CE6502 Foundation Engineering – Question Bank

Total Page:16

File Type:pdf, Size:1020Kb

CE6502 Foundation Engineering – Question Bank CE6502 Foundation Engineering – Question Bank QUESTION BANK DEPARTMENT: CIVIL SEMESTER: V SUBJECT CODE: CE6502 SUBJECT NAME: FOUNDATION ENGINEERING UNIT 1- SITE INVESTIGATION AND SELECTION OF FOUNDATION PART – A (2 Marks) 1. List the various methods of soil exploration techniques. BT-1 2. Discuss the correction applied in SPT test. BT-2 3. Define depth of exploration. BT-1 4. Formulate the merits and demerits of wash boring. BT-6 5. Compare the various methods of site exploration BT-6 6. Summarize Augur boring. BT-2 7. Explain standard penetration number BT-6 8. Classify the corrections to be carried out in SPT test. BT-2 9. State the uses of soil exploration BT-1 10. What do you infer from soil exploration? BT-1 11. Write the different types of samplers. BT-3 12. Illustrate the various parameters affecting the sampling disturbance. BT-3 13. Summarize the advantages of SCPT over SPT. BT-2 14. Examine a report on spacing of bore holes. BT-1 15. Identify the difference between disturbed & un-disturbed samples. BT-1 16. Tabulate a note on representative and non-representative samples BT-1 17. Define liquefaction of sand BT-1 18. Formulate the importance of area ratio. BT-6 19. State the uses of Bore log report. BT-1 Prepared by Mr.MOGANRAJ/A.P Mr.KARTHICK S/A.P Mr.ARIVOLI/A.P CE6502 Foundation Engineering – Question Bank 20. The internal diameter of a sampler is 40 mm and the external diameter is 42 mm. Will BT-2 you consider the sample obtained from the sampler as disturbed or undisturbed? PART – B (16 Marks) 1. Enumerate the scope and objectives of methods of soil exploration. BT-6 2. Enlist the following samplers with neat sketches BT-2 (i) Split spoon sampler.(8) (ii) Thin walled sampler.(8) 3. With a neat sketch, explain the types of boring BT-2 (i) Auger boring(8) (ii) Wash boring(8) 4. Summarize a detailed report on various types of samplers BT-5 5. Discuss the factors incorporated in SPT test and tell about correction applied on same BT-2 6. Explain the various parameters which affect the sampling in detail BT-5 7. Illustrate the following types of Geophysical methods BT-3 (i) Electrical resistivity methods(8) (ii) Seismic refraction method(8) 8. Evaluate the selection of foundation location based on soil condition. BT-5 9. Explain dynamic cone penetration test. BT-1 10 Describe the salient features of a good sub-soil investigation report. BT-2 11 Prepare a report on the following BT-3 (i) Significant depth of exploration(6) (ii) Spacing of Bore holes(6) (iii) Site investigation report(4) 12 Mention the advantage and disadvantages of SPT test over SCPT test BT-1 13 Describe about following BT-4 (i) Soil Exploration Methods(12) (ii) Importance of area ratio(4) Prepared by Mr.MOGANRAJ/A.P Mr.KARTHICK S/A.P Mr.ARIVOLI/A.P CE6502 Foundation Engineering – Question Bank 14 Demonstrate the following methods BT-3 (i) Seismo electrical method(8) (ii) Well logging(8) UNIT 2- SHALLOW FOUNDATION PART – A (2 Marks) 1. Compare shallow foundation with deep foundation. BT-4 2. Discuss the factors to be considered while designing the foundation BT-2 3. Write the difference between bearing capacity and ultimate bearing capacity BT-6 4. Summarize Safe bearing capacity and Allowable bearing pressure BT-2 5. Explain ultimate bearing capacity with the help of load settlement curve. BT-5 6. Illustrate the different modes of shear failure BT-3 7. Relate local shear failure and General shear failure. BT-3 8. Write the procedure to find effective dimension eccentrically loaded footing. BT-3 9. Select the Assumptions & Limitations made in Terzaghi’s Analysis? BT-5 . 