review what is currently known of phylogenetic relationships of heterokont and haptophyte algae. Heterokont algae are a monophyletic group that is classi®ed into 17 classes and represents a diverse group of marine, freshwater, and terrestrial algae. Classes are distinguished by morphology, chloroplast pigments, ultrastructural features, and gene sequence data. Electron microscopy and molecular biology have contributed signi®cantly to our understanding of their evolutionary relationships, but even today class relationships are poorly understood. Haptophyte algae are a second monophyletic group that consists of two classes of predominately marine phytoplankton. The closest relatives of the haptophytes are currently unknown, but recent evidence indicates they may be part of a large assemblage (chromalveolates) that includes heterokont algae and other stramenopiles, alveolates, and cryptophytes. Heter- okont and haptophyte algae are important primary producers in aquatic habitats, and they are probably the primary carbon source for petroleum products (crude oil, natural gas). Key words: chromalveolate; chromist; chromophyte; ¯agella; phylogeny; stramenopile; tree of life. Heterokont algae are a monophyletic group that includes all (Phaeophyceae) by Linnaeus (1753), and shortly thereafter, photosynthetic organisms with tripartite tubular hairs on the microscopic chrysophytes (currently 5 Oikomonas, Anthophy- mature ¯agellum (discussed later; also see Wetherbee et al., sa) were described by MuÈller (1773, 1786). The history of 1988, for de®nitions of mature and immature ¯agella), as well heterokont algae was recently discussed in detail (Andersen, as some nonphotosynthetic relatives and some that have sec- 2004), and four distinct periods were identi®ed. -
Chloroplast Structure of the Cryptophyceae
CHLOROPLAST STRUCTURE OF THE CRYPTOPHYCEAE Evidence for Phycobiliproteins within Intrathylakoidal Spaces E . GANTT, M . R . EDWARDS, and L . PROVASOLI From the Radiation Biology Laboratory, Smithsonian Institution, Rockville, Maryland 20852, the Division of Laboratories and Research, New York State Department of Health, Albany, New York 12201, and the Haskins Laboratories, New Haven, Connecticut 06520 ABSTRACT Selective extraction and morphological evidence indicate that the phycobiliproteins in three Cryptophyceaen algae (Chroomonas, Rhodomonas, and Cryptomonas) are contained within intrathylakoidal spaces and are not on the stromal side of the lamellae as in the red and blue-green algae . Furthermore, no discrete phycobilisome-type aggregates have thus far been observed in the Cryptophyceae . Structurally, although not necessarily functionally, this is a radical difference . The width of the intrathylakoidal spaces can vary but is gen- erally about 200-300 A . While the thylakoid membranes are usually closely aligned, grana- type fusions do not occur. In Chroomonas these membranes evidence an extensive periodic display with a spacing on the order of 140-160 A . This periodicity is restricted to the mem- branes and has not been observed in the electron-opaque intrathylakoidal matrix . INTRODUCTION The varied characteristics of the cryptomonads (3), Greenwood in Kirk and Tilney-Bassett (10), are responsible for their indefinite taxonomic and Lucas (13) . The thylakoids have a tendency position (17), but at the same time they enhance to be arranged in pairs, that is, for two of them to their status in evolutionary schemes (1, 4) . Their be closely associated with a 30-50 A space between chloroplast structure is distinct from that of every them . -
Algal Toxic Compounds and Their Aeroterrestrial, Airborne and Other Extremophilic Producers with Attention to Soil and Plant Contamination: a Review
