Sclereid Distribution in the Leaves of Pseudotsuga Under Natural and Experimental Conditions Author(S): Khalil H

Total Page:16

File Type:pdf, Size:1020Kb

Sclereid Distribution in the Leaves of Pseudotsuga Under Natural and Experimental Conditions Author(S): Khalil H Sclereid Distribution in the Leaves of Pseudotsuga Under Natural and Experimental Conditions Author(s): Khalil H. Al-Talib and John G. Torrey Source: American Journal of Botany, Vol. 48, No. 1 (Jan., 1961), pp. 71-79 Published by: Botanical Society of America Stable URL: http://www.jstor.org/stable/2439597 . Accessed: 19/08/2011 13:16 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Botanical Society of America is collaborating with JSTOR to digitize, preserve and extend access to American Journal of Botany. http://www.jstor.org January, 1961] AL-TALIB AND TORREY-SCLEREID DISTRIBUTION 71 SMITH, G. H. 1926. Vascular anatomyof Ranalian flowers. Aquilegia formosav. truncata and Ranunculus repens. I. Ranunculaceae. Bot. Gaz. 82: 1-29. Univ. California Publ. Bot. 25: 513-648. 1928. Vascular anatomy of Ranalian flowers. II. TUCKER, SHIRLEY C. 1959. Ontogeny of the inflorescence Ranunculaceae (continued), Menispermaceae,Calycan- and the flowerin Drimys winteri v. chilensis. Univ. thaceae, Annonaceae. Bot. Gaz. 85: 152-177. California Publ. Bot. 30: 257-335. SNOW, MARY, AND R. SNOW. 1947. On the determination . 1960. Ontogeny of the floral apex of Micheiat of leaves. New Phytol. 46: 5-19. fuscata. Amer. Jour. Bot. 47: 266-277. SNOW, R. 1942. Further experimentson whorled phyllo- WARDLAW, C. W. 1949. Experimentaland analytical stud- taxis. New Phytol. 41: 108-124. ies of pteridophytes.XIV. Leaf formationand phyllo- STERLING, C. 1945. Growth and vascular developmentin taxis in Dryopterisaristata. Ann. Bot. (N.S.) 13: 163- the shoot apex of Sequoia sempervirens.II. Vascular 198. developmentin relation to phyllotaxis.Amer. Jour.Bot. 1957. On the organization and reactivityof the 32: 118-126. shoot apex in vascular plants. Amer. Jour. Bot. 44: TEPFER, S. S. 1953. Floral anatomy and ontogeny in 176-185. SCLEREID DISTRIBUTION IN THE LEAVES OF PSEUDOTSUGA UNDER NATURALAND EXPERIMENTALCONDITIONS' KHALIL H. AL-TALIB AND JOHN G. TORREY ABSTRA CT AL-TALIB, KHALIL H., and JOHN G. TORREY. (U. California,Berkeley.) Sclereid distributionin the leaves of Pseudotsuga under natural and experimentalconditions. Amer. Jour. Bot. 48(1): 71-79. Illus. 1961.-A studyof the distributionof sclereids in cleared leaves taken from1-, 2-, and 4-year-oldshoots of an adult tree of Pseudotsuga menziesii (Mirb.) Franco showed a repeated patternof sclereid distributionalong the shoot axis with many sclereids in the basal leaves grading into few or no sclereids in the terminal leaves of each year's growth. Attemptswere made to influencesclereid distributionby bud defoliationof attached branches with and without auxin treatmentand by testing the effectsof growth-regulatingsubstances on sclereid formationin leaves of excised buds of Pseudotsuga cultured in vitro. Whereas removal of the basal 84 of the leaves at the time of bud unfoldinghad no effecton bud, leaf or sclereid development,removal of the leaves of the upper half or complete defoliationled to prematureexpansion of next year's terminalbud with leaves developingin part from presumptivebud-scale primordia. Indoleacetic acid at 0.5% in lanolin paste applied to the defoliated region preventedthis prematurebud ex- pansion. Defoliation of the basal half did not affectsclereid formationin the terminal leaves. Sclereid developmentin leaves of prematurelyexpanded buds on defoliated branches was normal except in the few cases where bud expansion occurredin the presence of low-auxinconcentrations. Then, sclereid developmentwas inhibited. Sclereid