10. Estimate the factors affecting Bearing capacity. BT-2 11. Define Settlement. BT-4 12. Classify the components of settlement BT-2 13. Compare Co-efficient of volume change and volume change. BT-1 14. Distinguish between Immediate Settlement and consolidation settlement. BT-4 15. State primary consolidation and secondary consolidation. BT-1 16. What do you understand from Secondary compression settlement? BT-3 17. Tabulate the corrections to be made for the Settlement due to Consolidation. BT-1 18. Show the corrections made for the observed SPT values. BT-3 19. Criticize the factors affecting Bearing capacity. BT-4 Prepared by Mr.MOGANRAJ/A.P Mr.KARTHICK S/A.P Mr.ARIVOLI/A.P CE6502 Foundation Engineering – Question Bank 20. Examine the factors consider in seismic design of shallow foundation. BT-4 PART – B (16 Marks) 1. Explain the IS code recommendations for the location and depth of foundation. BT-3 2. Illustrate the different modes of failure of foundation soil. BT-3 3. Evaluate the following BT-5 (i)SPT(6) (ii) SCPT and Plate load test(10) 4. Calculate the Safe bearing capacity per unit area of BT-3 1. a strip footing 1 m wide(4) 2. a square footing 3m x 3m(4) 3. a circular footing of 3m diameter.(4) 4. a rectangular footing of 1.3x2.2m(4) 2 o Unit weight of the soil 1.8 t/m3, cohesion = 2t/m And Ф = 20 ,Nc = 17.5, Nq = 7.5 and N γ = 5. Depth of footing is 1.6m below ground surface. 5. An R.C. Column footing 2.26 m in square shape is to rest 1.5 m below level ground BT-3 3 level is on cohesive soil. The unit weight is 17.6kN/m . What is the safe load if 3 cohesion is 30kN/m factor of safety 2.4. Angle of internal friction 33° by IS code. 6. Design a strip footing to carry a load of 750kN/m at a depth of 1.6m in a cohesive soil BT-3 3 2 having unit weight of 18kN/ m & c=20kN/ m and angle of internal friction is 25 degree. Determinethe width of footing, using F.O.S as 3. Use terzhagi’s equations. Nc = 25.1, Nq = 12.7 and N γ = 9.7 7. In a plate bearing test on pure clayey soil failure occurred at a load of 12.2 tones. The BT-5 size of the plate was 45 cm x 45 cm and the test was one at a depth of 1.0 m below ground level. Find out the ultimate bearing capacity for a 1.5 m wide continuous wall footing with its base at a depth of 2m below ground level. The unit wt. of clay may be taken as 1.9 gm/ c.c. and Nc = 5.7, Nq = 1 and Nγ = 0. 8. A square footing located at a depth of 1.5 m below the ground surface in cohesionless BT-5 soil carries a column load of 1280 kN. The soil is submerged having an effective o unit weight of 11.5 kN/m3 and an angle of shearing resistane of 30 . Find the size of the following for Fs = 3 by Terzaghi’s theory of general shear failure. 9. A footing foundation of 3m X 3m is to be constructed at a site at a depth of 1.5 m below BT-5 ground level. The water table is at the base level of foundation. The average static cone Prepared by Mr.MOGANRAJ/A.P Mr.KARTHICK S/A.P Mr.ARIVOLI/A.P CE6502 Foundation Engineering – Question Bank 2 penetration resistance obtained at the site is 20 Kg/m .the soil is cohesive determine the safe bearing capacity for a settlement of 40mm. 10. Two plate load test s were conducted at the level of a prototype foundation in cohesion BT-5 less soil close to each other. The following data are given. Size of plate Load Settlement 0.3x0.3m 30 KN 25mm 0.6x0.6m 90 KN 25mm Find the size of the square footing to carry a load of 800 KN at the same specifying of settlement of 25mm 11. (i)An RCC foundation of size 18m x 36m have a uniform pressure of 180KN/m2 on a BT-5 soil mass with modulus of elasticity 45KN/m2.Determine the immediate settlement Assume poisons ratio as 0.5(10) (ii)Draw the pressure distribution of rigid footing in cohesive soil(4) 12. Summarize the following BT-5 (i) General Shear failure(6) (ii) Local shear failure(5) (iii) Punching shear failure(5) 13. (i) A footing 2m x 2m is at a depth of 1.5 m in a sand deposit for which the N BT-3 value is 27,Water table is at 2m from the Ground level. Determine the safe bearing capacity if the permissible settlement is 40 mm.(10) (ii) Write about influence of water table in determination of bearing capacity(6) 14. Write about the following methods of bearing capacity determination BT-3 (i) Terzhagi method(4) (ii) Meyerhoff method(4) (iii) IS Code Method(4) (iv) Skempton method(4) Prepared by Mr.MOGANRAJ/A.P Mr.KARTHICK S/A.P Mr.ARIVOLI/A.P CE6502 Foundation Engineering – Question Bank UNIT 3- FOOTINGS AND RAFTS PART – A (2 Marks) 1. Select the types of shallow foundations BT-2 2. Define spread or Isolated footing BT-1 3. Examine the behavior of Cantilever footing BT-4 4. Write about Raft or mat foundation BT-6 5. Evaluate the concept of eccentric loading BT-1 . 6. What are the circumstances necessitating combined footing? BT-1 7. Under what circumstances a rectangular and trapezoidal combined footings are adopted BT-1 8. Estimate the circumstances of strap footing adoption.