toxins Review Algal Toxic Compounds and Their Aeroterrestrial, Airborne and other Extremophilic Producers with Attention to Soil and Plant Contamination: A Review Georg G¨аrtner 1, Maya Stoyneva-G¨аrtner 2 and Blagoy Uzunov 2,* 1 Institut für Botanik der Universität Innsbruck, Sternwartestrasse 15, 6020 Innsbruck, Austria; [email protected] 2 Department of Botany, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 blvd. Dragan Tsankov, 1164 Sofia, Bulgaria; mstoyneva@uni-sofia.bg * Correspondence: buzunov@uni-sofia.bg Abstract: The review summarizes the available knowledge on toxins and their producers from rather disparate algal assemblages of aeroterrestrial, airborne and other versatile extreme environments (hot springs, deserts, ice, snow, caves, etc.) and on phycotoxins as contaminants of emergent concern in soil and plants. There is a growing body of evidence that algal toxins and their producers occur in all general types of extreme habitats, and cyanobacteria/cyanoprokaryotes dominate in most of them. Altogether, 55 toxigenic algal genera (47 cyanoprokaryotes) were enlisted, and our analysis showed that besides the “standard” toxins, routinely known from different waterbodies (microcystins, nodularins, anatoxins, saxitoxins, cylindrospermopsins, BMAA, etc.), they can produce some specific toxic compounds. Whether the toxic biomolecules are related with the harsh conditions on which algae have to thrive and what is their functional role may be answered by future studies. Therefore, we outline the gaps in knowledge and provide ideas for further research, considering, from one side, Citation: G¨аrtner, G.; the health risk from phycotoxins on the background of the global warming and eutrophication and, ¨а Stoyneva-G rtner, M.; Uzunov, B. -
Mitosis in the Cryptophyceae "
300 Nature Vol. 247 February 1 1974 16 Linskens and Heinen , and perhaps offer some clue as to the Lastly, Oakley and Dodge infer that Chroomonas (a Crypto meaning of the cytochemically detectable 'esterase' activity phyte with a chloroplast) is a primitive genus in my scheme on of the pellicle itself. the phylogeny of the algaez• This is not so as this type of O. MA'ITSSON* organism is fairly advanced along the evolutionary pathway. R. B. KNoxt If they were seeking a more primitive organism to investigate J. HEsLOP-HARRISON they should have chosen a Cryptophyte without chloroplasts Y. HESLOP-HARRISON or one with cyanelles (endosymbiotic Cyanophyceae). Cell Physiology Laboratory, ROBERT EDWARD LEE Royal Botanic Gardens, University of the Witwarersrand, Kew, Jan Smuts Avenue, Richmond, Surrey Johannesburg Received September 14, 1973. Received October 1,1973. * Present address: Institute of Plant Anatomy and Cytology, 1 Oakley, B. R., and Dodge, J. D., Nature, 244, 521 (1973). University of Copenhagen, S"dvgade 83, DK-1307 Copenhagen K. 2 Lee, R. E., Nature, 237, 44 (1972). 3 McDonald, K., J. Phycol., 8, 156 (1972). t Present address: Department of Botany, Australian National University, PO Box 4, Canberra ACf. Drs Oakley and Dodge reply: In regard to Dr R. E. Lee's 1 Knox, R. B., and Heslop-Harrison, J., Nature, 223, 92 (1969). correspondence, our letter to Natule l was not intended to be 2 Knox, R. B., and Heslop-Harrison, J., J. Cell Sci., 6, 1 (1970). particularly critical of Dr Lee's previous article on endosym 3 Heslop-Harrison, J., Heslop-Harrison, Y., Knox, R. -
Nanoplankton Protists from the Western Mediterranean Sea. II. Cryptomonads (Cryptophyceae = Cryptomonadea)*