formationin leaves of excised buds grown in nutrientculture was generally much less frequentthan in intact branches, and auxin treatment still furtherreduced the frequencyof sclereids. It was concluded that sclereid initiationand differ- entiationin the intact plant may well be under the control of hormonalfactors in the plant, one of which may be auxin. IN recentyears, sclerenchymatousidioblasts or tissues of various membersof the Coniferales. Allen sclereidshave been the subject of muchinvestiga- (1945) noted the occurrence of sclereids in the tionby plantanatomists. Their occurrence has been leaves of Pseudotsuga taxifolia. Sterling (1947) noted in leaves, stems,roots, fruitsand seeds of studied the ontogeny and morphology of the scle- angiosperms.Further, their morphologyand on- reids in the shoot of P. taxifolia and observed dif- togenyhave been studiedand theirtaxonomic im- ferences in the number of sclereids between indi- portanceevaluated (Foster, 1944, 1945, 1946, 1947, vidual branches. He also observed that sclereids in 1955a, 1955b,1956; Bloch,1946; Bailey and Nast, the cortex were less abundant but were larger than 1948; Rao, 1951). those in the pith. Griffith(1950) reported the In gymnosperms,sclereids have been less in- presence of numerous crystalliferous idioblastic tensivelystudied; theyhave been shownto occur, sclereids in the leaves of certain species of Arau- however,in both the vegetativeand reproductive caria. Sacher (1954) found that sclereids occur in the cortex of shoots of Pinus ponderosa, extending 1 Received for publication April 25, 1960. up to within 2 mm. of the shoot apex. Kitamura This work was supported in part by Research Grant (1956) studied the distributionof foliar sclereids Health Serv- RG 2861, National Institutesof Health, Public verticillata and found that various ice. The authors express their appreciation to Dr. A. S. of Sciadopitys Foster and Dr. L. Machlis for helpful advice. zones of the leaf differin the number of sclereids 72 AMERICAN JOURNAL OF BOTANY [VO1. v l j S &0 ' f: ? t . , , .. ,.,.. ....- . :.x : . j::: fi .;,-: . ' '' ... .... :.; . ., .-. : .... r . , .. .: . .. !o- :.. .. - : ........... .1w . ... I . r .. I ' : . :. ,., ......... ' 1 .:: ' . : . ': j : : . ! .l ;> ,' '.'.'.',.'' . .. ,<. .: . , ' :Ri < . .. : .: : : ',:.,s,. 1.: ' . t . .:: . u .: .: . ', S .. d C 00000X ff SE ;j {0000nDS00; 0 " 0 aV0000- 0,0f'0,j,'"'00000 M\\s'S} wi} . _ !; ' - W.t, ^;7 t j ,' t50'; y< t X1i; 011'f' f ' 'Ds y \ . \ 111|0f'leg * . ,. .i . : . : S1: 42 i3-;itv ... * _ .r : . I S .. ........ .. _l | i| S I __ i l l I l * - 1@ ...............................| l|. I!, i1l-I1 | ,_-- ._ : January, 1961 1 AL-TALIB AND TORREY-SCLEREID DISTRIBUTION 73 TABLE 1. Sclereid distributionin leaves along the shoot axis ziesii in natureand an accountof certainexperi- of 1- and 2-year-oldbranches of Pseudotsuga menziesii ments designed to affectthe regular patternof sclereidformation. A. 1-year-oldbranch (1954) MATERIALS AND METHODS.--Freshleaves and buds Segmentnumber Averagenumber of were obtained froma single old tree of P. menziesii, (15.leaves per Numberof sclereids sclereids per approximately50 ft. tall and 1 ft. in diameterat segment) per segment leaf and S.E. the base, growingin the BotanicalGarden, Univer- 1 (Terminal) 32 2.13 ? 0.41 sity of California,Berkeley. Preservedspecimens 2 128 8.53 ? 0.72 of P. menziesii, P. macrocarpa, P. glauca and P. 3 228 15.20 ? 0.82 sinensis were obtained from the Herbarium of the 4 338 22.53 0.79 ? of 5 (Basal) 286 19.07 ? 