Recommended publications
  • CPT-Geoenviron-Guide-2Nd-Edition
    Engineering Units Multiples Micro (P) = 10-6 Milli (m) = 10-3 Kilo (k) = 10+3 Mega (M) = 10+6 Imperial Units SI Units Length feet (ft) meter (m) Area square feet (ft2) square meter (m2) Force pounds (p) Newton (N) Pressure/Stress pounds/foot2 (psf) Pascal (Pa) = (N/m2) Multiple Units Length inches (in) millimeter (mm) Area square feet (ft2) square millimeter (mm2) Force ton (t) kilonewton (kN) Pressure/Stress pounds/inch2 (psi) kilonewton/meter2 kPa) tons/foot2 (tsf) meganewton/meter2 (MPa) Conversion Factors Force: 1 ton = 9.8 kN 1 kg = 9.8 N Pressure/Stress 1kg/cm2 = 100 kPa = 100 kN/m2 = 1 bar 1 tsf = 96 kPa (~100 kPa = 0.1 MPa) 1 t/m2 ~ 10 kPa 14.5 psi = 100 kPa 2.31 foot of water = 1 psi 1 meter of water = 10 kPa Derived Values from CPT Friction ratio: Rf = (fs/qt) x 100% Corrected cone resistance: qt = qc + u2(1-a) Net cone resistance: qn = qt – Vvo Excess pore pressure: 'u = u2 – u0 Pore pressure ratio: Bq = 'u / qn Normalized excess pore pressure: U = (ut – u0) / (ui – u0) where: ut is the pore pressure at time t in a dissipation test, and ui is the initial pore pressure at the start of the dissipation test Guide to Cone Penetration Testing for Geo-Environmental Engineering By P. K. Robertson and K.L. Cabal (Robertson) Gregg Drilling & Testing, Inc. 2nd Edition December 2008 Gregg Drilling & Testing, Inc. Corporate Headquarters 2726 Walnut Avenue Signal Hill, California 90755 Telephone: (562) 427-6899 Fax: (562) 427-3314 E-mail: [email protected] Website: www.greggdrilling.com The publisher and the author make no warranties or representations of any kind concerning the accuracy or suitability of the information contained in this guide for any purpose and cannot accept any legal responsibility for any errors or omissions that may have been made.
    [Show full text]
  • Presentation Slides
    Center for Accelerating Innovation Advanced Geotechnical Methods in Exploration (A-GaME) Tools for Enhanced, Effective Site Characterization 1 Center for Accelerating Innovation What are the Advanced Geotechnical Methods in Exploration? The A-GaME is a toolbox of underutilized subsurface exploration tools that will assist with: • Assessing risk and variability in site characterization • Optimizing subsurface exploration programs • Maximizing return on investment in project delivery 2 Center for Accelerating Innovation Why do you need to bring your A-GaME? • Because, in up to 50% of major infrastructure projects, schedule or costs will be significantly impacted by geotechnical issues!! • The majority of these issues will be directly or indirectly related to the scope and quality of subsurface investigation and site characterization work. 3 Center for Accelerating Innovation Presenters Silas Nichols Derrick Dasenbrock Ben Rivers Principal Bridge Geomechanics/LRFD Geotechnical Engineer – Engineer Engineer Geotechnical Minnesota DOT FHWA RC FHWA HQ 4 Center for Accelerating Innovation What is “Every Day Counts”(EDC)? State-based model to identify and rapidly deploy proven but underutilized innovations to: shorten the project delivery process enhance roadway safety reduce congestion improve environmental sustainability . EDC Rounds: two year cycles . Initiating 5th Round (2019-2020) - 10 innovations . To date: 4 Rounds, over 40 innovations For more information: https://www.fhwa.dot.gov/innovation/ FAST Act, Sec.1444 5 Center for Accelerating Innovation Implementation Planning Team Practitioners l Geotechnical l Construction l Design l Risk l Geophysics l Site Variability l Public and Private Sectors l Industry Representation – ADSC, AEG, DFI, EEGS, GI and AASHTO COBS, COC, COMP Brian Collins – FHWA-WFL Michelle Mann – NMDOT Derrick Dasenbrock – MNDOT Marc Mastronardi - GDOT Mohammed Elias – FHWA-EFL Mike McVay – Univ.