sm69n1047 4/3/05 20:30 Página 47 SCI. MAR., 69 (1): 47-74 SCIENTIA MARINA 2005 Nanoplankton protists from the western Mediterranean Sea. II. Cryptomonads (Cryptophyceae = Cryptomonadea)* GIANFRANCO NOVARINO Department of Zoology, The Natural History Museum, Cromwell Road, London SW7 5BD, U.K. E-mail: [email protected] SUMMARY: This paper is an electron microscopical account of cryptomonad flagellates (Cryptophyceae = Cryptomon- adea) in the plankton of the western Mediterranean Sea. Bottle samples collected during the spring-summer of 1998 in the Sea of Alboran and Barcelona coastal waters contained a total of eleven photosynthetic species: Chroomonas (sensu aucto- rum) sp., Cryptochloris sp., 3 species of Hemiselmis, 3 species of Plagioselmis including Plagioselmis nordica stat. nov/sp. nov., Rhinomonas reticulata (Lucas) Novarino, Teleaulax acuta (Butcher) Hill, and Teleaulax amphioxeia (Conrad) Hill. Identification was based largely on cell surface features, as revealed by scanning electron microscopy (SEM). Cells were either dispersed in the water-column or associated with suspended particulate matter (SPM). Plagioselmis prolonga was the most common species both in the water-column and in association with SPM, suggesting that it might be a key primary pro- ducer of carbon. Taxonomic keys are given based on SEM. Key words: Cryptomonadea, cryptomonads, Cryptophyceae, flagellates, nanoplankton, taxonomy, ultrastructure. RESUMEN: PROTISTAS NANOPLANCTÓNICOS DEL MAR MEDITERRANEO NOROCCIDENTAL II. CRYPTOMONADALES (CRYPTOPHY- CEAE = CRYPTOMONADEA). – Este estudio describe a los flagelados cryptomonadales (Cryptophyceae = Cryptomonadea) planctónicos del Mar Mediterraneo Noroccidental mediante microscopia electrónica. La muestras recogidas en botellas durante la primavera-verano de 1998 en el Mar de Alboran y en aguas costeras de Barcelona, contenian un total de 11 espe- cies fotosintéticas: Chroomonas (sensu auctorum) sp., Cryptochloris sp., 3 especies de Hemiselmis, 3 especies de Plagio- selmis incluyendo Plagioselmis nordica stat. -
Sequestration, Performance, and Functional Control of Cryptophyte Plastids in the Ciliate Myrionecta Rubra (Ciliophora)1
J. Phycol. 42, 1235–1246 (2006) r 2006 by the Phycological Society of America DOI: 10.1111/j.1529-8817.2006.00275.x SEQUESTRATION, PERFORMANCE, AND FUNCTIONAL CONTROL OF CRYPTOPHYTE PLASTIDS IN THE CILIATE MYRIONECTA RUBRA (CILIOPHORA)1 Matthew D. Johnson2 Horn Point Laboratory, Center for Environmental Science, University of Maryland, Cambridge, Maryland 21613, USA Torstein Tengs National Veterinary Institute, Section of Food and Feed Microbiology, Ullevaalsveien 68, 0454 Oslo, Norway David Oldach Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, Maryland, USA and Diane K. Stoecker Horn Point Laboratory, Center for Environmental Science, University of Maryland, Cambridge, Maryland 21613, USA Myrionecta rubra (Lohmann 1908, Jankowski Key index words: ciliate; Geminigera cryophila; 1976) is a photosynthetic ciliate with a global dis- mixotrophy; Myrionecta rubra; nucleomorph; or- tribution in neritic and estuarine habitats and has ganelle sequestration long been recognized to possess organelles of Abbreviations: CMC, chloroplast–mitochondria cryptophycean origin. Here we show, using nucleo- complex; HL, high light; LL, low light; LMWC, morph (Nm) small subunit rRNA gene sequence low-molecular-weight compound; MAA, micros- data, quantitative PCR, and pigment absorption scans, that an M. rubra culture has plastids identi- porine-like amino acids; ML, maximum likelihood; NGC, number of genomes per cell; PE, photosyn- cal to those of its cryptophyte prey, Geminigera thesis versus irradiance; TBR, tree bisection-recon- cf. cryophila (Taylor and Lee 1971, Hill 1991). Using quantitative PCR, we demonstrate that G. cf. struction cryophila plastids undergo division in growing M. rubra and are regulated by the ciliate. M. rubra maintained chl per cell and maximum cellu- Myrionecta rubra (5Mesodinium rubrum) (Lohmann cell lar photosynthetic rates (Pmax) that were 6–8 times 1908, Jankowski 1976) (Mesodiniidae, Litostomatea) that of G. -