2.95 University California. The freshmaterial was collectedat monthlyin- B. 2-year-oldbranch tervalsfrom October 1953 to June1957, was killed 1954 and fixedin formalin-aceticacid-alcohol (FAA) Averagenum- withaspiration and was thenstored in freshFAA Number of ber of sclereids untilneeded. For thestudy of sclereiddistribution, Segment leaves in Total number per leaf and number segment of sclereids S.E. large numbersof leaves frombranches at various levelson the treewere collected, marked according 1 (Terminal) 20 31 1.55 ? 0.27 2 19 158 8.33 ? 0.62 to theirlocation along a branchand thencleared 3 15 245 16.33 ? 0.65 as wholeleaves in sodiumhydroxide. 4 16 428 26.75 ? 0.95 For clearing,the leaves werefirst boiled in 70% 5 (Basal) 18 450 25.0 ? 2.28 ethylalcohol to removepigments (several hours forold leaves fromthe intact plant; 30-60 min.for 1953 1 (Terminal) 15 34 2.27 ? 0.35 leaves fromcultured buds). Afterwashing in water, 2 17 99 5.82 ? 0.38 the leaves were placed in sodium hydroxide solu- 3 18 228 12.67 ? 0.72 tion (5% for old leaves; 2.5/o for young leaves 4 19 356 18.74 ? 0.59 from cultured buds) and placed in an oven at 35- 5 15 258 17.20 ? 1.87 40?C. Several changes of sodium hydroxide solu- tion were needed to complete clearing in some cases. Afterwashing with water again, the leaves were de- presentwith the highest number of sclereidsoccur- hydrated through an ethyl alcohol series to 70%, ringtoward the tip of the leaf. Withthe exception at which stage they were stained with safranin. De- of the studyby Kitamura,there appears to be no hydration was then completed through to absolute quantitativestudy of sclereiddistribution in plants. ethylalcohol, followedby 2 washes of absolute ethyl Duringa preliminarystudy of the occurrenceof alcohol-xylene (1:1) and finallywith pure xylene, sclereids in the leaves of Pseudotsuga menziesii then mountingin piccolyte. In cleared preparations (Mirb.) Franco2 (Douglas fir), therewas noteda of this type, cellular detail is quite evident and the ratherstriking and distinctivepattern of sclereid large
Recommended publications
  • Multiseriate Cortical Sclerenchyma Enhance Root Penetration in Compacted Soils
    Multiseriate cortical sclerenchyma enhance root penetration in compacted soils Hannah M. Schneidera, Christopher F. Strocka, Meredith T. Hanlona, Dorien J. Vanheesb,c, Alden C. Perkinsa, Ishan B. Ajmeraa, Jagdeep Singh Sidhua, Sacha J. Mooneyb,d, Kathleen M. Browna, and Jonathan P. Lyncha,b,d,1 aDepartment of Plant Science, Pennsylvania State University, University Park, PA 16802; bDivision of Agricultural and Environment Sciences, School of Biosciences, University of Nottingham, Leicestershire LE12 5RD, United Kingdom; cThe James Hutton Institute, Invergowrie DD2 5DA, United Kingdom; and dCentre for Plant Integrative Biology, University of Nottingham, Leicestershire LE12 5RD, United Kingdom Edited by Philip N. Benfey, Duke University, Durham, NC, and approved January 3, 2021 (received for review June 11, 2020) Mechanical impedance limits soil exploration and resource capture Root anatomical phenes have a large effect on penetration by plant roots. We examine the role of root anatomy in regulating ability (11). Thicker roots are more resistant to buckling and plant adaptation to mechanical impedance and identify a root deflection when encountering hard soils (12, 13). However, in anatomical phene in maize (Zea mays) and wheat (Triticum aesti- maize, cortical cell wall thickness, cortical cell count, cortical cell vum ) associated with penetration of hard soil: Multiseriate cortical wall area, and stele diameter predict root penetration and bend sclerenchyma (MCS). We characterize this trait and evaluate the strength better than root diameter (14). Smaller cells in the outer utility of MCS for root penetration in compacted soils. Roots with cortical region in maize are associated with increased root pen- MCS had a greater cell wall-to-lumen ratio and a distinct UV emis- sion spectrum in outer cortical cells.