    [Show full text]
  • Cone Penetration Test for Bearing Capacity Estimation
    The 2nd Join Conference of Utsunomiya University and Universitas Padjadjaran, Nov.24,2017 CONE PENETRATION TEST FOR BEARING CAPACITY ESTIMATION AND SOIL PROFILING, CASE STUDY: CONVEYOR BELT CONSTRUCTION IN A COAL MINING CONCESSION AREA IN LOA DURI, EAST KALIMANTAN, INDONESIA Ilham PRASETYA*1, Yuni FAIZAH*1, R. Irvan SOPHIAN1, Febri HIRNAWAN1 1Faculty of Geological Engineering, Universitas Padjadjaran Jln. Raya Bandung-Sumedang Km. 21, 45363, Jatinangor, Sumedang, Jawa Barat, Indonesia *Corresponding Authors: [email protected], [email protected] Abstract Cone Penetration Test (CPT) has been recognized as one of the most extensively used in situ tests. A series of empirical correlations developed over many years allow bearing capacity of a soil layer to be calculated directly from CPT’s data. Moreover, the ratio between end resistance of the cone and side friction of the sleeve has been prove to be useful in identifying the type of penetrated soils. The study was conducted in a coal mining concession area in Loa Duri, east Kalimantan, Indonesia. In this study the Begemann Friction Cone Mechanical Type Penetrometer with maximum push 2 capacity of 250 kg/cm was used to determine bearing layers for foundation of the conveyor belt at six different locations. The friction ratio (Rf) is used to classify the type of soils, and allowable bearing capacity of the bearing layers are calculated using Schmertmann method (1956) and LCPC method (1982). The result shows that the bearing layers in study area comprise of sands, and clay- sand mixture and silt. The allowable bearing capacity of shallow foundations range between 6-16 kg/cm2 whereas that of pile foundations are around 16-23 kg/cm2.
    [Show full text]
  • Probabilistic Analysis of Immersed Tunnel Settlement Using CPT and MASW
    Probabilistic analysis of immersed tunnel settlement using CPT and MASW Bob van Amsterdam January 16, 2019 Version: Final report Probabilistic analysis of immersed tunnel settlement using CPT and MASW Bob van Amsterdam Thesis committee: Prof. Dr. ir. K.G. Gavin Geo-engineering TU Delft Assoc. prof. Dr. ir. W. Broere Geo-engineering TU Delft Ir. K.J. Reinders Hydraulic engineering TU Delft Dr. ir. C. Reale Geo-engineering TU Delft January 16, 2019 Abstract Settlement data of the Kiltunnel and the Heinenoordtunnel show that immersed tunnels in the Netherlands have been experiencing much larger settlement than expected when designing the tunnels causing cracks in the concrete and leakages in the joints. Settlements of 8 - 70 mm have been measured at the Kiltunnel and of 7 - 30 mm at the Heinenoordtunnel while settlements in the range of 0 - 1 mm were expected. Both sites are investigated through non-invasive geophysical site investigation method MASW (Multichannel Analysis of Surface Waves) for each 2.5 meter along the length of the tunnel and invasive site characterisation method CPT’s (Cone Penetration Tests). The settlement of immersed tunnels is similar to that of a shallow foundation. It can be modelled using the Mayne equation which uses the small strain shear stiffness and the degradation of secant stiffness based on the load compared to the ultimate bearing resistance. A way of characterising the site is determining the small strain stiffness directly from the shear wave velocity using the uncertainties in the relationship between shear wave velocity and cone penetration resistance and correlating the cone penetration resistance to this value.