Nuclear Genome Sequence of the Plastid-Lacking
Cenci et al. BMC Biology (2018) 16:137 https://doi.org/10.1186/s12915-018-0593-5 RESEARCH ARTICLE Open Access Nuclear genome sequence of the plastid- lacking cryptomonad Goniomonas avonlea provides insights into the evolution of secondary plastids Ugo Cenci1,2†, Shannon J. Sibbald1,2†, Bruce A. Curtis1,2, Ryoma Kamikawa3, Laura Eme1,2,11, Daniel Moog1,2,12, Bernard Henrissat4,5,6, Eric Maréchal7, Malika Chabi8, Christophe Djemiel8, Andrew J. Roger1,2,9, Eunsoo Kim10 and John M. Archibald1,2,9* Abstract Background: The evolution of photosynthesis has been a major driver in eukaryotic diversification. Eukaryotes have acquired plastids (chloroplasts) either directly via the engulfment and integration of a photosynthetic cyanobacterium (primary endosymbiosis) or indirectly by engulfing a photosynthetic eukaryote (secondary or tertiary endosymbiosis). The timing and frequency of secondary endosymbiosis during eukaryotic evolution is currently unclear but may be resolved in part by studying cryptomonads, a group of single-celled eukaryotes comprised of both photosynthetic and non-photosynthetic species. While cryptomonads such as Guillardia theta harbor a red algal-derived plastid of secondary endosymbiotic origin, members of the sister group Goniomonadea lack plastids. Here, we present the genome of Goniomonas avonlea—the first for any goniomonad—to address whether Goniomonadea are ancestrally non-photosynthetic or whether they lost a plastid secondarily. Results: We sequenced the nuclear and mitochondrial genomes of Goniomonas avonlea and carried out a comparative analysis of Go. avonlea, Gu. theta, and other cryptomonads. The Go. avonlea genome assembly is ~ 92 Mbp in size, with 33,470 predicted protein-coding genes. Interestingly, some metabolic pathways (e.g., fatty acid biosynthesis) predicted to occur in the plastid and periplastidal compartment of Gu. -
From Algae to Flowering Plants
PP62CH23-Popper ARI 4 April 2011 14:20 Evolution and Diversity of Plant Cell Walls: From Algae to Flowering Plants Zoe¨ A. Popper,1 Gurvan Michel,3,4 Cecile´ Herve,´ 3,4 David S. Domozych,5 William G.T. Willats,6 Maria G. Tuohy,2 Bernard Kloareg,3,4 and Dagmar B. Stengel1 1Botany and Plant Science, and 2Molecular Glycotechnology Group, Biochemistry, School of Natural Sciences, National University of Ireland, Galway, Ireland; email: [email protected] 3CNRS and 4UPMC University Paris 6, UMR 7139 Marine Plants and Biomolecules, Station Biologique de Roscoff, F-29682 Roscoff, Bretagne, France 5Department of Biology and Skidmore Microscopy Imaging Center, Skidmore College, Saratoga Springs, New York 12866 6Department of Plant Biology and Biochemistry, Faculty of Life Sciences, University of Copenhagen, Bulowsvej,¨ 17-1870 Frederiksberg, Denmark Annu. Rev. Plant Biol. 2011. 62:567–90 Keywords First published online as a Review in Advance on xyloglucan, mannan, arabinogalactan proteins, genome, environment, February 22, 2011 multicellularity The Annual Review of Plant Biology is online at plant.annualreviews.org Abstract This article’s doi: All photosynthetic multicellular Eukaryotes, including land plants 10.1146/annurev-arplant-042110-103809 by Universidad Veracruzana on 01/08/14. For personal use only. and algae, have cells that are surrounded by a dynamic, complex, Copyright c 2011 by Annual Reviews. carbohydrate-rich cell wall. The cell wall exerts considerable biologi- All rights reserved cal and biomechanical control over individual cells and organisms, thus Annu. Rev. Plant Biol. 2011.62:567-590. Downloaded from www.annualreviews.org 1543-5008/11/0602-0567$20.00 playing a key role in their environmental interactions. -
EBS 566/555 Lecture 14: Phytoplankton Functional