    [Show full text]
  • Mechanical Stress in the Inner Bark of 15 Tropical Tree Species and The
    Mechanical stress in the inner bark of 15 tropical tree species and the relationship with anatomical structure Romain Lehnebach, Léopold Doumerc, Bruno Clair, Tancrède Alméras To cite this version: Romain Lehnebach, Léopold Doumerc, Bruno Clair, Tancrède Alméras. Mechanical stress in the inner bark of 15 tropical tree species and the relationship with anatomical structure. Botany / Botanique, NRC Research Press, 2019, 10.1139/cjb-2018-0224. hal-02368075 HAL Id: hal-02368075 https://hal.archives-ouvertes.fr/hal-02368075 Submitted on 18 Nov 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Mechanical stress in the inner bark of 15 tropical tree species and the relationship with anatomical structure1 Romain Lehnebach, Léopold Doumerc, Bruno Clair, and Tancrède Alméras Abstract: Recent studies have shown that the inner bark is implicated in the postural control of inclined tree stems through the interaction between wood radial growth and tangential expansion of a trellis fiber network in bark. Assessing the taxonomic extent of this mechanism requires a screening of the diversity in bark anatomy and mechanical stress. The mechanical state of bark was measured in 15 tropical tree species from various botanical families on vertical mature trees, and related to the anatomical structure of the bark.
    [Show full text]
  • Dwarf Mistletoes: Biology, Pathology, and Systematics
    This file was created by scanning the printed publication. Errors identified by the software have been corrected; however, some errors may remain. CHAPTER 10 Anatomy of the Dwarf Mistletoe Shoot System Carol A. Wilson and Clyde L. Calvin * In this chapter, we present an overview of the Morphology of Shoots structure of the Arceuthobium shoot system. Anatomical examination reveals that dwarf mistletoes Arceuthobium does not produce shoots immedi­ are indeed well adapted to a parasitic habit. An exten­ ately after germination. The endophytic system first sive endophytic system (see chapter 11) interacts develops within the host branch. Oftentimes, the only physiologically with the host to obtain needed evidence of infection is swelling of the tissues near the resources (water, minerals, and photosynthates); and infection site (Scharpf 1967). After 1 to 3 years, the first the shoots provide regulatory and reproductive func­ shoots are produced (table 2.1). All shoots arise from tions. Beyond specialization of their morphology (Le., the endophytic system and thus are root-borne shoots their leaves are reduced to scales), the dwarf mistle­ (Groff and Kaplan 1988). In emerging shoots, the toes also show peculiarities of their structure that leaves of adjacent nodes overlap and conceal the stem. reflect their phylogenetic relationships with other As the internodes elongate, stem segments become mistletoes and illustrate a high degree of specialization visible; but the shoot apex remains tightly enclosed by for the parasitic habit. From Arceuthobium globosum, newly developing leaf primordia (fig. 10.lA). Two the largest described species with shoots 70 cm tall oppositely arranged leaves, joined at their bases, occur and 5 cm in diameter, toA.