    [Show full text]
  • Geotechnical Investigations for Tunneling
    Breakthroughs in Tunneling September 12, 2016 Geotechnical Site Investigations For Tunneling Greg Raines, PE Objective To develop a conceptual model adequate to estimate the range of ground conditions and behavior for excavation, support, and groundwater control. support Typical Phases of Subsurface Investigation Phase 1: Planning Phase – Desk Top Study/Review Phase 2: Preliminary/Feasibility Design – Initial Field Investigations Phase 3: Final Design – Additional/Follow-Up Field Investigations Final Phase: Construction – Continued characterization of site Typical Phases of Subsurface Investigation Phase 1: Planning Phase – Desk Top Study/Review Review: Geologic maps Previous reports/investigations Aerial photos Case histories Develop conceptual geologic/geotechnical model (cross sections), preliminarily identify technical constraints/issues for the project. Plan subsurface investigation program. Identify/Collect Available Geotechnical Data in the Project Area Bridge or control Information can include: structure • Geologic maps • Data from previous reports • Drill hole data • Preliminary mapping Compile available local data into a database for further evaluation. Roads or Residential Canals Area Geologic Profiles – Understand Geologic Setting and Collect Specific Data Bedrock Surface Elevation Maps Aerial Photo / LiDAR Interpretation Aerial Photo Diversion Tunnel Use digital imagery/LiDAR to map local features prior to field mapping. Dam LiDAR Field Geologic Mapping Field Geologic Mapping Structural Data Collection (faults, folds,
    [Show full text]
  • Fugro Cone Penetration Tests
    SERVICE FLYER FUGRO CONE PENETRATION TESTS The objective of all site investigations is to obtain data that will ■■ Piezocones (CPTU) can also be used adequately quantify the variability of the geotechnical properties of to assess hydrostatic head, the site. Cone Penetrometer Testing (CPT) provides a rapid and cost consolidation and permeability effective way to achieve this. characteristics ■■ Yields thousands or tens of thousands of data points that can be digitally INTRODUCTION stored and transferred in real time Sufficient data is required to assess the ■■ Provides a continuous (although ■■ Cost-effective method employing rapid impact of soil variability within a time frame indirect) record of ground conditions, probing rates to accredited test such that it can be allowed for within the avoiding the ground disturbance procedures geotechnical design and/or construction. associated with boring and sampling ■■ Data may be used in long-established CPT generates high value data and adapts CPT units can be mobilised as road-going semi-empirical design methods, for readily to the environmental sensitivities of 6x6 trucks or a variety of tracked and example, analysis of foundation many investigations in favourable types of crawler units, ideally suited to traversing bearing capacity, foundation material, generally excluding bedrock, very soft, water logged terrain or entering sites settlement, pile carrying capacity and dense granular fill and strata containing with limited access. Fugro’s development of liquefaction potential cobbles and boulders.
    [Show full text]
  • NOTES on the CONE PENETROMETER TEST
    GE 441 Advanced Engineering Geology & Geotechnics Spring 2004 NOTES on the CONE PENETROMETER TEST Introduction The standardized cone-penetrometer test (CPT) involves pushing a 1.41-inch diameter 55o to 60o cone (Figs. 1 thru 3) through the underlying ground at a rate of 1 to 2 cm/sec. CPT soundings can be very effective in site characterization, especially sites with discrete stratigraphic horizons or discontinuous lenses. Cone penetrometer testing, or CPT (ASTM D-3441, adopted in 1974) is a valuable method of assessing subsurface stratigraphy associated with soft materials, discontinuous lenses, organic materials (peat), potentially liquefiable materials (silt, sands and granule gravel) and landslides. Cone rigs can usually penetrate normally consolidated soils and colluvium, but have also been employed to characterize d weathered Quaternary and Tertiary-age strata. Cemented or unweathered horizons, such as sandstone, conglomerate or massive volcanic rock can impede advancement of the probe, but the author has always been able to advance CPT cones in materials of Tertiary-age sedimentary rocks. The cone is able to delineate even the smallest (0.64 mm/1/4-inch thick) low strength horizons, easily missed in conventional (small-diameter) sampling programs. Some examples of CPT electronic logs are attached, along with hand-drawn lithologic interpretations. Most of the commercially-available CPT rigs operate electronic friction cone and piezocone penetrometers, whose testing procedures are outlined in ASTM D-5778, adopted in 1995. These devices produce a computerized log of tip and sleeve resistance, the ratio between the two, induced pore pressure just behind the cone tip, pore pressure ratio (change in pore pressure divided by measured pressure) and lithologic interpretation of each 2 cm interval are continuously logged and printed out.