EBS 566/555 3/3/2010 Lecture 15 Blooms, primary production and types of phytoplankton (Ch 2, 3) Topics – Finish blooms – Major taxa of phytoplankton – How to measure phytoplankton – Primary production http://cmore.soest.hawaii.edu EBS566/666-Lecture 13 1 Alternatives to the Spring Bloom • Polar and tropical seas • Shallow water case: stratification not important for bloom initiation, only light is important • Estuaries (Cloern and Jassby 2008, 2009) • Extremely oligotrophic regions • Iron limitation (e.g. subarctic North Pacific) – But also applies to spring bloom! • Grazing regime • Upwelling systems (coastal, equatorial) EBS566/666-Lecture 13 2 Global comparison of phytoplankton biomass In South Pacific Gyre, chl a is highest in winter compared to summer Green = chl a Red = mixed layer depth (determined from Argo float) Claustre, unpubl. EBS566/666-Lecture 13 4 Annually averaged chl a HNLC HNLC HNLC EBS566/666-Lecture 13 5 Fate of bloom phytoplankton • Shallow decomposition ( microbial loop, regeneration) • Export – To deep ocean – Burial in sediments ( sedimentary record) • Grazing – Mesozooplankton – Microzooplankton – Excretion regenerated nutrients EBS566/666-Lecture 13 6 We can estimate algal biomass using the photosynthetic pigment, chlorophyll a micro.magnet.fsu.edu http://www.agen.ufl.edu hypnea.botany.uwc.ac.za left: Chloroplast of Chlamydomonas, a unicellular green alga. Note the chloroplast (Chl) with stacked thylakoids, and starch (s). TEM image by Richard Pienaar stroma grana lamellae/stroma thylakoids The ‘Z’ scheme Non-cyclic -
J. Phycol. 56-3 730-746.Pdf
Ultrastructure and Systematics of Two New Species of Dinoflagellate, Paragymnodinium Asymmetricum sp. nov. and Title Paragymnodinium Inerme sp. nov. (Gymnodiniales, Dinophyceae)(1) Author(s) Yokouchi, Koh; Takahashi, Kazuya; Nguyen, Van Nguyen; Iwataki, Mitsunori; Horiguchi, Takeo Journal of phycology, 56(3), 730-746 Citation https://doi.org/10.1111/jpy.12981 Issue Date 2020-06 Doc URL http://hdl.handle.net/2115/81858 This is the peer reviewed version of the following article: Journal of Phycology 56(3) June 2020, pp.730-746 which has Rights been published in final form at https://onlinelibrary.wiley.com/doi/full/10.1111/jpy.12981. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. Type article (author version) Additional Information There are other files related to this item in HUSCAP. Check the above URL. File Information J. Phycol. 56-3_730-746.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP 1 ULTRASTRUCTURE AND SYSTEMATICS OF TWO NEW SPECIES OF 2 DINOFLAGELLATE, PARAGYMNODINIUM ASYMMETRICUM SP. NOV. AND 3 PARAGYMNODINIUM INERME SP. NOV. (GYMNODINIALES, DINOPHYCEAE)1 4 5 Koh Yokouchi 6 Department of Natural History Sciences, Graduate School of Science, Hokkaido 7 University, 060-0810 Sapporo, Japan 8 9 Kazuya Takahashi 10 Asian Natural Environmental Science Center, The University of Tokyo, 1-1-1 Yayoi, 11 Bunkyo, Tokyo 113-8657, Japan 12 13 Van Nguyen Nguyen 14 Research Institute for Marine Fisheries, 222 Le Hai, Hai Phong, Vietnam 15 16 Mitsunori Iwataki 17 Asian Natural Environmental Science Center, The University of Tokyo, 1-1-1 Yayoi, 18 Bunkyo, Tokyo 113-8657, Japan 19 20 Takeo Horiguchi2 21 Department of Biological Sciences, Faculty of Science, Hokkaido University, 060-0810 22 Sapporo, Japan 23 24 2Author for correspondence: e-mail [email protected] 25 26 Running title: Two new species of Paragymnodinium 27 The genus Paragymnodinium currently includes two species, P. -
Protista (PDF)