    [Show full text]
  • Development and Cell Cycle Activity of the Root Apical Meristem in the Fern Ceratopteris Richardii
    G C A T T A C G G C A T genes Article Development and Cell Cycle Activity of the Root Apical Meristem in the Fern Ceratopteris richardii Alejandro Aragón-Raygoza 1,2 , Alejandra Vasco 3, Ikram Blilou 4, Luis Herrera-Estrella 2,5 and Alfredo Cruz-Ramírez 1,* 1 Molecular and Developmental Complexity Group at Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad, Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, Irapuato 36821, Guanajuato, Mexico; [email protected] 2 Metabolic Engineering Group, Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad, Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, Irapuato 36821, Guanajuato, Mexico; [email protected] 3 Botanical Research Institute of Texas (BRIT), Fort Worth, TX 76107-3400, USA; [email protected] 4 Laboratory of Plant Cell and Developmental Biology, Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; [email protected] 5 Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA * Correspondence: [email protected] Received: 27 October 2020; Accepted: 26 November 2020; Published: 4 December 2020 Abstract: Ferns are a representative clade in plant evolution although underestimated in the genomic era. Ceratopteris richardii is an emergent model for developmental processes in ferns, yet a complete scheme of the different growth stages is necessary. Here, we present a developmental analysis, at the tissue and cellular levels, of the first shoot-borne root of Ceratopteris.
    [Show full text]
  • Ultrastructural Study on the Formation of Sclereids in the Floating Leaves of Nymphoides Coreana and Nuphar Schimadai
    Kuo-HuangBot. Bull. Acad. et al. Sin. — Sclereids(2000) 41: in 283-291Nymphoides and Nuphar 283 Ultrastructural study on the formation of sclereids in the floating leaves of Nymphoides coreana and Nuphar schimadai Ling-Long Kuo-Huang1,2, Su-Hwa Chen1, and Shiang-Jiuun Chen1 1 Department of Botany, National Taiwan University, Taipei, Taiwan, Republic of China (Received December 29, 1999; Accepted April 14, 2000) Abstract. The formation of star-shaped sclereids in the floating leaves of Nymphoides coreana and Nuphar schimadai was studied microscopically. These foliar sclereids were associated with the aerenchyma and found as the form of idioblast. The outer surface of mature sclereids was smooth in Nymphoides, but with many prismatic calcium oxalate crystals in Nuphar. However, the early morphogenesis of these two kinds of sclereids was similar. The sclereid initials were distinguished from the neighboring cells by their distinctly large nucleus. The expanding sclereid initials were constrained by the neighboring cells. Crystal formation in young sclereids of Nuphar started near the cessation of sclereid expansion. The crystals were bounded by crystal sheath and located in crystal chambers between the primary cell wall and plasma membrane. Calcium antimonate precipitates were found, especially on the crystal sheaths as well as between the plasma membrane and the primary cell walls. The crystal chambers have a paracrystalline appearance connected with the crystal sheath and the plasma membrane. After formation of crystals, the secondary wall was deposited and then the crystals became embedded between the primary and secondary walls. The possible functions of the foliage sclereids and the plans for further investigation are discussed.