    [Show full text]
  • The Application of the Seismic Cone Penetration Test (SCPTU) in Tailings Water Conditions Monitoring
    Article The Application of the Seismic Cone Penetration Test (SCPTU) in Tailings Water Conditions Monitoring Wojciech Tschuschke 1, Sławomir Gogolik 1, Magdalena Wró˙zy´nska 1,* , Maciej Kroll 1 and Paweł Stefanek 2 1 Institute of Construction and Geoengineering, Pozna´nUniversity of Life Sciences, Wojska Polskiego 28, 60–637 Pozna´n,Poland; [email protected] (W.T.); [email protected] (S.G.); [email protected] (M.K.) 2 Tailings Management Division, KGHM Polska Mied´z,Polkowicka 52, 59-305 Rudna, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-6-1846-6453 Received: 15 January 2020; Accepted: 5 March 2020; Published: 8 March 2020 Abstract: The safe operation of the large, outflow Tailings Storage Facilities (TSF) requires comprehensive and continuous threat monitoring. One of the basic kinds of threat monitoring is to monitor the water conditions in deposited tailings, which is usually carried out using a conventional piezometric observation method from a network of installed piezometers. In complex tailings storage conditions, the reliability of the piezometric method may be questioned. The Seismic Cone Penetration Test (SCPTU) can meet high test standards. The results of the penetration tests closely identify conditions of sediments that determine the tailings water regime verified locally on the basis of pore water pressure dissipation tests. On the other hand, seismic measurements perfectly complement the characteristics of sediments in terms of their saturation. The analysis of the results of SCPTU implemented in the tailings massif also showed that below the phreatic surface, a zone of not fully saturated tailings can be found.
    [Show full text]
  • Guide to Cone Penetration Testing
    GUIDE TO CONE PENETRATION TESTING www.greggdrilling.com Engineering Units Multiples Micro (μ) = 10-6 Milli (m) = 10-3 Kilo (k) = 10+3 Mega (M) = 10+6 Imperial Units SI Units Length feet (ft) meter (m) Area square feet (ft2) square meter (m2) Force pounds (p) Newton (N) Pressure/Stress pounds/foot2 (psf) Pascal (Pa) = (N/m2) Multiple Units Length inches (in) millimeter (mm) Area square feet (ft2) square millimeter (mm2) Force ton (t) kilonewton (kN) Pressure/Stress pounds/inch2 (psi) kilonewton/meter2 kPa) tons/foot2 (tsf) meganewton/meter2 (MPa) Conversion Factors Force: 1 ton = 9.8 kN 1 kg = 9.8 N Pressure/Stress 1kg/cm2 = 100 kPa = 100 kN/m2 = 1 bar 1 tsf = 96 kPa (~100 kPa = 0.1 MPa) 1 t/m2 ~ 10 kPa 14.5 psi = 100 kPa 2.31 foot of water = 1 psi 1 meter of water = 10 kPa Derived Values from CPT Friction ratio: Rf = (fs/qt) x 100% Corrected cone resistance: qt = qc + u2(1-a) Net cone resistance: qn = qt – σvo Excess pore pressure: Δu = u2 – u0 Pore pressure ratio: Bq = Δu / qn Normalized excess pore pressure: U = (ut – u0) / (ui – u0) where: ut is the pore pressure at time t in a dissipation test, and ui is the initial pore pressure at the start of the dissipation test Guide to Cone Penetration Testing for Geotechnical Engineering By P. K. Robertson and K.L. Cabal (Robertson) Gregg Drilling & Testing, Inc. 4th Edition July 2010 Gregg Drilling & Testing, Inc. Corporate Headquarters 2726 Walnut Avenue Signal Hill, California 90755 Telephone: (562) 427-6899 Fax: (562) 427-3314 E-mail: [email protected] Website: www.greggdrilling.com The publisher and the author make no warranties or representations of any kind concerning the accuracy or suitability of the information contained in this guide for any purpose and cannot accept any legal responsibility for any errors or omissions that may have been made.