1 = Astasiopsis distortum (Dujardin,1841) Bütschli,1885 South Scandinavian Marine Protoctista ? Dingensia Patterson & Zölffel,1992, in Patterson & Larsen (™ Heteromita angusta Dujardin,1841) Provisional Check-list compiled at the Tjärnö Marine Biological * Taxon incertae sedis. Very similar to Cryptaulax Skuja Laboratory by: Dinomonas Kent,1880 TJÄRNÖLAB. / Hans G. Hansson - 1991-07 - 1997-04-02 * Taxon incertae sedis. Species found in South Scandinavia, as well as from neighbouring areas, chiefly the British Isles, have been considered, as some of them may show to have a slightly more northern distribution, than what is known today. However, species with a typical Lusitanian distribution, with their northern Diphylleia Massart,1920 distribution limit around France or Southern British Isles, have as a rule been omitted here, albeit a few species with probable norhern limits around * Marine? Incertae sedis. the British Isles are listed here until distribution patterns are better known. The compiler would be very grateful for every correction of presumptive lapses and omittances an initiated reader could make. Diplocalium Grassé & Deflandre,1952 (™ Bicosoeca inopinatum ??,1???) * Marine? Incertae sedis. Denotations: (™) = Genotype @ = Associated to * = General note Diplomita Fromentel,1874 (™ Diplomita insignis Fromentel,1874) P.S. This list is a very unfinished manuscript. Chiefly flagellated organisms have yet been considered. This * Marine? Incertae sedis. provisional PDF-file is so far only published as an Intranet file within TMBL:s domain. Diplonema Griessmann,1913, non Berendt,1845 (Diptera), nec Greene,1857 (Coel.) = Isonema ??,1???, non Meek & Worthen,1865 (Mollusca), nec Maas,1909 (Coel.) PROTOCTISTA = Flagellamonas Skvortzow,19?? = Lackeymonas Skvortzow,19?? = Lowymonas Skvortzow,19?? = Milaneziamonas Skvortzow,19?? = Spira Skvortzow,19?? = Teixeiromonas Skvortzow,19?? = PROTISTA = Kolbeana Skvortzow,19?? * Genus incertae sedis. -
Cryptophyceae) Populations in the Eutrophic Lake Hira, Japan, Using Single-Cell PCR
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Kyoto University Research Information Repository Identification of species and genotypic compositions of Title Cryptomonas (Cryptophyceae) populations in the eutrophic Lake Hira, Japan, using single-cell PCR Nishino, Hiroshi; Hodoki, Yoshikuni; Thottathil, Shoji Author(s) Devasia; Ohbayashi, Kako; Takao, Yoshitake; Nakano, Shin- ichi Citation Aquatic Ecology (2015), 49(3): 263-272 Issue Date 2015-05-09 URL http://hdl.handle.net/2433/201850 The final publication is available at Springer via http://dx.doi.org/10.1007/s10452-015-9520-9.; The full-text Right file will be made open to the public on 09 May 2016 in accordance with publisher's 'Terms and Conditions for Self- Archiving'. Type Journal Article Textversion author Kyoto University 1 Title:Identification of species and genotypic compositions of Cryptomonas (Cryptophyceae) 2 populations in the eutrophic Lake Hira, Japan, using single-cell PCR 3 4 Author names and Affiliations: 5 Hiroshi Nishino1), Yoshikuni Hodoki2), Shoji Devasia Thottathil1), Kako Ohbayashi3), Yoshitake Takao4) 6 and Shin-ichi Nakano1)* 7 1) Center for Ecological Research, Kyoto University, Hirano 2-509-3, Otsu, Shiga 520-2113, Japan 8 2) Department of Biology, Keio University, 4-1-1 Hiyoshi,Kohoku-ku, Yokohama, Kanagawa 223-8521, 9 Japan 10 3) Department of General Systems Studies, University of Tokyo, 3-8-1Komaba, Meguro-Ku, Tokyo 11 153-8902, Japan 12 4) Department of Marine Bioscience, Fukui Prefectural University, 1-1 Gakuen-cho, Obama, Fukui 13 917-0003, Japan 14 15 *Corresponding Author and Present address: 16 Shin-ichi Nakano, Center for Ecological Research, Kyoto University, 2-509-3,Hirano, Otsu, Shiga 17 520-2113, Japan 18 E-mail: [email protected] 19 Tel: +81- 77-549-8239, Fax: +81-77-549-8239 20 1 1 Abstract 2 Single-cell PCR and gene sequencing were conducted to evaluate species and genotypic compositions of 3 Cryptomonas in the eutrophic Lake Hira, Japan.