    [Show full text]
  • Epiparasitism in Phoradendron Durangense and P. Falcatum (Viscaceae) Clyde L
    Aliso: A Journal of Systematic and Evolutionary Botany Volume 27 | Issue 1 Article 2 2009 Epiparasitism in Phoradendron durangense and P. falcatum (Viscaceae) Clyde L. Calvin Rancho Santa Ana Botanic Garden, Claremont, California Carol A. Wilson Rancho Santa Ana Botanic Garden, Claremont, California Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons Recommended Citation Calvin, Clyde L. and Wilson, Carol A. (2009) "Epiparasitism in Phoradendron durangense and P. falcatum (Viscaceae)," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 27: Iss. 1, Article 2. Available at: http://scholarship.claremont.edu/aliso/vol27/iss1/2 Aliso, 27, pp. 1–12 ’ 2009, Rancho Santa Ana Botanic Garden EPIPARASITISM IN PHORADENDRON DURANGENSE AND P. FALCATUM (VISCACEAE) CLYDE L. CALVIN1 AND CAROL A. WILSON1,2 1Rancho Santa Ana Botanic Garden, 1500 North College Avenue, Claremont, California 91711-3157, USA 2Corresponding author ([email protected]) ABSTRACT Phoradendron, the largest mistletoe genus in the New World, extends from temperate North America to temperate South America. Most species are parasitic on terrestrial hosts, but a few occur only, or primarily, on other species of Phoradendron. We examined relationships among two obligate epiparasites, P. durangense and P. falcatum, and their parasitic hosts. Fruit and seed of both epiparasites were small compared to those of their parasitic hosts. Seed of epiparasites was established on parasitic-host stems, leaves, and inflorescences. Shoots developed from the plumular region or from buds on the holdfast or subjacent tissue. The developing endophytic system initially consisted of multiple separate strands that widened, merged, and often entirely displaced its parasitic host from the cambial cylinder.
    [Show full text]
  • Anatomy of the Underground Parts of Four Echinacea-Species and of Parthenium Integrifolium
    Scientia Pharmaceutica (Sci. Pharm.) 69, 237-247 (2001) O Osterreichische Apotheker-Verlagsgesellschaft m.b.H., Wien, Printed in Austria Anatomy of the underground parts of four Echinacea-species and of Parthenium integrifolium R. Langer Institute of Pharmacognosy, University of Vienna Center of Pharmacy, Althanstrasse 14, A - 1090 Vienna, Austria Improved descriptions and detailed drawings of the most important anatomical characters of the roots of Echinacea purpurea (L.) MOENCH,E. angustifolia DC., E. pallida (NuTT.) NUTT.,and of Parfhenium integrifolium L. are presented. The anatomy of the rhizome of E. purpurea, which was detected in commercial samples, and of the root of E. atrorubens NUTT., another known adulteration for pharmaceutically used Echinacea-species, is documented for the first time. The possibilities and limitations of the identification by means of microscopy are discussed. The anatomical differences between the roots of E. angustifolia, E. pallida and E. atrorubens are not sufficient for differentiation, however, root and rhizome of E. purpurea and the root of Parthenium integrifolium appear well characterized. Because of the highly similar anatomy the microscopic proof of identity and purity of crude drugs of Echinacea must be done with uncomminuted material and the examination of cross sections. (Keywords: Echinacea angustifolia, Echinacea atrorubens, Echinacea pallida, Echinacea purpurea, Parthenium integrifolium, Asteraceae, microscopy, anatomy, identification) 1. Introduction The first, and for a long period only, detailed anatomical descriptions of the underground parts of Echinacea were published at the beginning of the last century', '. Due to later changes in the taxonomy within the genus Echinacea, unfortunately the plant sources for these descriptions remain unclear. The increasing interest in Echinacea and the adulterations that had been observed frequently caused Heubl et aL3 in the late eighties to examine the roots of E.
    [Show full text]
  • Response of Avocado Pericarp Tissue to Mechanical Injury
    Proc. of Second World Avocado Congress 1992 pp. 485-488 Response of Avocado Pericarp Tissue to Mechanical Injury C. A. Schroeder Dept. of Biology, University of California, Los Angeles, CA 90024, USA Abstract. Mechanical injury to avocado (Persea americana Mill.) pericarp will initiate a meristem and the production of periderm. Injury to tissues deep within the pericarp results in cellular differentiation of parenchyma with various degrees of cell wall thickening. Sclereid-like cells with thick, lignified walls and prominent pits can be formed in tissue normally occupied by thin-walled, oil-filled parenchyma. The unique growth and increase in volume of avocado fruit is characterized by continuous cell division in the pericarp tissue from pollination until fruit maturity. Shortly following fruit set, the parenchymatous cells which comprise the major tissue of the pericarp attain a diameter of approximately 50 //m and then undergo mitosis (Schroeder, 1953). Thus cell size is fairly constant and uniform throughout the fleshy pericarp. Larger fruit therefore have more cells than smaller fruit upon reaching maturity. Mitotic activity throughout the pericarp tissue at all times from anthesis to full fruit size is reflected in the high respiratory behavior of the fruit tissue, which is comparable to that of meristematic tissues in general. One can expect meristematic activity in the pericarp tissue at any point in time during fruit development. This has been demonstrated by the successful grafting of nearly mature avocado fruit. Cutting through the thick pericarp of adjacent fruit and holding these together along the cut plane eventually results in development of meristem tissue on the cut surfaces and the union of tissues between the two fruit (Schroeder ef a/., 1959).