    [Show full text]
  • Differential Settlement of Foundations on Loess
    Missouri University of Science and Technology Scholars' Mine International Conference on Case Histories in (2013) - Seventh International Conference on Geotechnical Engineering Case Histories in Geotechnical Engineering 02 May 2013, 2:00 pm - 3:30 pm Differential Settlement of Foundations on Loess Dušan Milović University of Novi Sad, Serbia Mitar Djogo University of Novi Sad, Serbia Follow this and additional works at: https://scholarsmine.mst.edu/icchge Part of the Geotechnical Engineering Commons Recommended Citation Milović, Dušan and Djogo, Mitar, "Differential Settlement of Foundations on Loess" (2013). International Conference on Case Histories in Geotechnical Engineering. 10. https://scholarsmine.mst.edu/icchge/7icchge/session02/10 This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License. This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in International Conference on Case Histories in Geotechnical Engineering by an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. DIFFERENTIAL SETTLEMENT OF FOUNDATIONS ON LOESS Dušan Milović Mitar Djogo University of Novi Sad University of Novi Sad Novi Sad, SERBIA Novi Sad, SERBIA ABSTRACT Experience gained during several decades shows that the loess soil in some cases undergoes structural collapse and subsidence due to inundation and that in some other cases the sensitivity of loess to the collapse is considerably less pronounced. In this paper the behaviour of three 12 story buildings A, B and C, of the same static system and the identical shapes have been analyzed.
    [Show full text]
  • Some Issues Related to Applications of the CPT
    2nd International Symposium on Cone Penetration Testing, Huntington Beach, CA, USA, May 2010 Some issues related to applications of the CPT N. Ramsey Sinclair Knight Merz, Melbourne, Australia ABSTRACT: This paper reviews some issues related to the use of Cone Penetration Testing for geotechnical applications. Some of the areas that are considered include: a) The advantages and disadvantages of Cone Penetration Testing (CPT) b) The advantages of integrating CPT with laboratory testing. c) Identification of similar geological units using statistics. d) A review of published classification/behaviour charts, using a diverse and highly dependable database. e) The importance of using correct cone calibration and cone zero values in normally consolidated fine-grained soils. 1 INTRODUCTION The Burland Triangle (Burland, 1987), shown in Figure 1, provides a useful framework for the majority of geotechnical problems. The Cone Penetration Test (CPT) can provide valuable input to this framework, by providing cost-effective and useful information for the “Ground profile” and “Soil behaviour” aspects of the triangle. Figure 1: The Burland Triangle (Burland, 1987) The main purposes of this paper are to review the contribution of the CPT, in terms of ground profiling and the assessment of soil behaviour. The paper concentrates primarily on sites containing normally consolidated (NC) fine grained soils, as these soils tend to be relatively difficult to analyse, and because published correlations can be less reliable in these soils. Practical examples
    [Show full text]
  • Interpretation of Seismic Cone Penetration Testing in Silty Soil
    Interpretation of Seismic Cone Penetration Testing in Silty Soil Rikke Holmsgaard1, Lars Bo Ibsen2, and Benjaminn Nordahl Nielsen3 1PhD. Fellow, Master of Science in Civil Engineering, Aalborg University, Department of Civil Engineering, Sofiendalsvej 11, 9200 Aalborg SV, Denmark, Phone +45 40939994, email: [email protected] 2Professor, Aalborg University, Department of Civil Engineering, Sofiendalsvej 11, 9200 Aalborg SV, Denmark, Phone +45 99408458, email: [email protected] 3Associate Professor, Aalborg University, Department of Civil Engineering, Sofiendalsvej 11, 9200 Aalborg SV, Denmark, Phone +45 99408459, email: [email protected] Corresponding author: Rikke Holmsgaard, email: [email protected] ABSTRACT Five Seismic Cone Penetration Tests (SCPT) were conducted at a test site in northern Denmark where the subsoil consists primarily of sandy silt with clay bands. A portion of the test data were collected every 0.5 m to compare the efficacy of closely-spaced down-hole data collection on the computation of shear wave velocity. A minimum of eight seismic tests were completed at each depth in order to examine the reliability of shear wave velocity data, as well as to assess the impact of the time interval between CPT termination and seismic test initiation on SCPT results. The shear wave velocity was computed using three different methods: cross-over, cross-correlation and cross-correlation “trimmed with window”. In the “trimmed with window” technique the latter part of the signal is clipped off by setting the amplitude to zero. The result showed that more closely-spaced test intervals actually increased the variability of the shear wave velocity and that time interval between seismic tests is insignificant.
    [Show full text]