    [Show full text]
  • Phloem Structure and Development in Illicium Parviflorum, a Basal Angiosperm Shrub Authors
    bioRxiv preprint doi: https://doi.org/10.1101/326322; this version posted June 1, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Article title: 2 Phloem structure and development in Illicium parviflorum, a basal angiosperm shrub 3 Authors: 4 Juan M. Losada1,2* and N. Michele Holbrook1,2 5 Affiliations: 6 1Department of Organismic and Evolutionary Biology, Harvard University. 16 Divinity Av., 7 Cambridge, MA, 02138, USA. 8 2Arnold Arboretum of Harvard University. 1300 Centre St., Boston, MA, 02130, USA. 9 *Author for correspondence. 10 Phone: + 1 (617) 384 5631 11 E-mail: [email protected] 12 13 WORD AND FIGURE COUNTS: 14 Total word count: 5,882 15 Introduction: 835 16 Materials and Methods: 1,530 17 Results: 1,412 18 Discussion: 1,939 19 Number of color figures: 8 20 Supporting information figures: 2 21 22 23 1 bioRxiv preprint doi: https://doi.org/10.1101/326322; this version posted June 1, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 24 SUMMARY 25 Recent studies in canopy-dominant trees revealed a structure-function scaling of the 26 phloem. However, whether axial scaling is conserved in woody plants of the understory, the 27 environments of most basal-grade angiosperms, remains mysterious. We used seedlings 28 and adult plants of the shrub Illicium parviflorum to explore the anatomy and physiology of 29 the phloem in their aerial parts, and possible changes through ontogeny.
    [Show full text]
  • Tree Anatomy Stems and Branches
    Tree Anatomy Series WSFNR14-13 Nov. 2014 COMPONENTSCOMPONENTS OFOF PERIDERMPERIDERM by Dr. Kim D. Coder, Professor of Tree Biology & Health Care Warnell School of Forestry & Natural Resources, University of Georgia Around tree roots, stems and branches is a complex tissue. This exterior tissue is the environmental face of a tree open to all sorts of site vulgarities. This most exterior of tissue provides trees with a measure of protection from a dry, oxidative, heat and cold extreme, sunlight drenched, injury ridden site. The exterior of a tree is both an ecological super highway and battle ground – comfort and terror. This exterior is unique in its attributes, development, and regeneration. Generically, this tissue surrounding a tree stem, branch and root is loosely called bark. The tissues of a tree, outside or more exterior to the xylem-containing core, are varied and complexly interwoven in a relatively small space. People tend to see and appreciate the volume and physical structure of tree wood and dismiss the remainder of stem, branch and root. In reality, tree life is focused within these more exterior thin tissue sets. Outside of the cambium are tissues which include transport cells, structural support cells, generation cells, and cells positioned to help, protect, and sustain other cells. All of this life is smeared over the circumference of a predominately dead physical structure. Outer Skin Periderm (jargon and antiquated term = bark) is the most external of tree tissues providing protection, water conservation, insulation, and environmental sensing. Periderm is a protective tissue generated over and beyond live conducting and non-conducting cells of the food transport system (phloem).
    [Show full text]
  • Eudicots Monocots Stems Embryos Roots Leaf Venation Pollen Flowers
    Monocots Eudicots Embryos One cotyledon Two cotyledons Leaf venation Veins Veins usually parallel usually netlike Stems Vascular tissue Vascular tissue scattered usually arranged in ring Roots Root system usually Taproot (main root) fibrous (no main root) usually present Pollen Pollen grain with Pollen grain with one opening three openings Flowers Floral organs usually Floral organs usually in in multiples of three multiples of four or five © 2014 Pearson Education, Inc. 1 Reproductive shoot (flower) Apical bud Node Internode Apical bud Shoot Vegetative shoot system Blade Leaf Petiole Axillary bud Stem Taproot Lateral Root (branch) system roots © 2014 Pearson Education, Inc. 2 © 2014 Pearson Education, Inc. 3 Storage roots Pneumatophores “Strangling” aerial roots © 2014 Pearson Education, Inc. 4 Stolon Rhizome Root Rhizomes Stolons Tubers © 2014 Pearson Education, Inc. 5 Spines Tendrils Storage leaves Stem Reproductive leaves Storage leaves © 2014 Pearson Education, Inc. 6 Dermal tissue Ground tissue Vascular tissue © 2014 Pearson Education, Inc. 7 Parenchyma cells with chloroplasts (in Elodea leaf) 60 µm (LM) © 2014 Pearson Education, Inc. 8 Collenchyma cells (in Helianthus stem) (LM) 5 µm © 2014 Pearson Education, Inc. 9 5 µm Sclereid cells (in pear) (LM) 25 µm Cell wall Fiber cells (cross section from ash tree) (LM) © 2014 Pearson Education, Inc. 10 Vessel Tracheids 100 µm Pits Tracheids and vessels (colorized SEM) Perforation plate Vessel element Vessel elements, with perforated end walls Tracheids © 2014 Pearson Education, Inc. 11 Sieve-tube elements: 3 µm longitudinal view (LM) Sieve plate Sieve-tube element (left) and companion cell: Companion cross section (TEM) cells Sieve-tube elements Plasmodesma Sieve plate 30 µm Nucleus of companion cell 15 µm Sieve-tube elements: longitudinal view Sieve plate with pores (LM) © 2014 Pearson Education, Inc.
    [Show full text]
  • Anatomy of Periderm and Cortex of Fouquieriaceae James Henrickson California State University, Los Angeles
    Aliso: A Journal of Systematic and Evolutionary Botany Volume 7 | Issue 1 Article 7 1969 Anatomy of Periderm and Cortex of Fouquieriaceae James Henrickson California State University, Los Angeles Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons Recommended Citation Henrickson, James (1969) "Anatomy of Periderm and Cortex of Fouquieriaceae," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 7: Iss. 1, Article 7. Available at: http://scholarship.claremont.edu/aliso/vol7/iss1/7 ALISO VoL. 7, No. 1, pp. 97-126 APRIL 18, 1969 ANATOMY OF PERIDERM AND CORTEX OF FOUQUIERIACEAE JAMES HENRICKSON1 California State College, Los Angeles INTRODUCTION The Fouquieriaceae are small trees and shrubs native to arid portions of Mexico and southwestern United States. The family is treated as consisting of two genera: Fouquieria with 11 known species, and the monotypic Idria. For a brief description of the distribution, growth habits, and floral charac­ teristics of the family, see Henrickson, 1969. Ever since the family has been known to science, only a small number of anatomical studies have been undertaken. Van Tieghem ( 1899), in re­ porting on material collected in Baja California by Diguet, made a general and relatively incomplete description of spine formation and stem and floral morphology. He claimed his findings provided evidence of an affinity of this family with the Ebenales. Solereder ( 1908) in his Systematic Anatomy of the Dicotyledons discussed the general anatomy of Fouquieria and included the genus in the Tamariscaceae, where it formed an aberrant element. He included a discussion of leaf, spine, and wood anatomy.
    [Show full text]